Status update

Chenguang Zhang / 28May2025

- The analysis has a good completeness, thanks to <u>Yuji Li</u>
 - Stat. Err. of mH = 1.7 MeV
 - There is no beam energy spread included, which would contribute to the resolution of the recoil mass spectrum and is an important component of the statistical uncertainty
 - NO systematic uncertainties considered

Intro.

Fitting performance in MulD Error(mH=125)=1.7MeV

- BES ~ 0.17% at Higgs run
- Normal BES config. : $\sqrt{s} = 240 \pm 0.17\% \times BE$ Normal BES config. : $\sqrt{s} = 240 \pm 0.17\% \times BE$
- mmHX samples are generated with 5 CME points
- Sample events according to the fractions below

Beam Energy Spread

Systematic uncertainties [Beam Energy Spread]

- BES uncertainty ~ 1-6 % [from other place], and should be an input from accelerator
- 1 sigma = $0.288 \times 1.06 = 0.305$ [blue curve]
- Adjust the sampling fractions to mimic the BSE variation w.r.t. the normal scenario

Systematic uncertainties [Centre-of-Mass Energy]

- Visible in the recoil spectra of radiative return events $Z \rightarrow \mu\mu\gamma$

- $\delta \sqrt{s}$: $\delta mH \approx 1$: 1 analytically, but it is difficult to demonstrate this using full simulation
 - Statistics is not enough
 - The function is not very suitable for modelling the spectrum

• $\delta\sqrt{s}$ should be at least at MeV level and is an input from accelerator team [For reference, 2MeV is adopted by FCC]

Systematic uncertainties [Lepton Scale]

- A large number of radiative return events can be used to monitor the momenta precision, • $\delta_{Z_{peak}} = \frac{\sigma_{p_T}}{\sqrt{N}}$, $\sigma_{p_T} = 2 \times 10^{-3}$, N=30M (20ab⁻¹, radiative return only)
 - Together with Low-Lumi-Z events, $\delta_{p_T} \sim 10^{-6}$ is easily visible from the Z boson
- The bottleneck is the magnet field precision ~ 10^{-5} (from FCC)

• Inject -5, -2, 2, 5 x 10^{-5} shifts to the muon pT, and check the resulting variations in the recoil mass peak

Systematic uncertainties [ISR]

• Turn off ISR in whizard, generate mmHX events at $\sqrt{s} = 240$ GeV • Check the variation in the recoil mass peak

- Uncertainty source to mH
 - BES uncertainty < 1MeV
 - CME uncertainty; 1 to 1 propagated to mH; ~ 2MeV
 - Lepton scale; 1 to 1 propagated to mH; ~ 1MeV
 - ISR ~ in progress...
- This study only propagates the sources of uncertainties to the recoil mass spectra • These sources need to be verified against the accelerator TDR
- Some expectations cannot be clearly observed with full simulation • The fit is challenging. A clear bias is observed in the fit
- - Need larger statistics

Summary

Summarv			
resolution/purity			
trk momenta	< 0.2% for 1-100 GeV		
Impact parameter	100-3 um for both d0 and z0 in barrel	10-3 um for d0 and z0 in endcap	
vertex	Primary, 2-3.5 um, as a function of Nrk	Secondary, transverse < 5 um, longitudinal < 30 um	
photon energy	2%-0.3%, for genE 1-100GeV		
Jet energy	5%-6%, vary as energy and polar angle		
BMR	4%-6%, for barrel and endcap		
PID (From current TDR, NOT up to date)	mu	e	Κ
	[>10GeV, 100%], [<10GeV, 90-99% for E/B]	[>20GeV, 100%], [<20GeV, 90% for E/B]	~75% for best WP
jet-tagging (BDT)	c, uds mis-id. as b	b, uds mis-id. as c	
	2.23%, 0.24% for 80% WP	⁹ 13.6%, 13.9% for 80% WP	

- The same gen-events with different SW release
 - tdr.25.3.6: dashed
 - tdr.25.5.0: solid
- The same code for plotting

- The same gen-events with different SW release
 - tdr.25.3.6: dashed
 - tdr.25.5.0: solid
- The same code for plotting

10² p_T / GeV

- The same gen-events with different SW release
 - tdr.25.3.6: dashed
 - tdr.25.5.0: solid
- The same code for plotting

- The same gen-events with different SW release
 - tdr.25.3.6: left
 - tdr.25.5.0: right
- The same code for plotting

- The same gen-events with different SW release
 - tdr.25.3.6: left
 - tdr.25.5.0: right
- The same code for plotting

