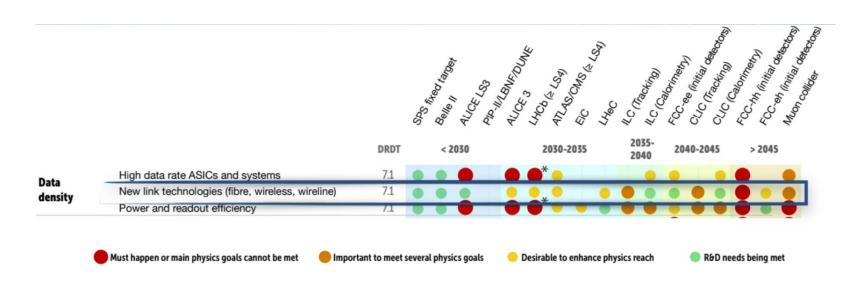
无线数据传输应用讨论

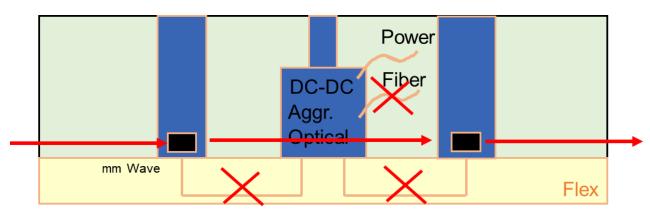
<u>胡俊</u>, 江晓山, 严子越, 周星, 宋崇耀 2025.6.6

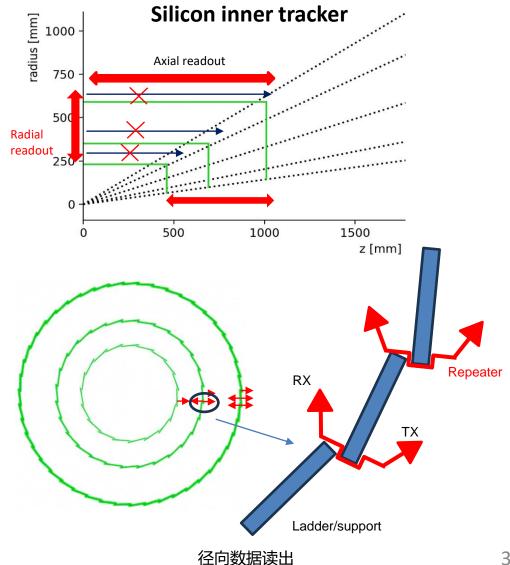
研究背景

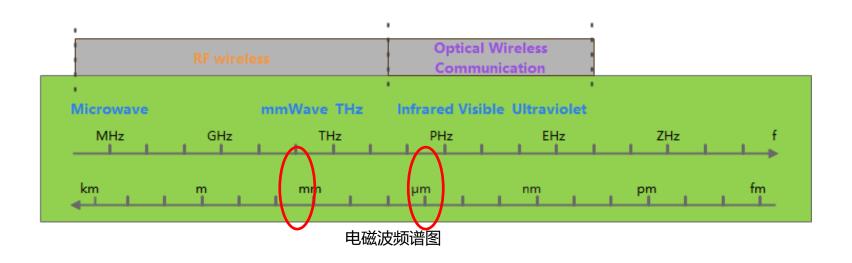

- 无线传输的优势

降低物质量:减少电缆、光纤和连接器的使用,同时减小探测盲区。

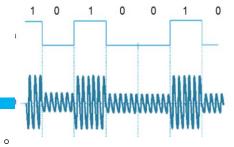
→ 显著提升探测效率与分辨率!


便于安装维护:简化数据传输节点的布局部署。


降低成本:无需电缆、光纤和连接器。


无线数据传输方案

- 桶部径向数据读出:与传统数据读出方式 相比,提供新的数据传输路径,减小探测 器内部的物质量。
- 桶部到端盖的轴向数据读出:替代光纤, 节省空间与物质量。
- **端盖数据读出**:将数据集中至端盖边缘, 降低电缆布线的复杂性。


研究方向

- 毫米波: Millimeter Wave (60GHz)
 - 高带宽,低功耗
 - 天线尺寸小型化,甚至可以集成到芯片中
 - 通道之间干扰较低,与探测器之间的干扰小
 - 技术成熟度中等

- 无线光传输: Optical wireless communication (OWC) / Free Space Optical(FSO)
 - 传输带宽极高
 - 技术成熟度较高
 - 对准直度要求高

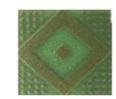
毫米波研究进展

非相干调制的结构比较契合我们的需求。

- 需要解决的技术难题

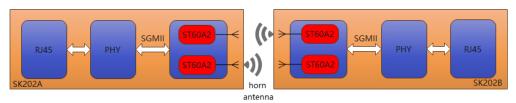
- 毫米波收发器的选型:抗辐照,低功耗,高带宽
 - 现阶段定制射频芯片成本较高。
 - 市场上没有能完全满足我们需求的商用芯片,只找到一款接近我们需求的收发器芯片,可以用来测试毫米波性能。
- 满足需求的天线设计: 小体积, 小物质量
 - 国内能实现的较多,我们联系了中科院微电子所和第三方公司,帮助实现天线定制化。

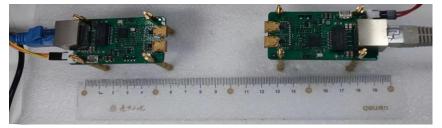
- 系统整合


- 完成各种性能测试
- 解决降低串扰、提高通道密度的问题
- 搭建小系统模型

收发器结构	相干调制	非相干调制
主要特点	需要载波同步(数字基带 电路,锁相环等),电路 复杂。	无需相位同步(依赖差分或包络检测),结构简单
传输速度	极高, 带宽效率高	相对低
功耗	高	低
适用场景	高精度, 高带宽通信	短距离, 低功率通信

天线种类	号角天线	PCB天线
主要特点	金属制成,独立 安装,体积较大	集成在PCB上,一 体设计
方向性	波束窄, 串扰小	波束宽, 串扰大
增益	增益高(20dbi)	增益低(3dbi)
性能效率	效率高,损耗低	效率中等
成本	高,加工复杂	低,设计灵活


号角天线



PCB Patch 天线

由于物质量和体积的要求,我们只能采用PCB patch天线,需要相关设计能力。

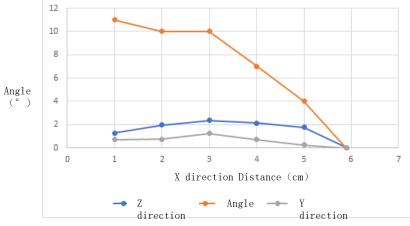
毫米波商用收发器

Distance (cm)	Bandwidth (Mbps)	Packet loss rate
1	914	0.031%
3	917	0.061%
5	915	0.05%
6	913	0.13%
>6	No link	No link

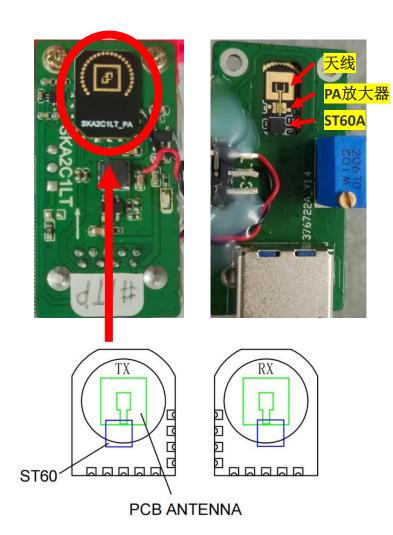
Test	result	at	different	distances	of
TX/R	X				

Material **Thickness** Penetration Ability 2_mm Paper ٧ Plastic ruler 2mm FR4 PCB 1.6mm X 0.2mm X Flex

> Penetration Test with 3 cm distance


使用评估板 SK202 进行测试

- 基于意法半导体商用 60GHz 射频芯片 ST60A2G0 收 发器
- 传输距离小于 6 厘米 时,传输速率可超过 900Mbps
- 60GHz 毫米波可穿透纸张、塑料等材料,但因铜层屏 蔽效应无法穿透 FR4 印刷电路板或柔性线缆
- 相比光通信,毫米波对设备对准精度要求较低
- 功耗:约 0.5W (发射+接收)

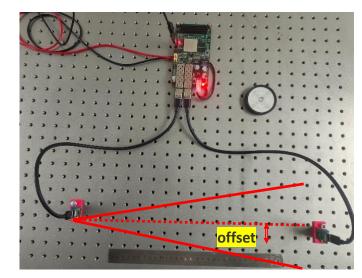

主要问题:

传输距离过近 传输速率不高 天线尺寸过大

Alignment test

长距离毫米波收发模组研制

长距离毫米波收发模组

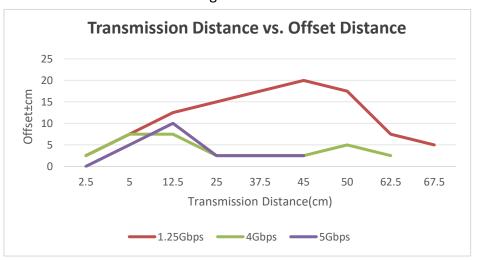

- 基于ST60A2 收发器 + PA 放大器 (裸片)
- 采用PCB天线,尺寸及物质量显著减小
- 邮票孔接口,外围电路简单。
- 尺寸: **14mm x 9mm**

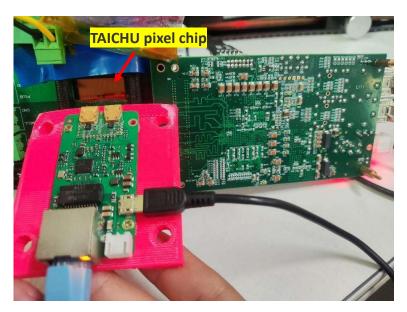
■ 对输入信号的要求

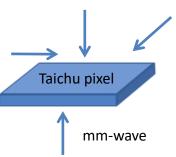
- SLVS 100Mbit/s 6.25Gbit/s
- 8b10b编码
- 需要preamble,以满足ST60A2的启动时间要求
- 与FPGA的高速串行接口兼容

传输性能测试

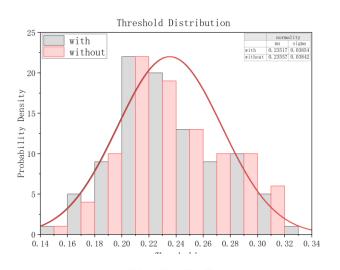
- 最远传输距离达到67.5cm @ 1.25Gbps
- 最大线速率达到6.6Gbps @22.5cm
- 天线设计在5Gbps附近优化,以达到最远传输距离,此时对 齐要求±2.5 cm @ 45 cm距离

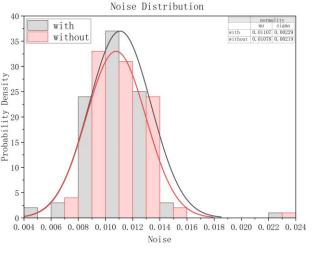

Alignment test


1X10 ⁻¹² BER @ 6.6 Gbps	
IBERT results	

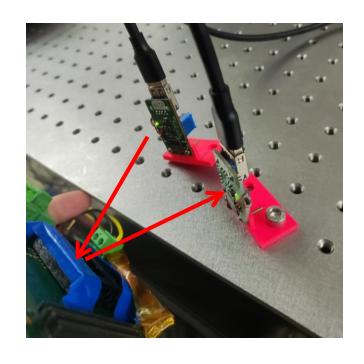

Line rate (Gbps)	Stable distance (cm)	Connection distance (cm)
1.25	67.5	80
4	50	70
5	45	60
6.6	22.5	37.5

不同线速率条件下最远传输距离



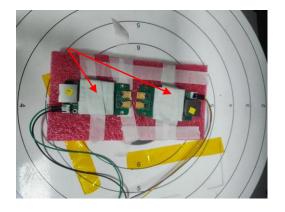

与探测器的干扰测试

- 使用顶点像素原型芯片 TAICHU3
 - 测试2种模组 (短距离和长距离模组)
 - 从不同的方向和距离靠近Taichu3
 - 评估对芯片阈值和噪声的影响
- 测试结果表明60GHz毫米波对探测器信号的影响很小。而探测器信号同样很难影响毫米波信号的传输。

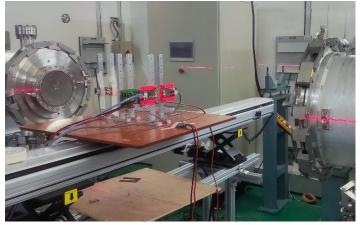


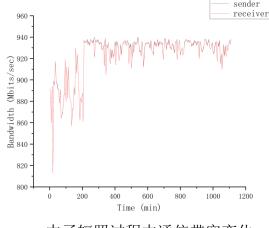
串扰测试

对于小功率模组+号角天线,无论是垂直放置还是水平放置,最小到3厘米的距离都不会影响传输,可以实现高密度的放置。


- 测试高功率模块时发现,被平面反射的射频 信号仍然可以被识别并建立通信。如何消除?
 - **根据需求调整天线设计以改善方向和增益特性**
 - 设计屏蔽结构
 - 寻找吸收率高的材料

2025/6/6


辐照测试



能量: 20keV 剂量率: 21.2krad/min 实验时长: 5.5小时 (7 Mrad)

散裂中子源白光中子束流

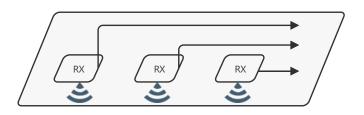
中子辐照过程中通信带宽变化

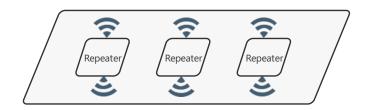
東流强度: 1.65*10⁷n_{eq}/cm²

吸收系数: 0.95 实验时长: 21小时

 $(1.2 \text{ X } 10^{12} \text{ n}_{eq}/\text{cm})$

■ 总剂量测试

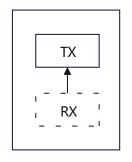

- 目标值: 总剂量5 Mrad (Si)
- 辐照过程中实时监测,无线通信均正常。

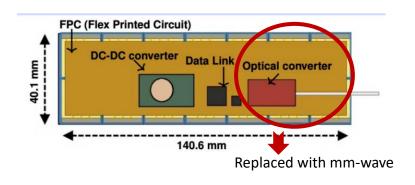

■ 非电离能损测试

- 目标值: 0.97 X 10¹² n_{eq}/cm (1MeV等效中子)
- 辐照过程中实时测试带宽,传输速率基本无影响。

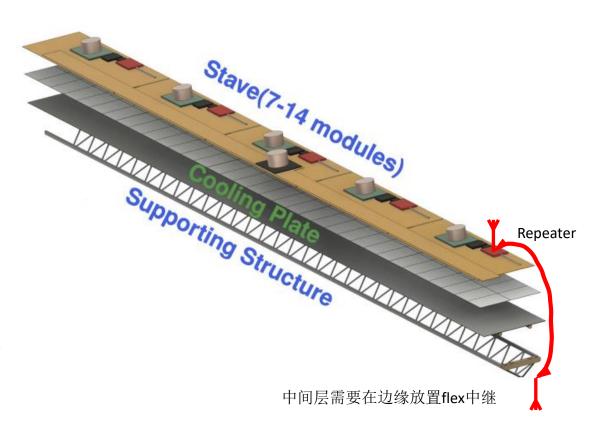
毫米波小系统模型

■ 计划搭建一个3层的数据传输模型




从上到下依次是 接收层,中继层,发送层

- 单通道的RX, TX节点已经得到验证
- Repeater的设计拟采用双面PCB结构,正在设计中



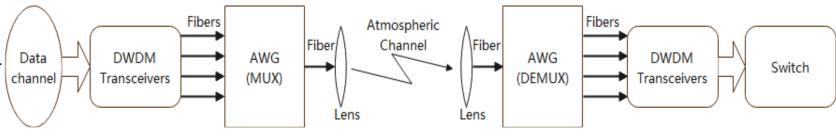
Repeater 结构: RX在PCB底层,TX在PCB顶层

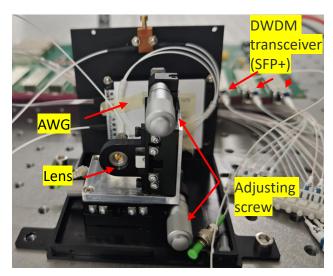
应用讨论

- 替代OTA模组+光纤
- 还存在的问题
 - 上行数据与下行配置的共用问题
 - 时钟传输问题
 - 密集通道的串扰问题

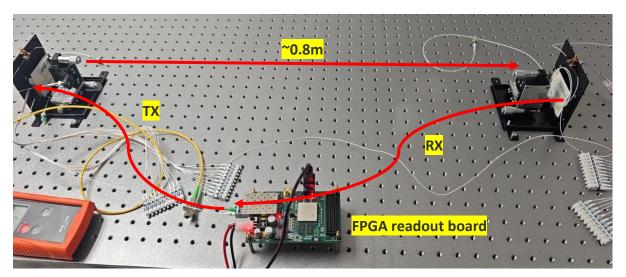
毫米波研究进展小结

- 协同创新方面: 联合中科院微电子所、ST科技公司、华为公司的专业团队,通过多次讨论, 技术路径优化, 最终构建了可批量获取的毫米波系统解决方案。
- 技术突破层面: 针对我们的需求,研制长距离小尺寸的模组,完成单通道的样机研制,通过性能测试,基本解决了毫米波技术在探测器应用中的关键问题。
- 后续推进
 - 模组量产,由于模组采用裸片打线,在生产、运输及测试过程中易损坏,批量生产良率不高。预计6 月初能拿到200个新模组。
 - 推进基于新模组的自主设计repeater,完成小型化系统的集成,今年内完成。
 - 未来尝试收发器及天线集成芯片的设计,进一步减小核心模组的体积和功耗。



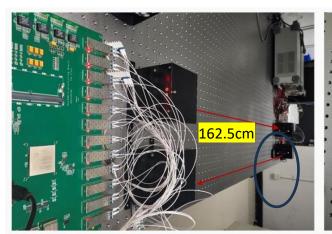

无线光传输研究进展

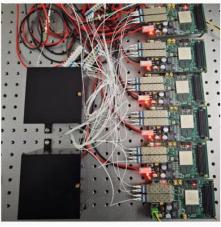
- 无线光传输模组设计


- 与中科院半导体所合作设计
- 基于SFP光收发器,与传统 有线光纤系统兼容
- 利用全商业器件进行技术应用探索

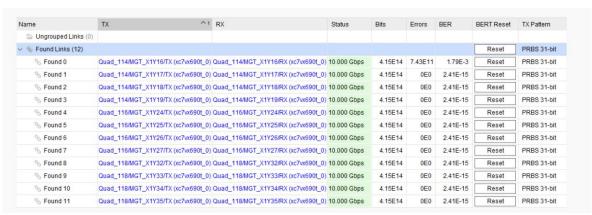
无线光传输测试框图

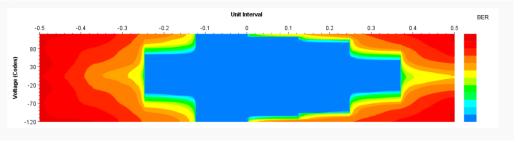
光传输模组



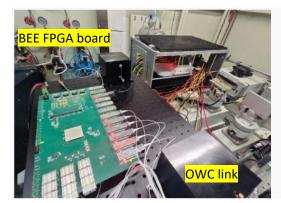

单通道回环测试

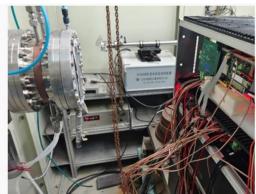
接收光功率: -13.36dBm

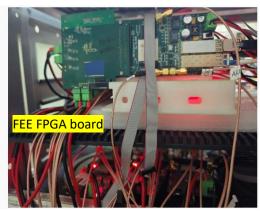

无线光传输研究



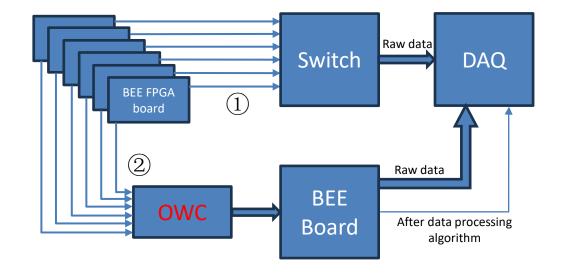
多通道光传输PRBS回环测试


- 短距离无线光传输的系统搭建及误码率测试
 - 传输距离1.7m。
 - PRBS 31bits 误码率 < BER-15 @ 8Gbps X 1通道 + 10Gbps X 11 通道。
 - 已经实现了超过100Gbps的无线传输系统。




10Gbps 回环测试误码及眼图

无线光传输研究



Telescope prototype test in BSRF

- 利用MOST2望远镜系统,在同步辐射线站 验证无线光传输质量,总计运行2086分钟。
- 通过有线光纤传输的原始数据① 与通过 OWC 传输到BEE板的数据② 100%一致。
- 搭建的短距离大数据带宽的光传输小模型平台,并得到了比较充分完整的验证。
- 应用到探测器内有困难,主要在于与探测器信号敏感区的冲突。

经费,会议报告,文章

■ 经费

- MOST3课题2,
- 高能所所创新支持120万
- 河南科学院基金支持145万

- 会议报告

- CPEC EU workshop 2024, 4月@马赛, Status of the Wireless Transmission Application for CEPC
- CPEC workshop 2024,10月@杭州,Progress in Wireless Data Transmission for Detector Readout
- WADAPT General Meeting, https://indico.cern.ch/event/1456402/, Wireless studies in China
- 今年投稿TWEPP会议

文章

– Multi-Channel Data and Clock Transmission System Based on Free-Space Optical Communication, JINST,审稿中

2025/6/6