## J/ψ polarization measurement in pp collisions and Pb-Pb collisions

#### **Liang Dong**

University of Science and Technology of China 11th China LHC Physics Conference

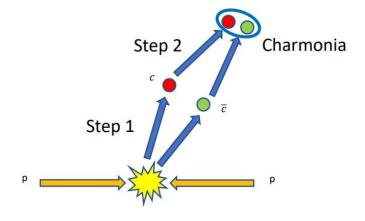
Xinxiang, Oct. 29 - Nov. 2, 2025







## Quarkonium in pp collisions




**Quarkonium production**: perturbative + non-perturbative QCD.

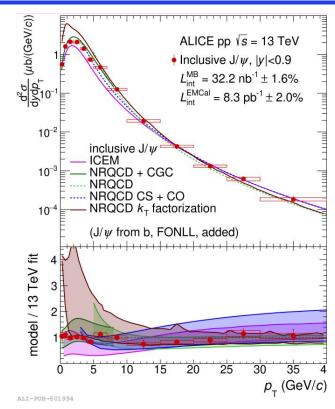
Study quarkonium in pp:

25/10/31

- Distinguish among the quarkonium production mechanism; refine QCD based models such as: NRQCD, NRQCD+CGC, ICEM.
- Reference for interpreting results obtained in Pb–Pb collisions.



NRQCD: Phys. Rev. D51 (1995) 1125–1171 NRQCD+CGC: JHEP 01 (2014) 056 ICEM: Phys. Rev. D 94 no. 11, (2016) 114029



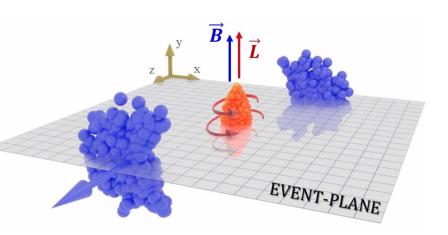

### Motivation to study polarization



Most theoretical models can reasonably describe the inclusive J/ψ production cross section, but they give very different predictions for the J/ψ polarization.

> J/ $\psi$  polarization serves as **a golden observable** for testing and refining quarkonium production models.

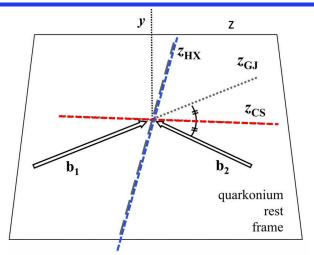


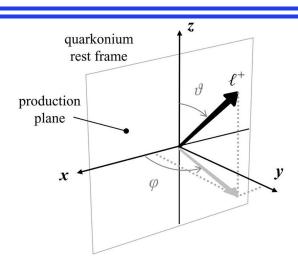

ALICE, Eur. Phys. J. C 81 (2021) 1121



## Motivation to study polarization in Pb-Pb collisions




- ➤ Both the external magnetic field and the initial angular momentum produced in the noncentral heavy-ion collisions may influence the quarkonium polarization.
- ➤ The studies are also interesting in heavy-ion collisions to study quarkonium regeneration and suppression process in the QGP.
- ➤ The event plane, being perpendicular to the angular momentum and magnetic field, is ideal for observing polarization effects.






#### Introduction to polarization measurements







**Polarization**: the alignment of the particle spin with respect to a chosen quantization axis.

#### **Polarization axis:**

**Helicity (HX)**: Direction of vector meson in the collision center of mass frame.

Collins-Soper (CS): The bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame.

**Production-plane(PP)**: Axis perpendicular to the production plane.

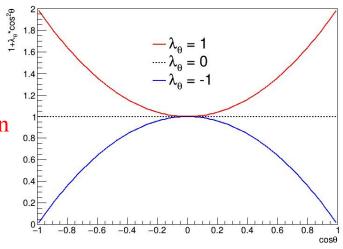
Event Plane based frame (EP): Axis perpendicular to the reaction plane.

Faccioli et. al, EPJC 69, 657 (2010)



## Introduction to polarization measurements

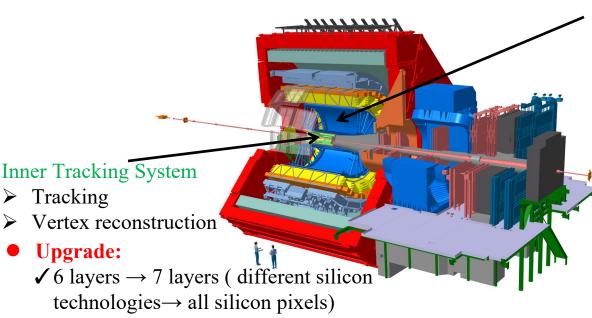



Polarization is studied via measurement of angular distribution of particle decay products.

The angular distribution in dilepton decay:

$$W( heta,\phi) \propto rac{1}{3+\lambda_ heta} ig(1+\lambda_ heta\cos^2 heta+\lambda_\phi\sin^2 heta\cos2\phi+\lambda_{ heta\phi}\sin2 heta\cos\phiig)$$

Faccioli et. al, EPJC 69, 657 (2010)


$$(\lambda_{ heta}, \lambda_{\phi}, \lambda_{ heta\phi}) = (1, 0, 0)$$
 — Transverse polarization  $(\lambda_{ heta}, \lambda_{\phi}, \lambda_{ heta\phi}) = (-1, 0, 0)$  — Longitudinal polarization  $(\lambda_{ heta}, \lambda_{\phi}, \lambda_{ heta\phi}) = (0, 0, 0)$  — Unpolarized state



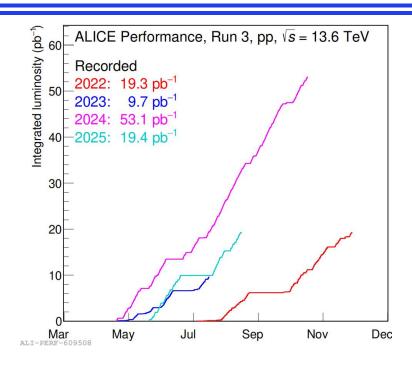


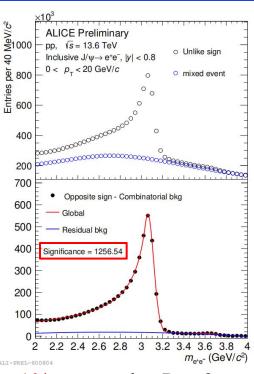
#### **ALICE detector in Run3**





#### Time Projection Chamber


- Tracking
- Particle identification
- Upgrade:
  - ✓ Multi-Wire Proportional Chamber (MWPC) → Gas Electron Multiplier (GEM).
  - Enables continuous readout, allowing the collection of a significantly larger data sample.

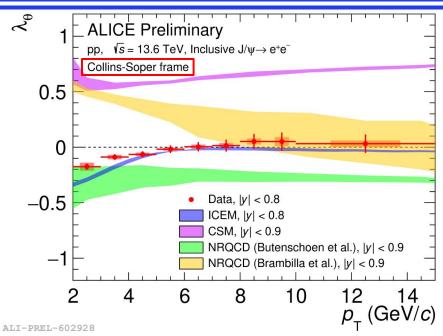

- ✓ Radius of innermost layer: 39 mm  $\rightarrow$  23 mm
  - (Improved track pointing resolution)
- ✓ Material budget for each of the 3 innermost layers:  $1.15\% \rightarrow 0.35\%$ .
  - (Reduction of conversion electrons, one of the background sources in electron analyses.)



#### ALICE in Run3 data taken





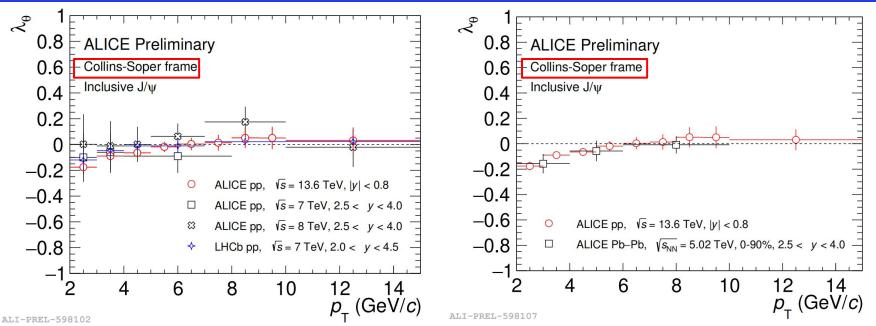



- ➤ The pp collision data sample collected has increased by 10<sup>4</sup> compared to Run 2.
- $\triangleright$  The reconstructed J/ $\psi$  significance is greater than 1200.



## Quarkonium polarization in pp collision



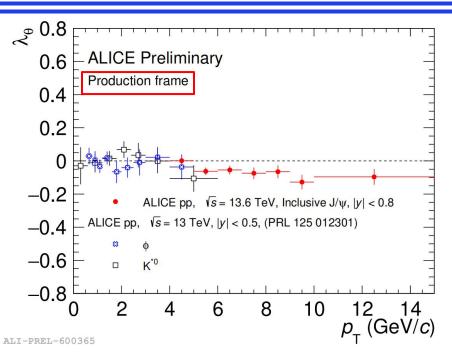



- $\triangleright$  The Run 3 statistics allow for the measurement of J/ $\psi$  polarization at midrapidity.
- Polarization measurements **provide an important constraint** on the LDME, which is crucial for understanding the  $J/\psi$  production mechanism in pp collisions.



## Quarkonium polarization in pp collision



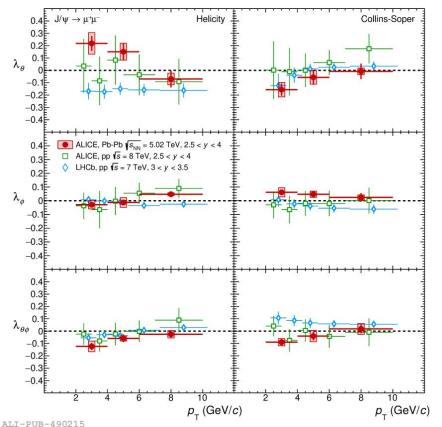



- The ALICE Run 3 Collins-Soper result is consistent with previous ALICE and LHCb results at forward rapidity, both in pp and Pb-Pb collisions.
- $\triangleright$  No strong rapidity dependence or collision system dependence observed in inclusive J/ $\psi$  polarization.



### Quarkonium polarization in pp collision





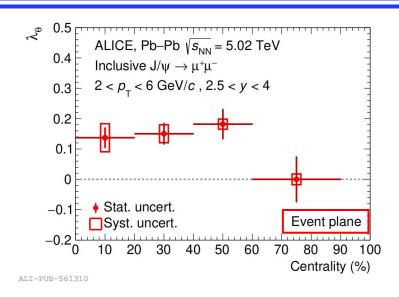

The measured J/ $\psi$  polarization in Production frame is consistent with the previous ALICE results for  $\phi$  and  $K^{*0}$ , shows no strong polarization.

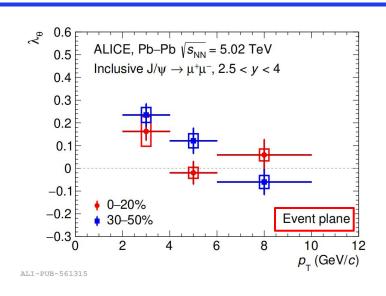


#### Quarkonium polarization in Pb-Pb collision






- $\triangleright$   $\lambda_{\theta}$  indicates a slight transverse polarization at low  $p_{T}$  in HE, while a weak longitudinal polarization in CS frame.
- A significant difference (3.3 $\sigma$ ) is found with respect to LHCb results at low  $p_T$  (  $2 < p_T < 4$  GeV/c) in HE frame.
- ➤ Different polarization in Pb-Pb and pp may be a hint of different production mechanisms.

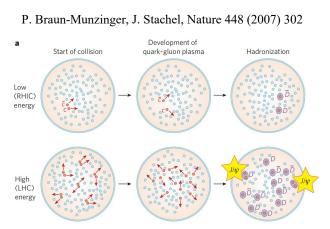

ALICE, PLB815 (2021)136146 LHCb, JHEP12 (2017) 110 ALICE, EPJC78 (2018) 562

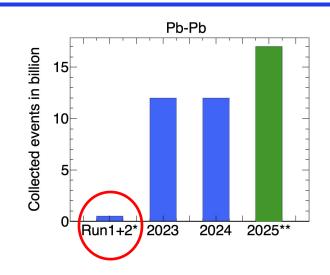


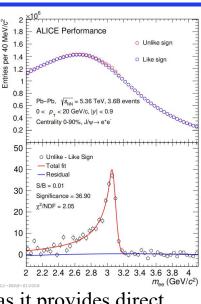
#### Quarkonium polarization in Pb-Pb collision









- First measurement of quarkonium polarization with respect to the event plane.
- Finite polarization (~ 3.5 $\sigma$ ) of J/ $\psi$  in Pb-Pb collisions for (40-60)% centrality class with respect to the event plane.
- > Significant deviation (~ 3.9 $\sigma$ ) is observed for (30–50)% at low  $p_T$  ( 2 <  $p_T$  < 4 GeV/c).




## J/ψ polarization in Pb-Pb collisions at midrapidity









- The measurement of  $J/\psi$  polarization at midrapidity is particularly important, as it provides direct insight into the dominant production mechanisms.
- > Compared with RHIC energies, J/ψ production at the LHC is cleaner and less affected by competing processes.
- The Run 3 detector upgrade will enable precise measurements of J/ $\psi$  polarization at midrapidity and allow the separation of prompt and non-prompt contributions.



## **Summary**



#### • Quarkonium polarization in pp collision:

- J/ $\psi$  do not show strong polarization in Collins-Soper and production reference frames.
- The results indicate there is no strong dependence of inclusive  $J/\psi$  polarization on rapidity, collision system or collision energy.

#### Quarkonium polarization in Pb-Pb collision:

- A small transverse (longitudinal) polarization in helicity(Collins-Soper) frame at 5.02 TeV.
- Significant polarization of  $J/\psi$  is observed in event plane frame at 5.02 TeV.

#### Outlook:

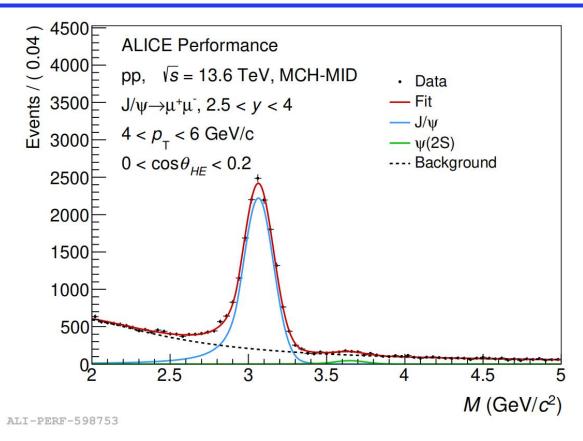
• Precise measurement of J/ $\psi$  polarization is ongoing with improved statistics in Run 3.





## Thanks






# Backup



#### J/ψ signal extraction in pp collision at forward rapidity in Run3







#### Model



- NRQCD: Non-Relativistic QCD approach, long-distance matrix elements (LDME) fitted to experimental data.
- NRQCD+CGC: Color Glass Condensate effective theory coupled to leading order NRQCD calculations.
- **CSM**:The quarkonium is directly produced in a color-singlet state.
- ICEM: using the  $k_T$ -factorization approach to improve Color Evaporation Model (CEM).