Contribution ID: 283 Type: not specified

Study of femtoscopic emission sources in AMPT and ALICE experiments

Friday, 31 October 2025 15:20 (20 minutes)

The measurement of momentum correlations of identical pions serves as a fundamental tool for probing the space-time properties of a particle-emitting source created in high-energy collisions. Recent experimental results have shown that in pp collisions, the size of the one-dimensional primordial source depends on the transverse mass (mT) of the hadron pairs, following a common scaling behavior similar to that observed in Pb–Pb collisions. In this study, a systematic analysis of the \boxtimes - source and correlation functions was performed using the multiphase transport model (AMPT) to understand the properties of the emitting source created in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV. The mT-scaling behavior and pion emission source radii measured by the ALICE experiment can be described well by a model with a subnucleon structure. This work sheds new light on the efective size of the \boxtimes - emission source and the study of intensity interferometry in small systems using a transport model.

Primary authors: CHEN, Meiyi (Fudan University); SHOU, Qiye; Dr WANG, Dongfang; MA, Yugang; ZHANG,

Song

Presenters: CHEN, Meiyi (Fudan University); SHOU, Qiye

Session Classification: Parallel 3

Track Classification: ALICE