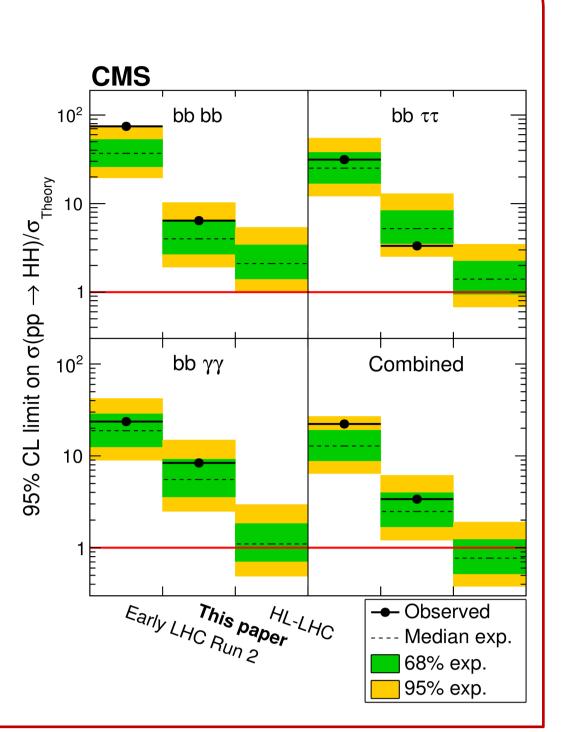


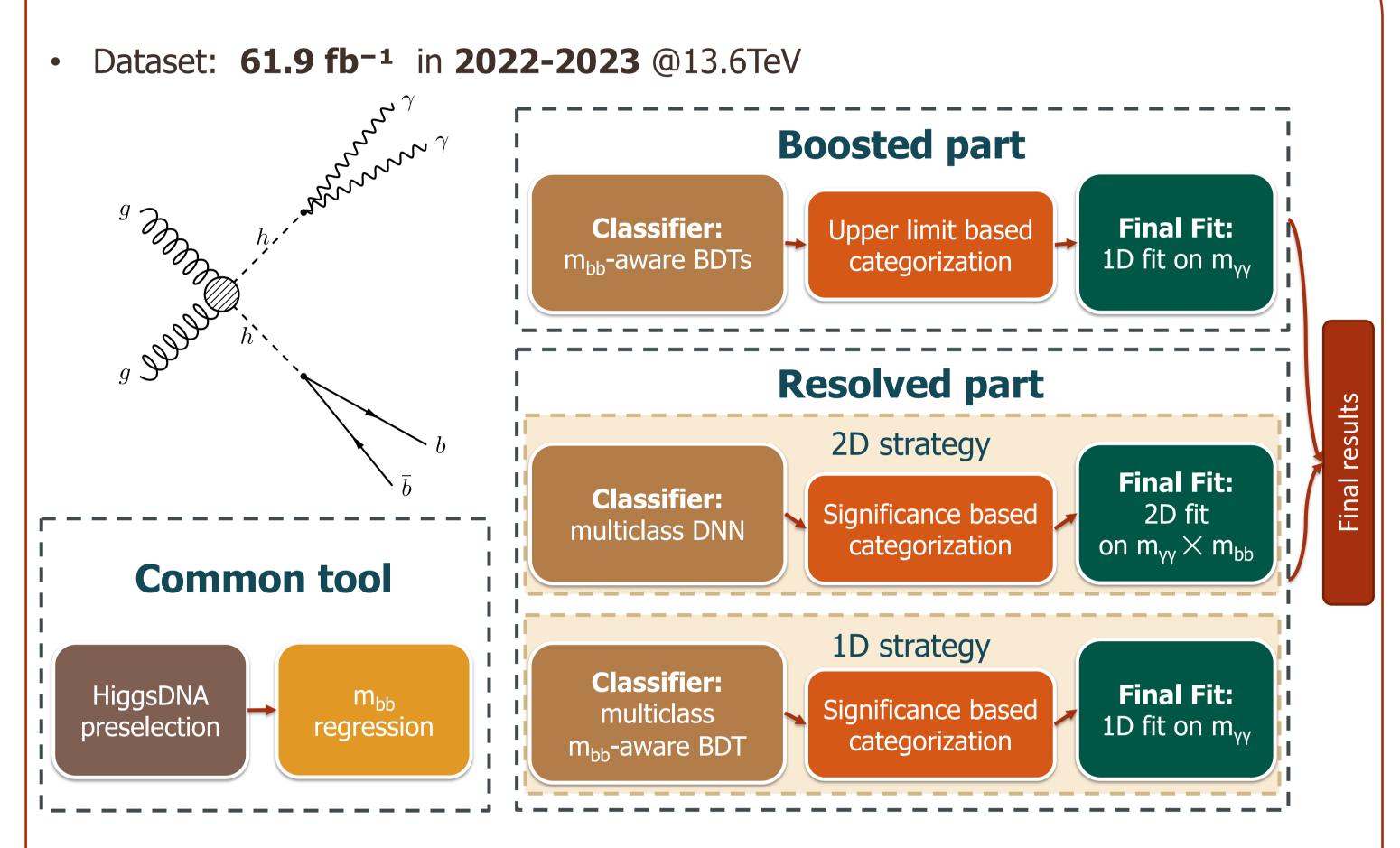
Analysis of non-resonant HH \rightarrow bbyy using CMS Run3 data

Chuxue YANG* (Peking University)

Under supervision of Yajun Mao, Chen Zhou, Alexandra Carvalho Antunes De Oliveira


Introduction

Why Study HH?


- Tests the shape of the Higgs potential, still unprobed after Higgs discovery.
- Directly sensitive to the Higgs self-coupling, a key SM prediction.
- Probes BSM effects in the Higgs sector.

Why the bbyy final state?

- H→bb: largest branching ratio among Higgs decays.
- H→yy: clean final state with excellent mass resolution and trigger efficiency.
- This channel provides a powerful balance of rate and resolution, ideal for early Run 3 studies.

Analysis Overview

Event Selection

Preselection

- Events are triggered using the dedicated H→γγ HLT path.
- The photon selection follows the $H\rightarrow\gamma\gamma$ group preselection.
- A loose dijet preselection is applied on the H→bb dijet pair:
 - Specific enough to focus on the interesting phase space;
 - Generic enough to retain sufficient statistics for downstream MVA training.
- A tight lepton selection is used to implement loose lepton vetoes.
- An additional technique applied already at the preselection stage:

m_{bb} regression

- Improving the m_{bb} resolution enhances both event selection and signal extraction.
 - Two regression methods are used:
 - PNet-based regression (centrally provided);
 - Custom DNN regression (trained on ggHH signal):
 - Trained to predict (gen reco) / reco using jet- and event-level inputs.
- 10–20% m_{bb} resolution improvement, varying with data-taking period.

Event Categorization

Resolved Category – MVA-Based Event Selection

- The final selection relies on multiclass MVA discriminators to separate ggHH signal from backgrounds.
- Two complementary strategies are developed, differing in how m_{bb} is handled:

1D Strategy

- m_{bb} is used as an input to the BDT, fit performed on m_{yy} only;
- Training optimized to suppress single-Higgs backgrounds resonant in $m_{\gamma\gamma}$;
- Achieves $\sim 10^3$ (10^2) background rejection for QCD (top quark) at $\sim 60\%$ (50%) signal efficiency.

2D Strategy

- DNN trained to be agnostic to the m_{bb} mass scale, m_{bb} is used explicitly in the 2D fit: $m_{vv} \otimes m_{bb}$;
- Designed to suppress all backgrounds, including QCD and top quark;
- Achieves $\sim 10^3$ (10^2) background rejection for QCD (top quark) at $\sim 50\%$ (55%) signal efficiency.
- Both strategies provide strong signal vs. background separation.
- Use different assumptions and statistical treatments, yet give consistent results.

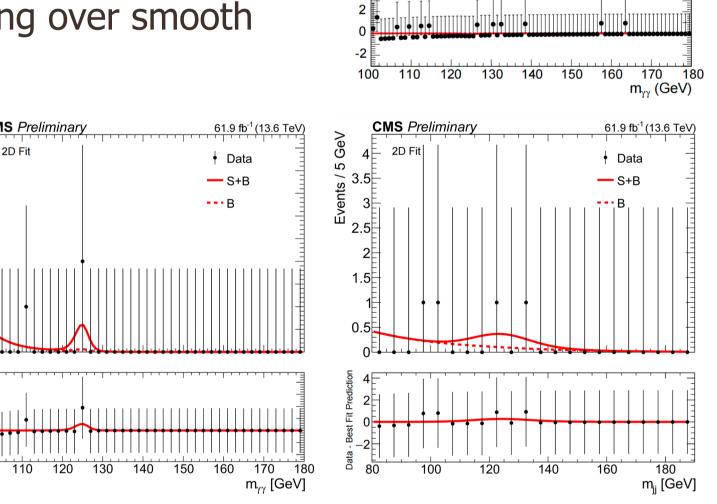
Boosted Category – Targeting High-pT H→**bb Events**

- At high pT, AK4 jets fail to resolve close b quarks ⇒ Loss in signal efficiency.
 - AK8 jets recover the efficiency, motivating a separate boosted category.
- Preselection (from gen-level studies):
 - AK8 jet with:
 - ≥ 2 subjets;
 - T2/T1 < 0.75;
 - PNet(Xbb vs. QCD) > 0.4;
 - 30 < msoftdrop < 210 GeV.
 - Candidate: AK8 jet with highest PNet(Xbb vs. QCD).
- Final selection (by a two-step BDT approach):
 - BDT1: SM ggHH vs. VH;
 - BDT2: SM ggHH vs. all background:
 - using BDT1 score as input.
- → Achieves strong background rejection.
- 1 Signal region defined by optimizing expected limit in cut-and-count.

Combination of Resolved & Boosted Categories

- Events are first assigned to the boosted category, which has high purity and low background;
- Remaining events are used to build the resolved category, maximizing sensitivity.

Fitting Strategy

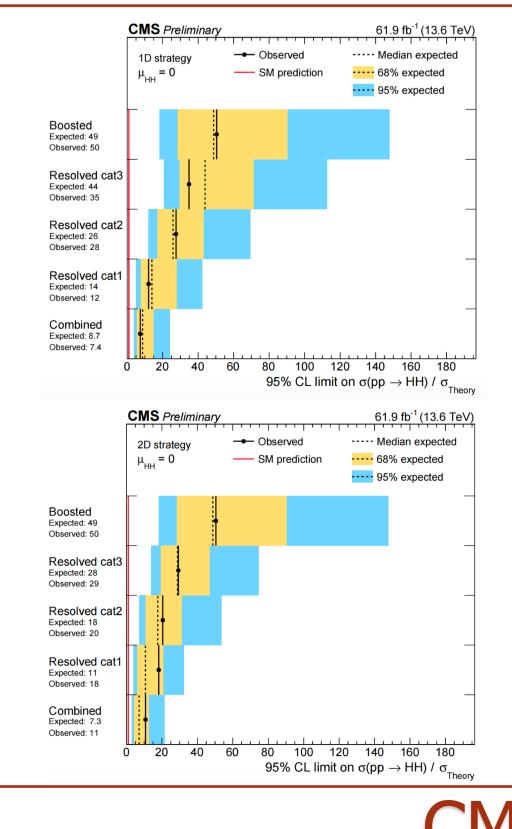

We use two signal extraction strategies:

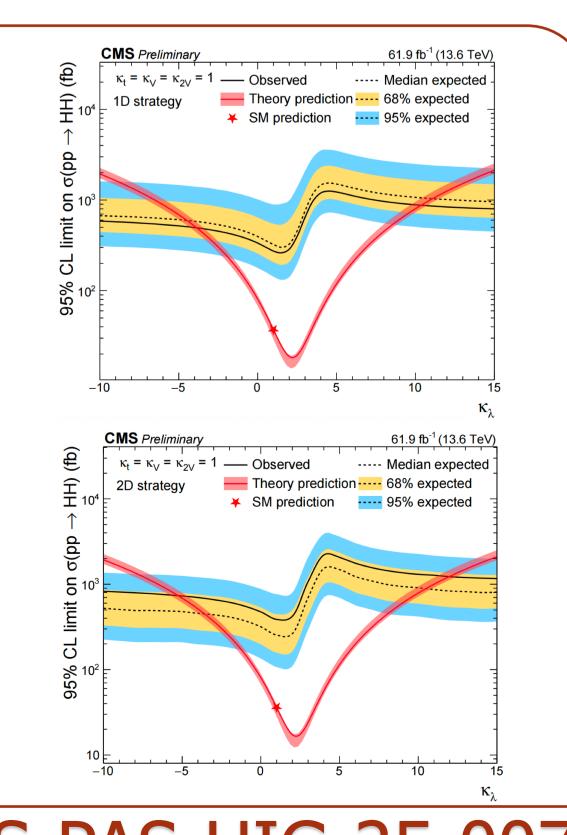
1D Fit (Resolved & Boosted Categories)

- Fit on m_{yy} only;
- Signal & resonant backgrounds: sum of Gaussians or DCB;
- Nonresonant background: discrete profiling over smooth analytic functions.

2D Fit (Resolved only)

- Simultaneous fit on (m_{yy}, m_{bb});
- Signal: sum of Gaussians;
- Resonant backgrounds: DCB for $m_{\gamma\gamma}$; DCB or a combination of falling and peaking functions for m_{bb} .
- Nonresonant background: discrete profiling as in 1D.




 $m_{\gamma\gamma}$ [GeV]

61.9 fb⁻¹ (13.6 TeV

Results and Conclusion

- Search for non-resonant HH \rightarrow bbyy using 61.9 fb⁻¹ of Run 3 data (2022–2023, \sqrt{s} = 13.6 TeV).
- Two complementary fit strategies are employed: 1D (myy) and 2D (myy \otimes mbb).
 - Observed (expected) 95% CL limits: 7.4 (8.7) × σ_{SM} (1D), 11.0 (7.3) × σ_{SM} (2D).
 Constraints on the Higgs self-coupling: -3.9 < κ_λ < 10.4 (1D), -5.0 < κ_λ < 12.0 (2D).
 - Both strategies give consistent and robust results.
 - The boosted events improve sensitivity by ~5%.
- The analysis is **statistics-limited.**
- Dominant uncertainties come from background normalization, signal theory, and heavy-flavor modeling in ggH.
- **A bias uncertainty** is included in the 2D fit to cover m_{yy} – m_{bb} correlations.
- The analysis demonstrates the maturity of the CMS HH \rightarrow bbyy framework and its readiness for the full Run 3 dataset.

Reference: [1] The CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. *Nature* **607**, 60–68 (2022). https://doi.org/10.1038/s41586-022-04892-x

CMS-PAS-HIG-25-007