

EveNet: Towards a Generalist Event Transformer for Unified Understanding and Generation of Collider Data

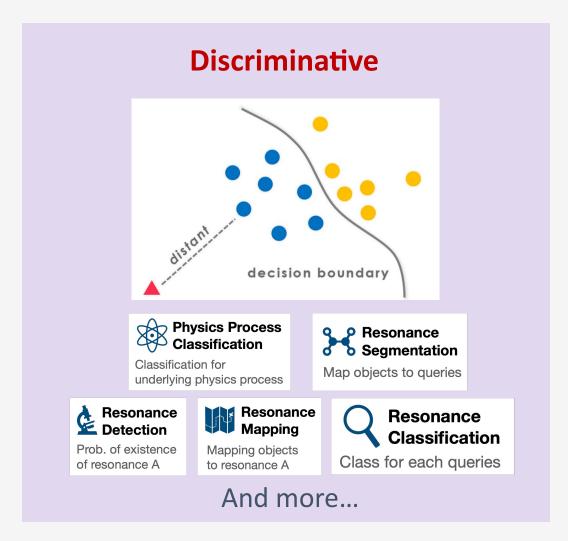
Yulei Zhang

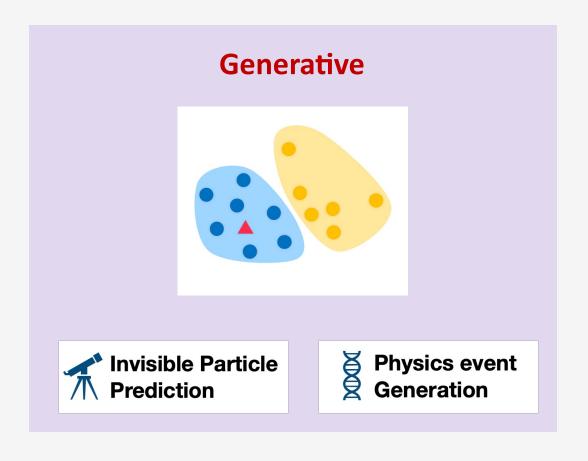
University of Washington, Seattle

Team: Ting-Hsiang Hsu, Qibin Liu, Yuan-Tang Chou, Wei-Po Wang, Yue Xu, Haoran Zhao, Bai-Hong Zhou, Shu Li, Benjamin Nachman, Shih-Chieh Hsu, Vinicius Massami Mikuni, Yulei Zhang

November 1st, 2025

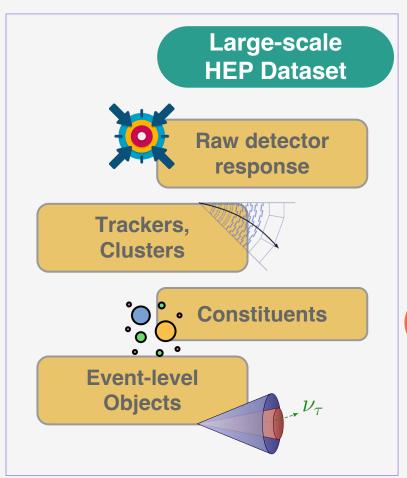
Understanding Today's ML Tasks in HEP

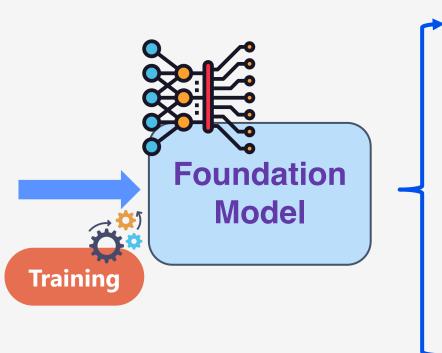


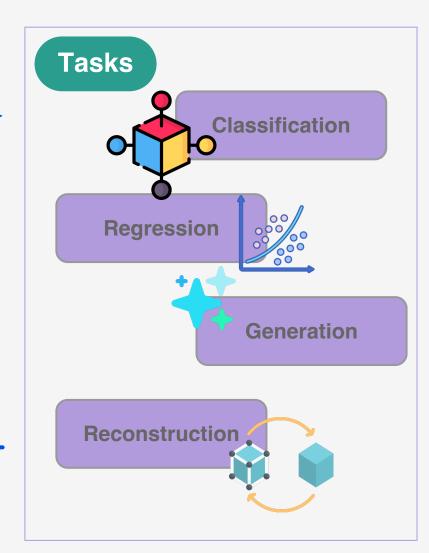


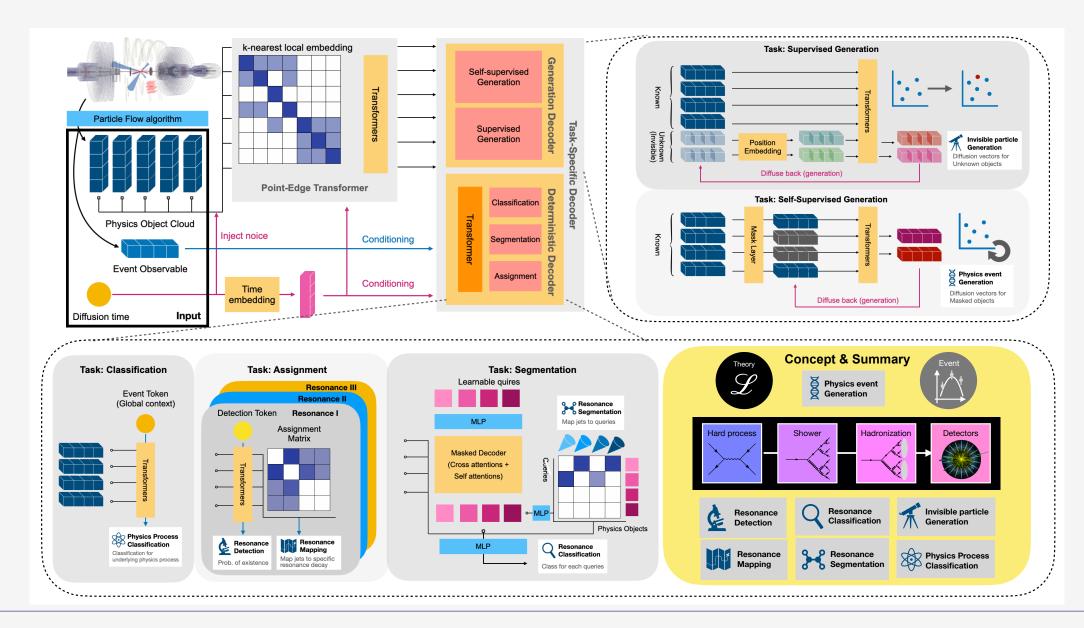
Can we unify these diverse tasks under one framework?

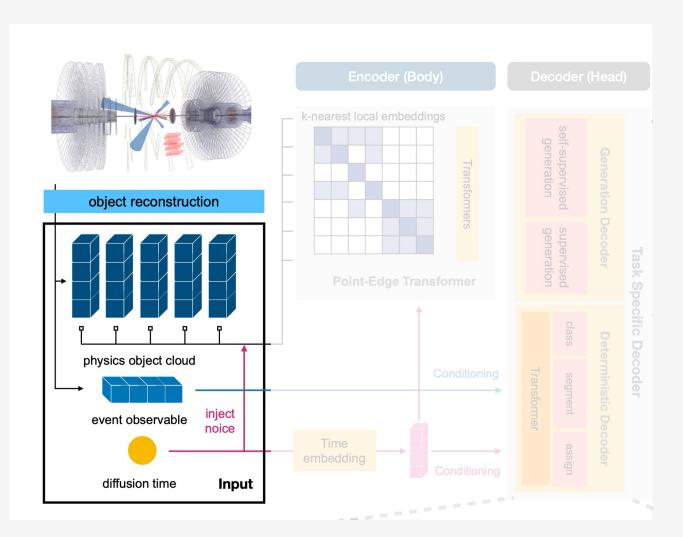
Can We build a Foundation Model for HEP?











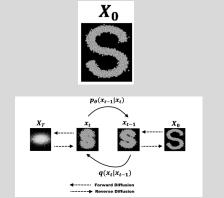
- 12 Input Representation
- Particle Cloud (Up to 18 Particles per Event):
 - Each particle is encoded with 7 features: 4-momentum, isbJet, isLepton, and charge.
- - Missing transverse energy
 - Number of leptons, number of jets
 - Invariant mass of visible objects
 - Scalar sums like **HT, ST**, etc.

Un-perturbed PC

for deterministic tasks...

Perturbed PC

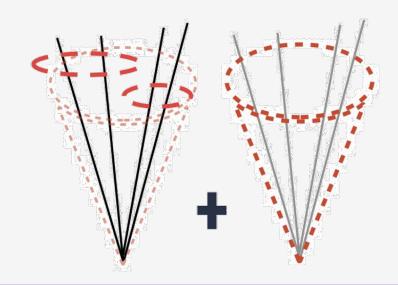
for diffusion model and noise tolerance training

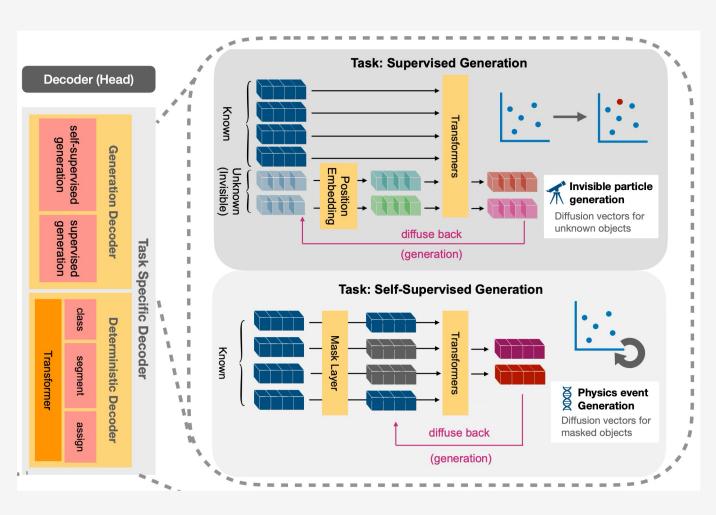




Core Idea: One strong body + many small heads

- Encoder Point-Edge Transformer:
- Inspired by OmniLearn [2404.16091]
- Models both particles and their relationships as a graph (points + edges)
- Captures inter-particle interactions and global event structure





Core Idea: One strong body + many small heads

Decoder – Generation Head:

Supervised Generation

- Use known objects as input to predict missing ones (e.g., neutrinos).
- Diffusion models capture high-dimensional probability densities → predict the most likely kinematics.

Self-supervised Generation

- Mask part/all of the inputs and reconstruct them with a diffusion model.
- Learns underlying event structure without requiring labels.

Core Idea: One strong body + many small heads

Decoder – Discriminative Heads:

Segmentation

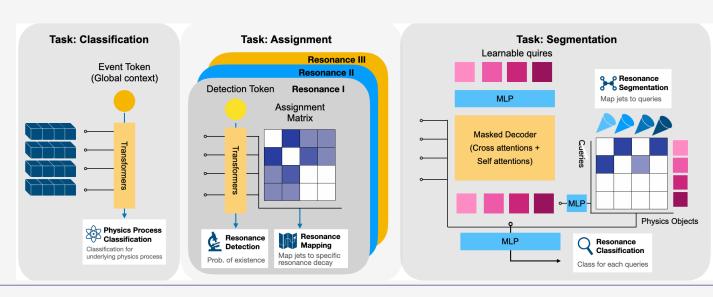
- Inspired by <u>Meta Al's segmentation networks</u>
 - The model performs set prediction (queries → predict class & mask), preserving permutation symmetry.
 - Naturally extendable from objects to substituents without changing the model design.

Classification

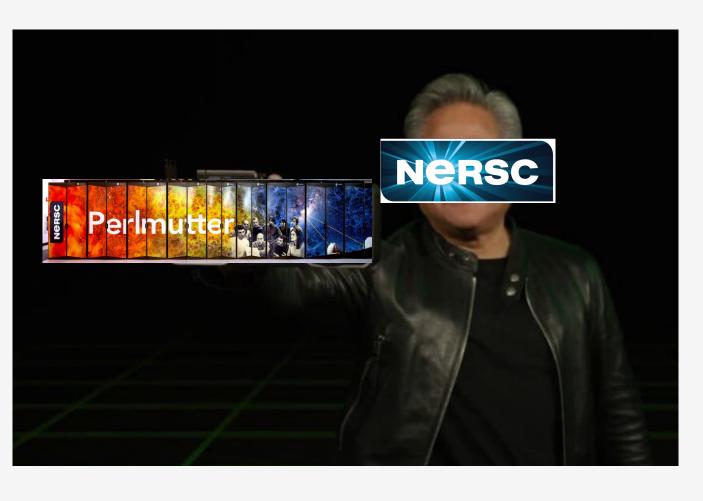
Multi-Class event classifiers (with regression)

Assignment

- Symmetry-aware mapping of objects to truth partons (requires known decay topology).
- High accuracy for well-defined processes, but rigid, costly, not generalizable.



EveNet Wouldn't Train Itself—Thank You, Perlmutter!



- Scaling Up EveNet with Perlmutter
- # Training Setup:
 - 128 nodes
 - 512 GPUs
 - 16,384 CPU cores
- EveNet Model:

Encoder + Decoder

- Lite: 20M + 3M (today's result)
- Standard: 83M + 17M (in progress)

Downstream Applications of EveNet in Physics Analyses

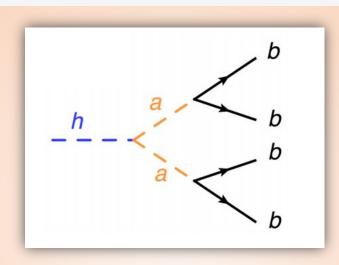
Quantum Entanglement

 $pp \to t\bar{t} \to b\bar{b}\ell\nu\ell\nu$

Assignment & Generation

In-distribution

 $(t\bar{t}$ present in pretraining dataset)



Search for new physics

 $H \rightarrow aa \rightarrow bbbb$

Assignment & Classification

Near out-of-distribution (new signal, bkgd. overlaps)

Anomaly Detection

$$\Upsilon \rightarrow \mu^+ \mu^-$$

Event Generation

Fully out-of-distribution (data-driven, different CME)

Easy - **familiar** physics and energy.

Hard - unseen physics and shifted energy regime.

Quantum Entanglement

Unfolded Precision for spin correlation matrix and D

- Samples: $pp \to t\bar{t} \to b\bar{b}\ell\nu\ell\nu$ (threshold region)
- Reference paper: Eur. Phys. J. C (2022) 82:285, assuming $139 \; \mathrm{fb^{-1}}$
- The observable $D=-\mathcal{C}_{kk}-\mathcal{C}_{rr}-\mathcal{C}_{nn}$ is sensitive to QE, with D>1 indicating the QE.
- Relative precision with $\epsilon = \sigma_D/(D-1)$, Paper: $\epsilon_D \approx 5.26\%$

~77% improvement on precision

Less samples		F.T. (CLS + Gen)	Scratch	Improvement [%]	F.T. (CLS + Seg + Gen)	F.T. (SSL)
	1.0	1.21	1.37	11.88	1.24	1.37
	0.7	1.20	1.45	17.13	1.23	1.40
	0.3	1.19	1.54	22.29	1.23	1.48
	0.1	1.20	1.89	36.19	1.24	1.91

The model is jointly trained on the **Assignment** and **Truth Generation** tasks.

Search for New Physics (Exotic Higgs Decay)

• Signal: $H \rightarrow aa \rightarrow bbbb$

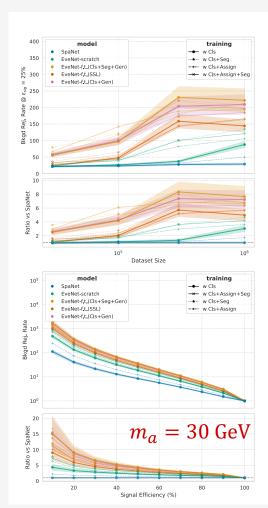
 $(m_a = 30, 40, 60 \text{ GeV})$

• QCD: bbbb, bbbj, bbjj

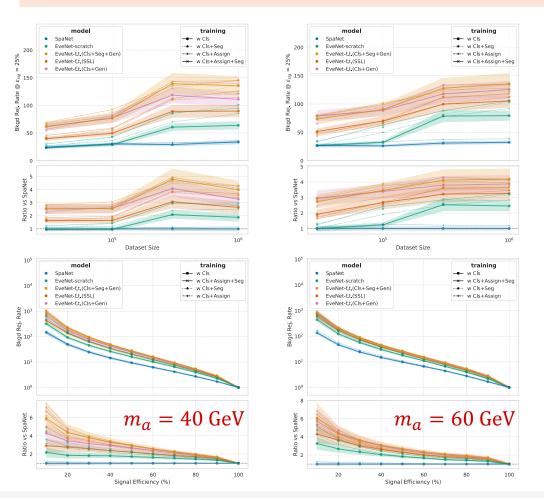
Reference Network: <u>SPANet</u>
(same hidden dim)

Classification

- 1. Inversed ROC
- 2. Bkgd. Rejection rate @ signal efficiency of 25%



2-15x improvement on bkgd. rejection



The model is jointly trained on the **Assignment** and **Classification** tasks.

The signal samples used here were **not included** in pretraining

Anomaly Detection

- **Reference paper**: <u>2502.14036</u> (To test EveNet's generative capability, we extend an existing anomaly detection method **using normalizing flows** by replacing it **with diffusion-based generation** of full 4-momentum)
- Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Y resonances in di-muon final states.

Final Significance (*ℓ*-reweighting)

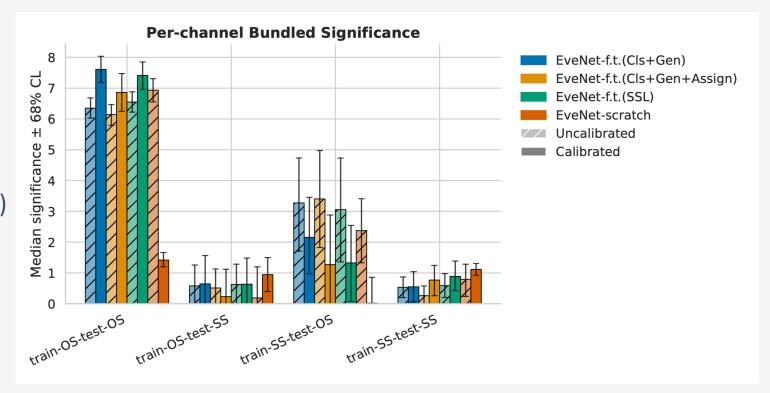
• paper: 6.4σ

• EveNet-Pretrain: 7.5σ

• EveNet-Scratch: $?\sigma$ (mass sculpting imes)

Note: the energy regime here is even different from the main samples in pretrain

 1σ improvement on significance



What We Learned?

Q: Can a foundation model in HEP really adapt to new tasks?

A: Yes! We added a new "Assignment" head (**not present during pretraining**) for QE and New Physics searches. With pretrained weights, the model immediately performed strongly → **extended to new heads and tasks** (*Homogenization*).

Q: How does it handle new physics or even new energies?

A: We tested progressively:

- QE $(t\bar{t})$: fully in-distribution, same CME.
- Exotic Higgs: out-of-distribution signal, but same CME.
- Anomaly Detection: fully data-driven, different CME.

In all cases, the model retained strong performance \rightarrow proof of <u>transferable</u> <u>representations</u> across processes and energy scales.

Q: Can it go multimodal?

A: Yes. The current heads (especially Segmentation) can naturally extend to multimodal inputs like **tracks + clusters** or **constituents + objects**, enabling clustering and resonance reconstruction. That's the *multimodal potential*.

Foundation Model Def.

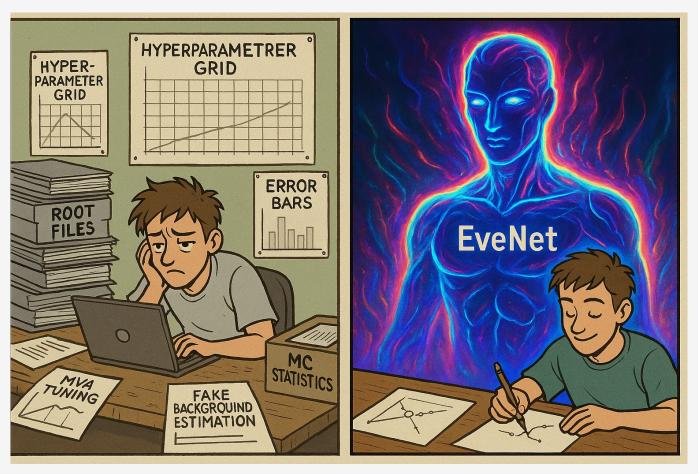
arXiv: 2108.07258

? Emergence:

- New behaviors from scale
- **✓**Homogenization:
- One model, many tasks
- **✓** Transferable representations:
- Pretrain once, reuse anywhere
- Multimodal potential:
- Works across data types

EveNet: Powering the Next Physics Breakthrough

a foundation model to solve all HEP problems



Backup

