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l Understanding Today’s ML Tasks in HEP
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Can we unify these diverse tasks under one framework? ‘@




l Can We build a Foundation Model for HEP?
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' EveNet: Our Answer to Event-Level Foundation Models
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l EveNet: Our Answer to Event-Level Foundation Models
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* particle Cloud (Up to 18 Particles per Event):

* Each particle is encoded with 7 features: 4-
momentum, isblet, isLepton, and charge.

& Global Features / Event Observables:
* Missing transverse energy
* Number of leptons, number of jets
* Invariant mass of visible objects

e Scalar sums like HT, ST, etc.

Un-perturbed PC

for deterministic tasks...

Perturbed PC

for diffusion model and
noise tolerance training )
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l EveNet: Our Answer to Event-Level Foundation Models

Encoder (Body)
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Core Idea: One strong body + many small heads

& Encoder - Point-Edge Transformer:

Inspired by OmniLearn [2404.16091]

Models both particles and their relationships as a graph
(points + edges)

Captures inter-particle interactions and global event
structure



https://arxiv.org/abs/2404.16091

l EveNet: Our Answer to Event-Level Foundation Models

Core Idea: One strong body + many small heads
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l EveNet: Our Answer to Event-Level Foundation Models

Core Idea: One strong body + many small heads

& Decoder — Discriminative Heads:

Segmentation

* Inspired by

The model performs set prediction (queries - predict
class & mask), preserving permutation symmetry.

Naturally extendable from objects to substituents
without changing the model design.
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Classification
* Multi-Class event classifiers (with regression)

Assignment

* Symmetry-aware mapping of objects to truth partons
(requires known decay topology).

* High accuracy for well-defined processes, but rigid,

costly, not generalizable.
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https://arxiv.org/pdf/2005.12872

' EveNet Wouldn’t Train Itself—Thank You, Perimutter!

< Scaling Up EveNet with Perlmutter

. fTraining Setup:
* 128 nodes
* 512 GPUs
* 16,384 CPU cores
- 1@ EveNet Model:
Encoder + Decoder
* Lite: 20M + 3M (today’s result)
e Standard: 83M + 17M (in progress)




l Downstream Applications of EveNet in Physics Analyses

Quantum Entanglement
pp — tt = bbfvev

Assignment & Generation

In-distribution

(tt present in pretraining dataset)
E

Easy - familiar physics and energy.

b ;

INIRT b
< b
Search for new physics Anomaly Detection
H - aa - bbbb Yo utu”
Assignment & Classification Event Generation
Near out-of-distribution Fully out-of-distribution
(new signal, bkgd. overlaps) (data-driven, different CME)

Hard - unseen physics and shifted energy regime. w
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l Quantum Entanglement

Unfolded Precision for spin correlation matrix and D

 Samples: pp — tt —» bb£v£v (threshold region)

» Reference paper:

* The observable D = —Cy;, — C,r —

,assuming 139 fb~1

C,.,, is sensitive to QE, with D > 1 indicating the QE.

* Relative precision with € = o, /(D — 1), Paper: €, = 5.26%

Less samples

\ 4

~77% improvement on precision

(CLSF-;-T.Gen) SEREIET Improvement [%] (¢ , SF; + Gen) (::L)
1.0 1.21 1.37 11.88 1.24 1.37
0.7 1.20 1.45 17.13 1.23 1.40
0.3 1.19 1.54 22.29 1.23 1.48
0.1 1.20 1.89 36.19 1.24 1.91

The model is jointly trained on the Assignment and Truth Generation tasks.

11


https://doi.org/10.1140/epjc/s10052-022-10245-9

Search for New Physics (Exotic Higgs Decay)

2-15x improvement on bkgd. rejection
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The model is jointly trained on the Assignment and Classification tasks.

»« The signal samples used here were not included in pretraining
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https://doi.org/10.1038/s42005-024-01627-4

l Anomaly Detection

* Reference paper: 2502.14036 (To test EveNet’s generative capability, we extend an existing anomaly detection
method using normalizing flows by replacing it with diffusion-based generation of full 4-momentum)

* Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Y resonances in di-muon final states.

Per-channel Bundled Significance

EveNet-f.t.(Cls+Gen)
EveNet-f.t.(Cls+Gen+Assign)
EveNet-f.t.(SSL)
EveNet-scratch

Uncalibrated

Calibrated

Final Significance (¢-reweighting)

~

* paper: 6.40
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* EveNet-Pretrain: 7.50
+_EveNet-Scrateh:26 (mass sculpting X)
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N

Median significance = 68% CL

Note: the energy regime here is even different
from the main samples in pretrain

=

. . . pe O ’
1o improvement on significance = «°
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https://arxiv.org/abs/2502.14036

l What We Learned?

Q: Can a foundation model in HEP really adapt to new tasks?

A: Yes! We added a new “Assignment” head (not present during pretraining) for QE and
New Physics searches. With pretrained weights, the model immediately performed
strongly - extended to new heads and tasks (Homogenization).

Q: How does it handle new physics or even new energies? \

A: We tested progressively:
* QE (tt): fully in-distribution, same CME.
e Exotic Higgs: out-of-distribution signal, but same CME.

* Anomaly Detection: fully data-driven, different CME. /

In all cases, the model retained strong performance - proof of transferable
representations across processes and energy scales.

Q: Can it go multimodal?

A: Yes. The current heads (especially Segmentation) can naturally extend to multimodal
inputs like tracks + clusters or constituents + objects, enabling clustering and resonance
reconstruction. That’s the multimodal potential.

Foundation Model Def.
arXiv: 2108.07258

4 Emergence:

* New behaviors from scale
Homogenization:

e One model, many tasks
Transferable representations:
* Pretrain once, reuse anywhere
© Multimodal potential:

* Works across data types

W
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https://arxiv.org/pdf/2108.07258
https://arxiv.org/pdf/2108.07258

EveNet: Powering the Next Physics Breakthrough

a foundation model to solve all HEP problems
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https://github.com/UW-EPE-ML/EveNet_Public
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