

ATLAS SUSY Summary pMSSM scanning results

Lei Guo¹ (郭蕾), Yuchen Cai², Yang Liu¹

Sun Yat-sen University (CN), ²Universita e INFN (IT)

Lei on behalf of pMSSM Group, lei.guo@cern.ch

11th CLHCP 2025, Oct.29-Nov.2, Xinxiang, Henan, China.

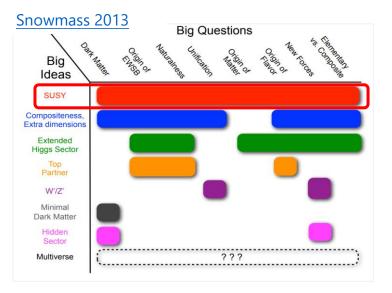
CLHCP2025新多

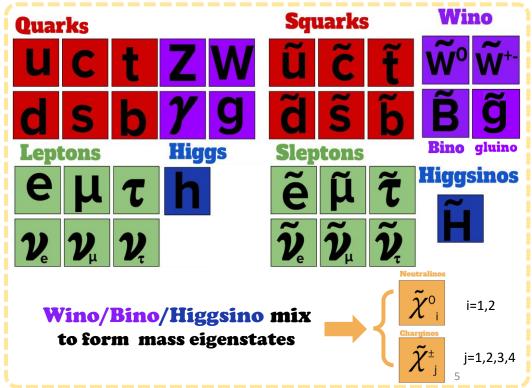
第十一届中国LHC物理会议
The 11th China LHC Physics Conference

Overview

- Intro of SUSY and pMSSM scan
- pMSSM scanning results
- · Run3 perspective
- Summary and outlook

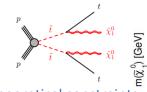
A little girl was looking for pearls on the beach...

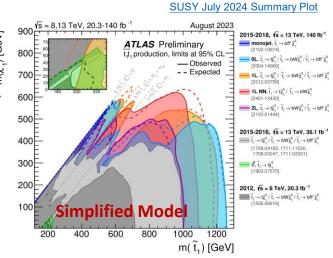


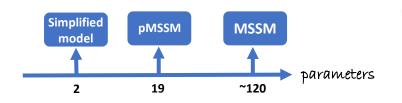

I don't know yet, but the search is still ongoing !

Intro of SUSY and pMSSM scan

Supersymmetry(SUSY)


- What is SUSY?
 - A high-energy-scale symmetry between fermions and bosons breaks at low energies, giving rise to SM particles and their superpartners (sparticles).
- Why do we care about SUSY?
 - Can (or partially) solve a list of big questions.
 - · Predict a wealth of new particles to search for experimentally.



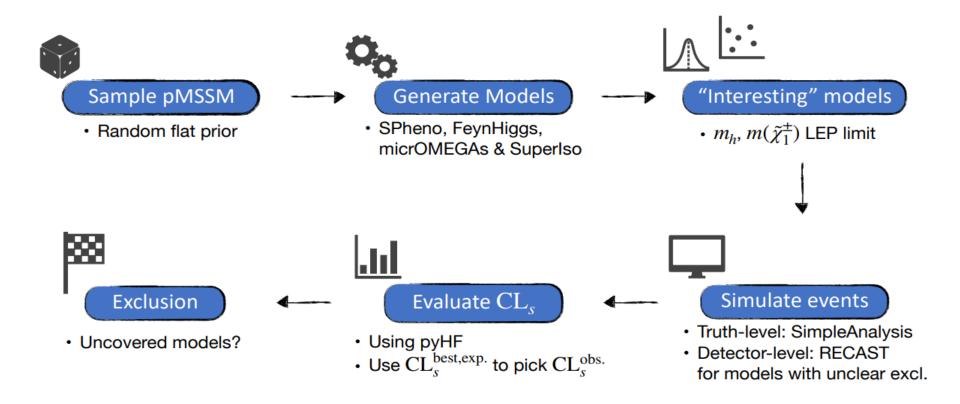


pMSSM scan

- What is the idea behind the Scan?
 - · Summarize the current results more comprehensively
 - Aim to identify regions that are consistent with experimental, theoretical constraints.
 - Find models that could explain DM, or other SUSY signatures...
- Why pMSSM scan?
 - pMSSM (phenomenological Minimal SUSY Standard Model), between Simplified model(2~3 free parameters, limited) and MSSM(~120 free parameters, complex)
 - MSSM + simplifying assumptions based on experimental constraints and general features of SUSY breaking mechanisms = pMSSM(19 free parameters)

pMSSM Parameter	Meaning
$\tan \beta$	Ratio of the Higgs vacuum expectation values for the two doublets
M_A	Pseudoscalar (CP-odd) Higgs boson mass parameter
μ	Higgsino mass parameter
M_1, M_2, M_3	Bino, wino and gluino mass parameters
$A_t, A_b, A_{ au}$	Third generation trilinear couplings
$M_{\tilde{q}}, M_{\tilde{u}_R}, M_{\tilde{d}_R}, M_{\tilde{l}}, M_{\tilde{e}_R}$	First/second generation sfermion mass parameters
$M_{\tilde{Q}}, M_{\tilde{t}_R}, M_{\tilde{b}_R}, M_{\tilde{L}}, M_{\tilde{\tau}_R}$	Third generation sfermion mass parameters

2025/11/1 6


pMSSM scan helps us ...

Re-interpret result in higher dimensions

pMSSM scan Workflow

pMSSMFactory

Initial import of pMSSM factory framework to git ---Brian Petersen authored Mar 02, 2016

• Model generation (random flat prior) & Model selection

SimpleAnalysis to evaluate CLs at truth level

RECAST*(REANA) to evaluate CLs at recon level

Analyses inventory:

L	.egend:
F	fully implemented
	Planning to implement
F	Partially implemented
1.	

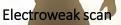
EVV	Truth-level		RECAST in factory	
Name	in factory	RECAST		
FullHad		ana-susy-2018-41	V	
1Lbb		ana-susy-2019-08	\checkmark	
2L0J first wave	✓	ana-susy-2018-32	V	
EW 2L2J	$\overline{}$	ana-susy-2018-05	\checkmark	
Compressed first wave	✓	ana-susy-2018-16	~	
3L onshell WZ		ana-susy-2019-09-onshell	\checkmark	
3L onshell Wh	✓	ana-susy-2019-09-onshell	✓	
3L offshell	\checkmark	ana-susy-2019-09-offshell	\checkmark	
4L		ana-susy-2018-02	\checkmark	
Disappearing track		ana-susy-2018-19		
EWKino -> stau 2nd wave	$\overline{\mathbf{v}}$	ana-susy-2019-17	$\overline{\mathbf{V}}$	
Multi-b		ana-susy-2020-16		
yybb		ana-susy-2020-17		
Direct stau 2nd wave		EMPTY REPO		

<u>Strong</u>	Truth-level		RECAST	
Name	in factory	RECAST	in factory	
3G				
Stoph	\checkmark	ana-susy-2018-21		
tt(OL)+MET		ana-susy-2018-12		
tt(1L)+MET		ana-susy-2018-07	\checkmark	
tt(2L)+MET		ana-susy-2018-08	\checkmark	
Sbottom multi-b		ana-susy-2018-31		
bb+MET		ana-susy-2018-34		
StopZ	\checkmark	ana-susy-2018-21		
StopStau	\checkmark	ana-susy-2019-18		
Multi-b with taus	\checkmark	ana-susy-2018-40		
Strong				
Strong multi-b / 3-b-jets		ana-susy-2018-30	\checkmark	
0L 2-6 jets		ana-susy-2018-22		
Strong 2L2J		ana-susy-2018-05	\checkmark	
SS/3L second wave		ana-susy-2020-27		
Strong 1L	$\overline{}$	ana-susy-2018-10		
0L multijet	\checkmark	ana-susy-2018-17		
MonoJet		ANA-EXOT-2018-006		

pMSSM scanning results

We have four scans:

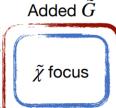
- Currently, we have four great pMSSM scans for ATLAS Run2.
 - All of scans:
 - SUSY has to be broken
 - Dark matter, flavor and EW precision constraints considered
 - Reinterpreted ATLAS Run 2 SUSY searches, included ATLAS Higgs constraints
 - The four scans are not in a sequential list, but "complementary"
 - EWK scan has been finished
 - 3G, General, GMSB are still working in progress...



General

Include strong and EWK

3rd generation scan



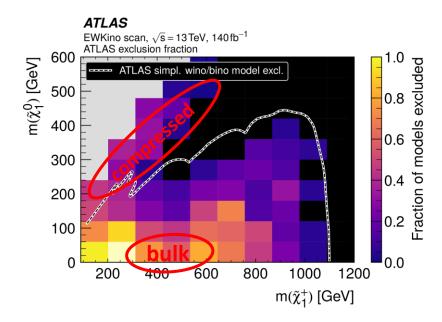
Gauge-Mediated
Supersymmetry
Breaking

■ ATLAS Run1 paper: <u>JHEP10(2015)134</u>

ATLAS Run2: <u>SUSY-2014-08</u>, <u>SUSY-2015-12</u>
 CMS Run2: CMS-PAS-SUS-24-004

 $ilde{t}/ ilde{b}$ focus

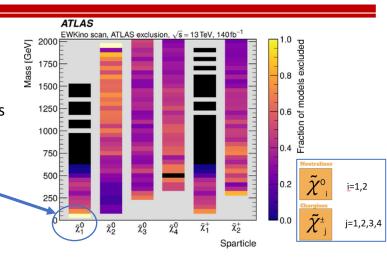
Other aspects

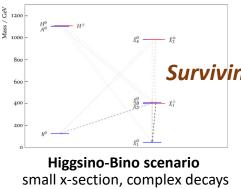

液理のからは

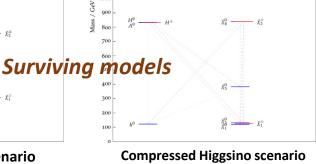
EW scanning:

- Scan configuration
 - 20k models sampled
 - Focus on electroweakinos (squarks, sleptons & gluino decoupled)
 - 5D EWKino scan; Include 3rd gen

Parameter	Min	Max	Note
$M_{\tilde{L}_1}$ (= $M_{\tilde{L}_2}$)	10 TeV	10 TeV	Left-handed slepton (first two gens.) mass
$M_{\tilde{e}_1} (= M_{\tilde{e}_2})$	10 TeV	10 TeV	Right-handed slepton (first two gens.) mass
$M_{ ilde{L}_3}$	10 TeV	10 TeV	Left-handed stau doublet mass
$M_{\tilde{e}_3}$	10 TeV	10 TeV	Right-handed stau mass
$M_{\tilde{Q}_1}$ (= $M_{\tilde{Q}_2}$)	10 TeV	10 TeV	Left-handed squark (first two gens.) mass
$M_{\tilde{u}_1}$ (= $M_{\tilde{u}_2}$)	10 TeV	10 TeV	Right-handed up-type squark (first two gens.) mass
$M_{\tilde{d}_1}$ (= $M_{\tilde{d}_2}$)	10 TeV	10 TeV	Right-handed down-type squark (first two gens.) mass
$M_{ ilde{O}_3}$	2 TeV	5 TeV	Left-handed squark (third gen.) mass
$M_{\tilde{u}_3}$	2 TeV	5 TeV	Right-handed top squark mass
$M_{ ilde{d}_3}$	2 TeV	5 TeV	Right-handed bottom squark mass
M_1	−2 TeV	2 TeV	Bino mass parameter
M_2	−2 TeV	2 TeV	Wino mass parameter
μ	−2 TeV	2 TeV	Bilinear Higgs boson mass parameter
M_3	1 TeV	5 TeV	Gluino mass parameter
A_t	−8 TeV	8 TeV	Trilinear top coupling
A_b	−2 TeV	2 TeV	Trilinear bottom coupling
A_{τ}	−2 TeV	2 TeV	Trilinear τ -lepton coupling
M_A	0 TeV	5 TeV	Pseudoscalar Higgs boson mass
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values



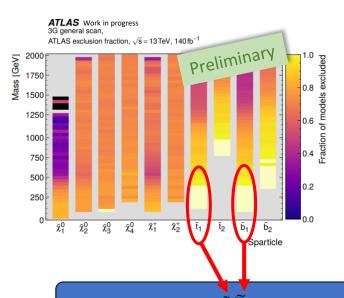

- Some sensitivity to compressed scenarios through heavier electroweakino decays
- Even low mass bins don't have 100% exclusion
- Important to improve depth of sensitivity as well as target new regions!

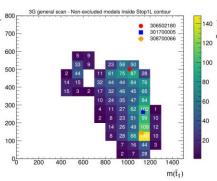

EW scanning:

- Electroweak SUSY is challenging
 - Broad coverage of pMSSM scenarios with 8 Run2 analyses
 - · Room to improve depth of sensitivity and target compressed scenarios
 - Viable models remain right up to the LEP limits
- Feature of unexcluded models
 - Higgsino-like $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$
 - 3x smaller production cross-section than typical wino simplified models
 - Mixed neutralino decays
 - Need statistical combinations
 - More complex decay chains
 - Lighter $\tilde{\chi}_2^{\pm}/\tilde{\chi}_{3.4}^0$ and/or BSM Higgs' could be in reach

radiative decays 13

3G scanning:






Scan configuration & Preliminary results

The scans includes a set of models enhanced in low-mass stop and sbottom quarks

Parameter	min	max	Note			
$m_{\tilde{L}_1} (= m_{\tilde{L}_2})$	0 TeV	2 TeV	Left-handed slepton (first two gens.) mass			
$m_{\tilde{e}_1} (= m_{\tilde{e}_2})$	0 TeV	2 TeV	Right-handed slepton (first two gens.) mass			
$m_{\tilde{L}_2}$	0 TeV	2 TeV	Left-handed stau doublet mass			
$m_{\tilde{e}_3}$	0 TeV	2 TeV	Right-handed stau mass			
$m_{\tilde{O}_1} (= m_{\tilde{O}_2})$	5 TeV	5 TeV	Left-handed squark (first two gens.) mass			
$m_{\tilde{u}_1}$ (= $m_{\tilde{u}_2}$)	5 TeV	5 TeV	Right-handed up-type squark (first two gens.) mass			
$m_{\tilde{d}_1} (= m_{\tilde{d}_2})$	5 TeV	5 TeV	Right-handed down-type squark (first two gens.) mass			
$m_{ ilde{Q}_3}$	0 TeV	2 TeV	Left-handed squark (third gen.) mass			
$m_{\tilde{u}_3}$	0 TeV	2 TeV	Right-handed top squark mass			
$m_{ ilde{d}_3}$	0 TeV	2 TeV	Right-handed bottom squark mass			
M_1	-2 TeV	2 TeV	Bino mass parameter			
M_2	-2 TeV	2 TeV	Wino mass parameter			
μ	-2 TeV	2 TeV	Bilinear Higgs mass parameter			
M_3	3 TeV	3 TeV	Gluino mass parameter			
A_t	-8 TeV	8 TeV	Trilinear top coupling			
A_b	-2 TeV	2 TeV	Trilinear bottom coupling			
A_{τ}	-2 TeV	2 TeV	Trilinear τ lepton coupling			
M_A	0 TeV	5 TeV	Pseudoscalar Higgs boson mass			
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values			

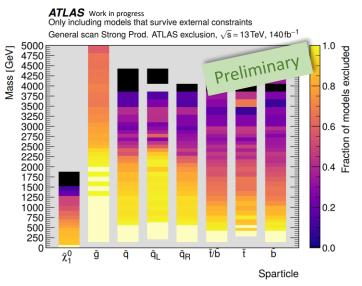
Ongoing & Todo

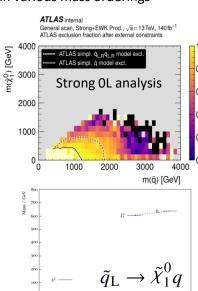
[Ongoing] Reco-level study

• [Todo] Summarize the results and publish the paper

Almost all models with \tilde{t}/\tilde{b} masses below 300 GeV are excluded

General scanning:




Ref: <u>link</u>

Scan configuration & Preliminary results

The scans includes models where all sparticles from both the strong and electroweak sector are accessible, and in various mass orderings

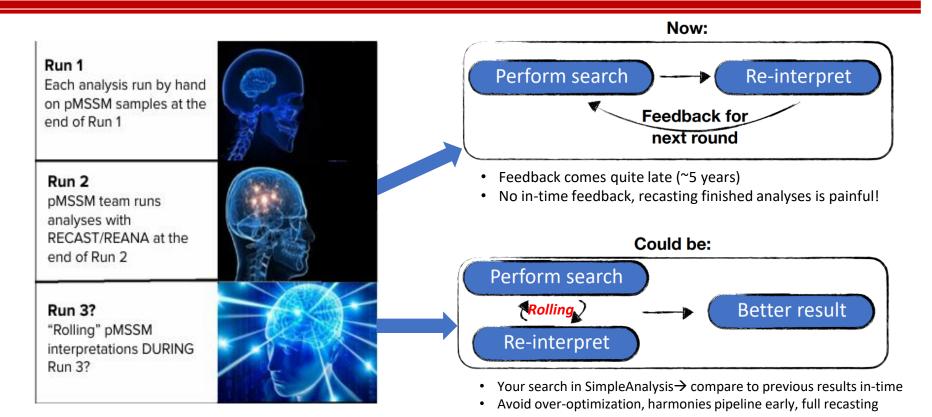
Parameter	min	max	Note			
$m_{\tilde{L}_1} (= m_{\tilde{L}_2})$	0 TeV	5 TeV	Left-handed slepton (first two gens.) mass			
$m_{\tilde{e}_1}$ (= $m_{\tilde{e}_2}$)	0 TeV	5 TeV	Right-handed slepton (first two gens.) mass			
$m_{\tilde{L}_3}$	0 TeV	5 TeV	Left-handed stau doublet mass			
$m_{\tilde{e}_3}$	0 TeV	5 TeV	Right-handed stau mass			
$m_{\tilde{O}_1} (= m_{\tilde{O}_2})$	0 TeV	5 TeV	Left-handed squark (first two gens.) mass			
$m_{\tilde{u}_1} (= m_{\tilde{u}_2})$	0 TeV	5 TeV	Right-handed up-type squark (first two gens.) mass			
$m_{\tilde{d}_1} (= m_{\tilde{d}_2})$	0 TeV	5 TeV	Right-handed down-type squark (first two gens.) mass			
$m_{\tilde{O}_3}$	0 TeV	5 TeV	Left-handed squark (third gen.) mass			
$m_{\tilde{u}_3}$	0 TeV	5 TeV	Right-handed top squark mass			
$m_{ ilde{d}_3}$	0 TeV	5 TeV	Right-handed bottom squark mass			
M_1	-5 TeV	5 TeV	Bino mass parameter for "General scan" Bino mass parameter for "Pino DM scan" bino			
M_1	-2 TeV	2 TeV	Bino mass parameter for "BinoDM scan"			
M_2	-5 TeV	5 TeV	Wino mass parameter			
μ	-5 TeV	5 TeV	Bilinear Higgs mass parameter			
M_3	0 TeV	5 TeV	Gluino mass parameter			
A_t	-8 TeV	8 TeV	Trilinear top coupling			
A_b	-8 TeV	8 TeV	Trilinear bottom coupling			
A_{τ}	-8 TeV	8 TeV	Trilinear τ lepton coupling			
M_A	0 TeV	5 TeV	Pseudoscalar Higgs boson mass			
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values			

- Ongoing & Todo
 - [Ongoing] Reco-level study
 - [Todo] Summarize the results and publish the paper
- $m(\tilde{q}) \le 550$ GeV is almost completely excluded
- $m(\tilde{g}) \le 1.5$ TeV is almost completely excluded
 - The LSP $m(\tilde{\chi}_1^0)$ mass below 400 GeV is almost excluded

GMSB scanning:

- EWKinos: $\tilde{\chi}_{1/2}^0 \to h/Z/\gamma \tilde{G}, \, \tilde{\chi}_1^{\pm} \to W \tilde{G}$.
- sleptons: $\tilde{l} \to l\tilde{G}, \tilde{v} \to v\tilde{G}$.

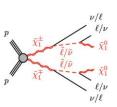
- Scan configuration & Preliminary results
 - The scans focus on EWK production, extended by a near-massless \tilde{G} as LSP. 600k models generated in 9-dim scan.

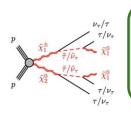

Parameter	min	max	Note				
$m_{\tilde{L}_1} (= m_{\tilde{L}_2})$	0 TeV	2 TeV	Left-handed slepton (first two gens.) mass	Scan name	fixed stau	floating stau	ATLAS Work in progress
$m_{\tilde{e}_1} (= m_{\tilde{e}_2})$	0 TeV	2 TeV	Left-handed slepton (first two gens.) mass Right-handed slepton (first two gens.) mass	$m_{\tilde{L}_3}, m_{\tilde{e}_3}$ ranges	2 TeV	0 – 2 TeV	all models, EWSummary ObsCLs Overall
$m_{\tilde{L}_3}$	2 TeV	2 TeV	Left-handed stau doublet mass	Number of models generated:	600.000	500.000	5 2000 1.0 ω 1.0 ω 2000 1.0 ω 20
$m_{\tilde{e}_3}$	2 TeV	2 TeV	Right-handed stau mass	Sampled Successful generation	600,000 576,142	600,000 500,987	Wino/bino Simplified model contour
	4 T-V	4 T-X/		Pass LEP constraint	533,569	463,627	1750 - Willoy Billo Simplified Model contodi
$m_{\tilde{Q}_1} (= m_{\tilde{Q}_2})$	4 TeV	4 TeV	Left-handed squark (first two gens.) mass	120 GeV < m(h) < 130 GeV	486,108	415,309	0.43 0.60 0.50
$m_{\tilde{u}_1} (= m_{\tilde{u}_2})$	4 TeV	4 TeV	Right-handed up-type squark (first two gens.) mass	a_{μ} constraint Number of models processed:	1,379	1,143	0.8 pp 1500 - 0.
$m_{\tilde{d}_1} (= m_{\tilde{d}_2})$	4 TeV	4 TeV	Right-handed down-type squark (first two gens.) mass	Selected for event generation	4,355	4,120	E 1500
$m_{ ilde{Q}_3}$	4 TeV	4 TeV	Left-handed squark (third gen.) mass	Pass pre-filter	4,125	4,014	1250 Preliminary 0.47 0.40 0.43 0.44 1.00 0.40 0.65 0.65 0.66 0.66 0.66 0.66 0.66 0.6
$m_{\tilde{u}_3}$	4 TeV	4 TeV	Right-handed top squark mass	Successful truth-level evaluation	4,104	3,972	1250 - Drellffff 0.44 0.25 0.33
$m_{ ilde{d}_3}$	4 TeV	4 TeV	Right-handed bottom squark mass	Low statistics truth-production Reco-level evaluation	229 730	188 618	
M_1	-2 TeV	2 TeV	Bino mass parameter				1000 - 0.63 0.43 0.40 0.54 0.46 0.22 0.29 0.33 1 1.00 1.00 1.00 1.00 1.00 1.00 1.
M_2	-2 TeV	2 TeV	Wino mass parameter				0.68 0.75 0.40 0.56 0.28 0.50 0.12 0.38 1.00
μ	-2 TeV	2 TeV	Bilinear Higgs mass parameter				- 0.4 L
M_3	4 TeV	4 TeV	Gluino mass parameter				750 - 0.86 0.81 0.69 0.67 0.42 0.22 0.27 0.43 0.80 0.33 - 0.86 0.85 0.65 0.53 0.44 0.41 0.70 0.31 0.40 0.45 0.55 0.50 0.33 -
A_t	-8 TeV	8 TeV	Trilinear top coupling	Surpris	ingl	V	0,98 0,67 0,48 0,54 0,38 0,44 0,41 0,70 0,31 0,40 0,40 0,55 0,50 0,33 -
A_b	-2 TeV	2 TeV	Trilinear bottom coupling	Surpris	11161	у	500
A_{τ}	-2 TeV	2 TeV	Trilinear τ lepton coupling				0.93 0.7 0.42 0.10 0.32 0.33 0.61 0.75 0.33 0.30 0.08 0.36 0.40 0.33 0.50 1.00
M_A	2 TeV	2 TeV	Pseudoscalar Higgs boson mass	good exc	cius	IOH	250 - 0,820 - 10.50 0.49 0.52 0.36 0.48 0.38 0.41 0.11 0.28 0.18 0.31 0.12 0.36 0.50
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values	•			0.90 0.67 0.47 0.40 0.43 0.42 0.45 0.33 0 19 0 1 0 17 0.06 0 12 0 17 0.06 0 43 0.33
_							0.54 0.51 0.55 0.43 0.56 0.37 0.56 0.36 0.60 0.30 0 11 0.37 0.27 0.27 0.58 0.44 0.38 0.33 0.33
Ongoing	g & To	odo					0 250 500 750 1000 1250 1500 1750 2000
,	-						$m(ilde{\chi}_1^\pm)$ [GeV]
		_					WI - Little

- - [Ongoing] Reco-level study
 - [Todo] Summarize the results and publish the paper

Lower exclusion in bulk, larger at higher masses

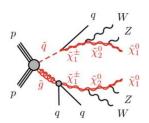
Run3 perspective


pMSSM scan overview

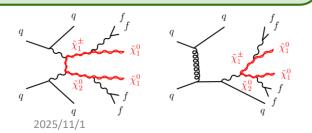


Run3 pMSSM scan ideas

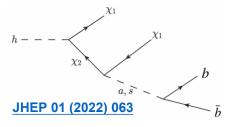
EW + Sleptons/Staus


- ➤ Muon g-2
- DM co-annihilation
- Longer decay chains
- Limited statements on staus so far due to a lack of analysis input

Mixed EWKinos


Not sampled well in flat scans

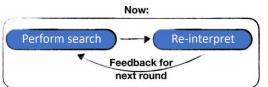
EW Compressed

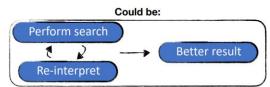

Interesting excesses and favoured by DM constraints but:

- Poorly sampled in flat scans
- ➤ Limited MC stats in Run 2 scans
- Poorly modelled (truth-smearing, no MadSpin for soft-2L, cross-section limits only for DT)

Higgs → SUSY

Include exotics and HDBS analyses


....


More Run3 pMSSM scan ideas are also welcome!

Summary and outlook

Where is 5U5Y?

- We are making really good progress, but we need to do more!
 - The pMSSM is a more "realistic" model with fewer parameters, offering a streamlined approach for summarizing analyses
 - Built pMSSMFactory. We have conducted four pMSSM scans. The reinterpretation provides a comprehensive overview of ATLAS Run2 constraints on SUSY particles, with complementary insights from external experimental results
 - Models not excluded offer valuable directions for future experimental investigations, e.g. Survival model
 - More Run3 pMSSM scan ideas are welcome!
- Model files and results from ATLAS pMSSM scans are available here
- In-time reinterpretation is extremely important!

Thanks for your attention!

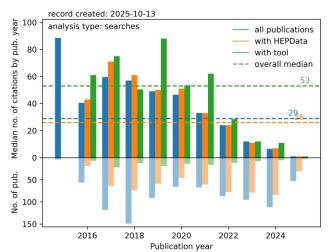
800 - 100

Backup

Category	Criteria
Likely excluded	Both $CL_s^{Exp.}$ < 0.001 and $CL_s^{Obs.}$ < 0.001 for at least one analysis.
Likely not excluded	Both $CL_s^{Exp.} > 0.1$ and $CL_s^{Obs.} > 0.1$ for every analysis.
Ambiguous	$0.001 \le CL_s^{\text{Exp.}} \le 0.1$ or $0.001 \le CL_s^{\text{Obs.}} \le 0.1$ for at least one analysis and $CL_s^{\text{Exp.}} \ge 0.001$ or $CL_s^{\text{Obs.}} \ge 0.001$ for every analysis.

Table 3.6: Both the expected $(CL_s^{Exp.})$ and observed $CL_s^{Obs.})$ CLs values are used to categorise models. Only models in the 'ambiguous' category are run through the detector-level production chain.

pMSSM-19 model [arxiv:0812.0980]


- no new CP violation.
- minimal flavour violation.
- The first two generations of sfermions are degenerate.
- Reduced to 19 parameters:
 - Gaugino masses $M_{1,2,3}$
 - \circ Higgsino mass parameter μ
 - Ratio of vacuum expectation value $tan\beta$
 - \circ Pseudoscalar Higgs mass m_A
 - 10 squared masses of sfermions
 - 3 *A*-parameters for trilinear couplings of $b/t/\tau$.

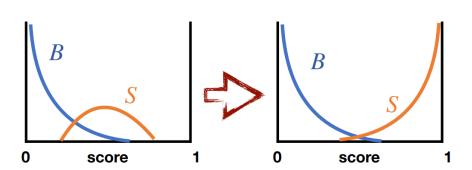
Why flat prior:

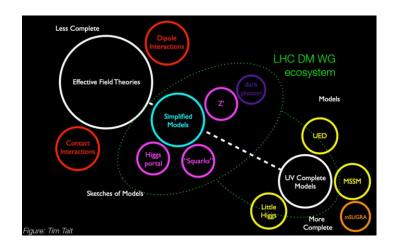
- Indeed, some of the criticism last time was that the external constraints(which is already a prior, just top-hat prior instead of Gaussian) should not have been applied.
- The use of uniform prior is really just a choice and I am not sure one can say one is better or not. The latest CMS MSSM results also started from flat priors, but then did MC sampling according to external constraints.

 Analysis preservation & reinterpretation increase impact: 85% more citations when reinterpret. material available ("with tool") for searches

 $\underline{\text{https://gitlab.cern.ch/mhabedan/reinterpretation-metadata-analysis}}$

SUSY inspired Models


Minimal Supersymmetric
Standard Model (MSSM)

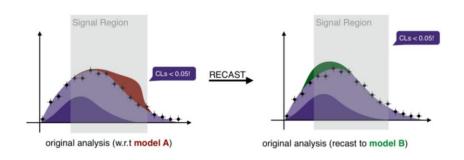

pMSSM

Simplified Model

Backup

- Ben: *IoP: The SUSY landscape
- Recast:https://indico.cern.ch/event/1524083/contributions/6584240/attachments/ 3106151/5505212/2025-07-17_RECAST_Contur_v3.pdf
- Reinterpretation with Machine Learning: Examples of ATLAS searches

Backup Tooling


Tool Name	Primary Purpose	Advantages
Rivet	Validate theoretical models against experimental data	Standardized analysis framework, supports multiple experimental datasets
GAMBIT	Global fitting, combining multiple experimental constraints	Powerful parameter scanning capabilities, modular design
MadGraph5	Generate Monte Carlo events	Supports custom models, flexible and easy to use
Pythia	Simulate particle fragmentation and hadronization processes after collisions	Widely used, supports various models
Delphes	Fast simulation of detector response	Simplified detector simulation, suitable for large-scale simulations
SModelS	Decompose complex models and apply simplified model constraints	Rapid evaluation of model feasibility
CheckMATE	Verify if a model is consistent with LHC experimental limits	Intuitive exclusion limit assessment
micrOMEGAs	Calculate dark matter-related properties	Focuses on dark matter research, easy to integrate with other tools

- Third-generation squarks (like the top squark) are more easily produced and detected at colliders due to stronger couplings, so their masses are scanned in a lower range (2–5 TeV).
- First- and second-generation squarks have weaker couplings and larger backgrounds, making them harder to constrain experimentally—hence fixed at 10 TeV as a conservative assumption.
- This setup balances theoretical naturalness with current LHC sensitivity, focusing scans on the most relevant parameters for electroweakino phenomenology.

2025/11/1 25

- · What is RECAST and why is it useful?
- What is needed to fully automate and preserve the analysis workflow?
- RECAST (Request Efficiency Computation for Alternative Signal Theories)
- Preservation: saving the software environment, workflow and data files needed to reproduce an analysis. 因为每个单独的分析都花费大量时间精力来定义信号区
- Reinterpretation: using a preserved analysis to analyze signal samples from a new theoretical model. Since the cuts and standard model background estimates won't be affected by considering different signal models in the same phase space, it would probably be way faster for them just to make some tweaks to the original analysis to re-run
- recast-atlas utilizes full atlas simulation and can be used for the best reinterpretation accuracy.
- recast-cli utilizes fast simulation tools and can be used to get a quick reinterpretation result to guide future efforts.
- Three Key Components of RECAST
 - · Analysis code preservation
 - Environment preservation: docker
 - Automated re-interpretation

Src

ATLAS Preliminary ATLAS SUSY Searches* - 95% CL Lower Limits $\sqrt{s} = 13 \text{ TeV}$ Model Signature $\int \mathcal{L} dt \, [fb^{-1}]$ Mass limit Reference 0e.u E_T^{miss} E_T^{miss} 140 1.85 $m(\tilde{\chi}_{1}^{0})<400 \text{ GeV}$ 2010.14293 $\tilde{q}\tilde{q}$, $\tilde{q}\rightarrow q\tilde{\chi}_{1}^{0}$ 1-3 jets 140 0.9 mono-jet q̃ [8x Degen.] $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2102.10874 $0e, \mu$ 2-6 jets E_T^{miss} 140 $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$ 2010.14293 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ 1.15-1.95 2010.14293 1 e.u 2-6 jets 140 2.2 $m(\tilde{\chi}_{1}^{0})<600 \text{ GeV}$ 2101.01629 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$ ee, $\mu\mu$ 2 jets E_T^{miss} 140 2.2 $m(\tilde{\chi}_{1}^{0}) < 700 \text{ GeV}$ 2204.13072 0 e.u 7-11 jets E_T^{miss} 140 1.97 $m(\tilde{\chi}_1^0)$ < 600 GeV 2008.06032 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ SS e, µ 140 1.15 6 jets 2307.01094 $m(\bar{x})-m(\bar{x}_{1}^{10})=200 \text{ GeV}$ 0-1 e, μ SS e, μ 2211.08028 3 b E_T^{miss} 140 m(k̃1)<500 GeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 6 jets 140 1.25 1909.08457 $m(\bar{g})-m(\bar{\chi}_1^0)=300 \text{ GeV}$ $\tilde{b}_1\tilde{b}_1$ 0 e,μ 2 b E_T^{miss} 140 1.255 $m(\tilde{\chi}_1^0)$ <400 GeV 2101.12527 0.68 2101.12527 10 GeV< $\Delta m(\tilde{b}_1,\tilde{\chi}_1^0)$ <20 GeV $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ $0e, \mu$ E_T^{miss} E_T^{miss} 0.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ 1908.03122 6 b 2 b 140 Forbidden 2 τ 140 0.13-0.85 $\Delta m(\hat{\chi}_{2}^{0}, \hat{\chi}_{1}^{0})=130 \text{ GeV}, m(\hat{\chi}_{1}^{0})=0 \text{ GeV}$ 2103.08189 0-1 e, μ ≥ 1 jet E_T^{miss} 2004.14060, 2012.03799 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$ 140 1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$ $1e, \mu$ 3 jets/1 b E_T^{miss} 140 Forbidden 1.05 m(X10)=500 GeV 2012.03799, 2401.13430 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1b\nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 1-2 τ 2 jets/1 b 140 Forbidden m(†1)=800 GeV 2108.07665 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_1^0$ 0 e,μ 2c36.1 140 0.85 $m(\tilde{\chi}_{\lambda}^{0})=0 \text{ GeV}$ 1805.01649 0.55 $0e, \mu$ mono-jet $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2102.10874 $1-2e, \mu$ 0.067-1.18 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$ 1-4 b 140 $m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ 2006.05880 $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ E_T^{miss} $3e,\mu$ 1 b 140 Forbidden 0.86 $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{r}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ 2006.05880 Multiple ℓ/jets $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via WZ 140 0.96 $m(\tilde{\chi}_1^0)=0$, wino-bino 2106.01676, 2108.07586 0.205 $ee, \mu\mu$ ≥ 1 jet 140 $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=5$ GeV, wino-bino 1911.12606 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW $2e,\mu$ 140 0.42 $m(\tilde{\chi}_1^0)=0$, wino-bino 1908.08215 Multiple ℓ/jets $\tilde{X}_{1}^{\pm}/\tilde{X}_{2}^{0}$ Forbidden 2004.10894, 2108.07586 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh 140 1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$ 2 e,μ 140 1.0 $m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1908.08215 2τ 140 0.5 2402.00603 $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$ $m(\tilde{\ell}_{1}^{0})=0$ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 2 e.u 0 iets 140 140 1908.08215 $m(\tilde{k}_{1}^{0})=0$ ≥ 1 jet 0.26 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ 1911.12606 $ee, \mu\mu$ $\geq 3 b$ 0 jets E_{Liss}^{miss} $\geq 2 \text{ large jets } E_{T}^{Liss}$ $\tilde{H}\tilde{H}, \tilde{H}\rightarrow h\tilde{G}/Z\tilde{G}$ $0e, \mu$ 140 0.94 $BR(\tilde{\chi}_{J}^{0} \rightarrow h\tilde{G})=1$ 2401.14922 0.55 $4e,\mu$ 140 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 2103.11684 0.45-0.93 $0e,\mu$ 140 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 2108.07586 $2e,\mu$ ≥ 2 jets E_T^{miss} 140 0.77 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=BR(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=0.5$ 2204.13072 Disapp. trk 1 jet 0.66 Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ 140 Pure Wind 2201.02472 0.21 Pure higgsing 2201.02472 Stable § R-hadron pixel dE/dx 140 2.05 2205.06013 Emiss Emiss Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow a q \tilde{\chi}_{1}^{0}$ pixel dE/dx 140 \tilde{g} [$\tau(\tilde{g}) = 10 \text{ ns}$] 2.2 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 2205.06013 0.74 ATLAS-CONF-2024-011 $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$ Displ. lep 140 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 0.36 0.36 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ ATLAS-CONF-2024-011 E_T^{miss} pixel dE/dx 140 $\tau(\tilde{\ell}) = 10 \text{ ns}$ 2205.06013 3 e, µ $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{\pm}\rightarrow Z\ell\rightarrow\ell\ell\ell$ $/\bar{X}_{+}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1 1.05 Pure Wino 2011.10543 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\ell\nu\nu$ $4e,\mu$ 0 jets 140 $/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 1.55 m(\(\tilde{V}_1^0\))=200 GeV 2103.11684 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{i}\tilde{i}, \tilde{i} \rightarrow i\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ ≥8 jets 140 2.34 Large X" 2401.16333 Multiple 36.1 =2e-4, 1e-2] 0.55 1.05 ATLAS-CONF-2018-003 $m(\tilde{\chi}_{\perp}^{0})=200$ GeV, bino-like $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{\perp}^{\pm}, \tilde{\chi}_{\perp}^{\pm} \rightarrow bbs$ $\geq 4b$ Forbidden 0.95 140 $m(\tilde{X}_{1}^{\pm})=500 \text{ GeV}$ 2010.01015 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.61 1710.07171 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ 2b140 0.4-1.85 1.6 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ 2406.18367 1e-10< \(\lambda'_{\gamma_{14}} < 1e-8, 3e-10< \(\lambda'_{\gamma_{14}} < 3e-9\) BR($\bar{t}_1 \rightarrow q\mu$)=100%, $\cos \theta_t$ =1 2003.11956

0.2-0.32

1-2 e, µ ≥6 jets

140

 10^{-1}

 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$

Pure higgsino

Mass scale [TeV]

2106.09609

^{2025/11/1}