Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 00
 000
 000000
 000000
 0
 000

Enhancing di-jet resonance searches via a final-state radiation jet tagging algorithm

Author: Bing-Xuan Liu, Yuxuan Shen, Yuan-Shun-Zi Sui Speaker: Yuxuan Shen

> Sun Yat-Sen University School of Science

> > Nov 1, 2025

Motivation

CLHCP2025 Nov 1, 2025

Our Work

An application of machine learning in di-jet resonance searches College Students' Innovative Entrepreneurial Training Plan Program

https://arxiv.org/abs/2510.15151

CLHCP2025 Nov 1, 2025

 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 OO
 OOO
 OOOOOO
 OOOOOO
 OOOOOO
 OOOOOO

Content

Motivation

- 1 Motivation
- 2 Datasets
- 3 Kinematic Properties
- 4 Algorithm
- 5 Application
- 6 Conclusion

CLHCP2025 Nov 1, 2025 0 / 24

Datasets Kinematic Properties Algorithm Application Conclusion Back up OO OO OO OOOO O OOOOO OOOOOO

Motivation

Motivation

000

The Di-jet Search

- Jets: Quarks and gluons undergo hadronisation to produce jet-like clusters of particles.
- A heavy particle may decay into two quarks or gluons.
- Use the invariant mass of the leading two jets, $m_{\rm jj}$, to identify the heavy resonance.
- Sensitive to a broad range of beyond the standard model (BSM) theories.

Z' Boson

- May interact with or decay into dark matter.
- The mediator connecting the SM and BSM.
- A commonly explored benchmark, heavy gauge boson.
- lacksquare $m_{Z'} \sim \text{TeV}$

CLHCP2025 Nov 1, 2025

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 ○●○
 ○○
 ○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○

Motivation

- FSR jets should be included in the invariant mass calculation
- ISR jets shouldn't be included

ISR and FSR

There can be softer jets from initial-state radiation (ISR) and final-state radiation (FSR).

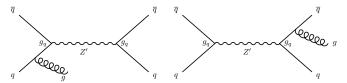


Figure: Feynman diagrams for a heavy Z' particle production in s-channel with an ISR gluon (left) and an FSR gluon (right).

CLHCP2025 Nov 1, 2025

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 00●
 00
 000
 000000
 000000
 0
 000000

Motivation

FSR Tagging

- Machine learning based
- To distinguish the FSR jets from the ISR jets
- To enhance the sensitivity

CLHCP2025 Nov 1, 2025 3 / 24

Datasets Kinematic Properties Algorithm Application Conclusion Back up

● O OOO OOOOO OOOOOO O

Datasets

Tools	Function
MADGRAPH5_aMC@NLO 2.9.18	Samples Generation
Рутніа 8.306	Showering
DELPHES 3.5.3	Event reconstruction

Туре	PartonLevel:ISR	PartonLevel:FSR
nominal	on	on
fsr control	off	on
isr control	on	off

CLHCP2025 Nov 1, 2025 4 / 24

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 000
 0
 000
 000000
 000000
 0
 000

Datasets

Signal

Model training: $m_{Z'} = 1 \sim 3 \ TeV$, step size $0.5 \ TeV$.

Validation: $m_{Z'} = 3.5 \sim 5 \ TeV$, step size $0.5 \ TeV$.

Each mass point has 250K events.

Background

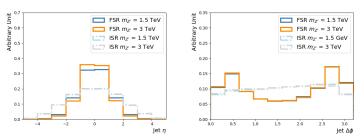
SM QCD multi-jet events with three slices cut on leading jet $p_T(4.5, 9, 13.5 \; TeV)$.

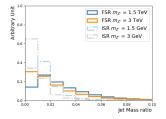
CLHCP2025 Nov 1, 2025 5 / 24

Motivation Datasets Kinematic Properties Algorithm Application Conclusion Back up 000 00 0000 00000 00000 00000

Comparison of Kinematic Properties -FSR and ISR Jets

The hardest FSR jet should be strongly correlated with the leading two jets.




Figure: Selected kinematic distributions of the third jet for the $m_{Z'}$ = 1.5 TeV and 3 TeV samples.

CLHCP2025 Nov 1, 2025

Comparison of Kinematic Properties -FSR and ISR Jets

Mass ratio: $\frac{m^{j_3}}{p_{J_3}^{j_3}}$; p_T ratio: $\frac{p_T^{j_3}}{p_T^{j_1}}$

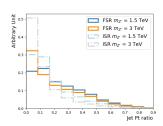


Figure: Selected kinematic distributions of the third jet for the $m_{Z'}$ = 1.5 TeV and 3 TeV samples.

Motivation

CLHCP2025 Nov 1, 2025

Motivation Datasets Kinematic Properties Algorithm Application Conclusion Back up

Comparison of Kinematic Properties -Signal and Background

High $m_{\rm jj}$ QCD multi-jet events are dominated by the *t*-channel production, and the leading two jets are more likely to originate from gluons, compared to the signal.

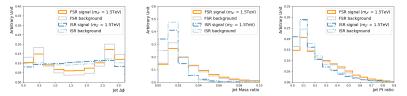


Figure: Selected kinematic distributions of the third jet for the $m_{Z'}$ = 1.5 TeV signal and multi-jet background.

CLHCP2025 Nov 1, 2025

Motivation Datasets Kinematic Properties Algorithm Application Conclusion Back up

ISR Jet Labelling

We used the nominal samples that have both FSR and ISR jets for the model training. The third jet in the event usually has both ISR and FSR particles associated.

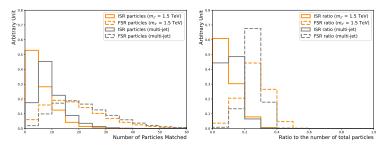


Figure: The number of FSR particles and ISR particles associated with the third jet (left). The ratio of the number of FSR particles and ISR particles to the total number of particles, associated with the third jet (right).

CLHCP2025 Nov 1, 2025

Datasets Kinematic Properties Algorithm Application Conclusion Back up

ISR Jet Labelling

Motivation

The scalar summation of the $p_{\rm T}$, $\Sigma p_{\rm T}$, can better reflect the origin of the jets. $\frac{\Sigma p_{\rm T}^{ISR}}{\Sigma p_{\rm T}^{FSR}} > 1 \Rightarrow ISR \, jet$

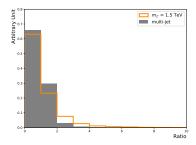
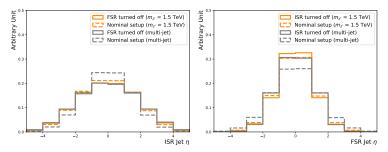


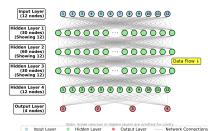
Figure: The ratio between $\Sigma p_{\rm T}$ of the ISR particles to that of the FSR particles

CLHCP2025 Nov 1, 2025

ISR Jet Labelling

We observed reasonable agreements between the third jet labelled via the above criterion and those in the control samples.




Figure: Comparison of the ISR jet and FSR jet η between those in the nominal sample labelled by the above criterion and those in the corresponding showering control sample.

CLHCP2025 Nov 1, 2025 11 / 24

Network Structure

Deep Feedforward Neural Network Architecture

Input Features

Avoid using variables that are strongly correlated with m_{ij} .

 η , $\Delta \phi$, p_T ratio, m ratio

Output Variables

Probabilities: p_s^i , p_s^f , p_b^i , p_b^f .

Signal: 5 mass points $m_{Z'}=1\sim 3~TeV$ are combined.

 \sim 460k events.

12 / 24

Background: Multi-jet events with leading jet p_T in [0.45, 1.75] TeV.

 \sim 420k events.

batch size: 100 epochs: 100

SGD optimiser with learning rate 0.05

CLHCP2025 Nov 1, 2025

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

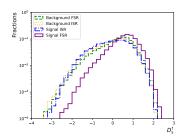
 ○○○
 ○○○
 ○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○○

Performance

Build a discriminating variable to balance the target efficiency and the false positive rates:

$$D_{\mathrm{s}}^{\mathrm{f}} = \log \frac{p_{\mathrm{s}}^{\mathrm{f}}}{(f_{\mathrm{s}}^{\mathrm{f}} \cdot p_{\mathrm{s}}^{\mathrm{i}} + f_{\mathrm{b}}^{\mathrm{f}} \cdot p_{\mathrm{b}}^{\mathrm{f}} + (1 - f_{\mathrm{s}}^{\mathrm{f}} - f_{\mathrm{b}}^{\mathrm{f}}) \cdot p_{\mathrm{b}}^{\mathrm{i}})}$$

hyperparameters f_s^i and f_b^f determine the relative importance.



CLHCP2025 Nov 1, 2025 13 / 24

Motivation Datasets Kinematic Properties Algorithm Application Conclusion Back up OOO OO OOO OOO OOOOO OOOOOO

Performance

$$f_{\rm s}^{\rm i}=0.15, f_{\rm b}^{\rm f}=0.7$$

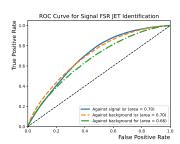


Figure: Left: distributions of the D_s^{ζ} for the four categories. Right: "sig-fsr" identification efficiency as functions of the corresponding false positive rates for the three other categories. They are evaluated using the test dataset that accounts for 20% of the total combined dataset.

CLHCP2025 Nov 1, 2025 14 / 24

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 000
 00
 000
 000000
 000000
 000000

Application

In an event, if the third jet is identified as coming from the "sig-fsr" category, the m_{ii} is replaced with the tri-jet invariant mass.

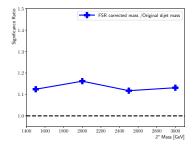
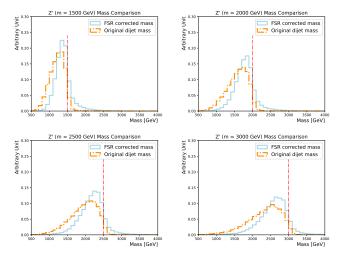
- Improved Sensitivity
- Better Mass Resolutions
- Good Generality

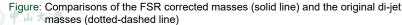
CLHCP2025 Nov 1, 2025 15 / 24

Improved Sensitivity

Motivation

Considering the binned $m_{\rm jj}$, use the highest value of the significance as an indicator of the sensitivity: $\max\left(\frac{N_s^i}{\sqrt{N_b^i}}\right)$


Figure: Summary of the ratios between $\max(\frac{N_s^l}{\sqrt{N_B^i}})$ obtained using the FSR corrected mass and that using the original di-jet mass.

CLHCP2025 Nov 1, 2025

Better Mass Resolutions

CLHCP2025 Nov 1, 2025 17 / 24

 ofivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 ○○
 ○○
 ○○○
 ○○○○
 ○○○
 ○○
 ○○○
 ○○○

Better Mass Resolutions

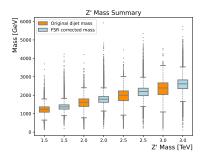
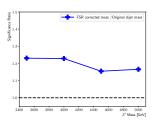


Figure: Summary of the FSR corrected mass distributions (light blue) and the original di-jet masses (dark orange).



CLHCP2025 Nov 1, 2025 18 / 24

Motivation Datasets Kinematic Properties Algorithm Application Conclusion Back up OOO OO OOO OOO OOOOOO OOOOOOO

Good Generality

The generality of the classifier is assessed using signal points, with $m_{Z'}$ ranging from 3.5 to 5 TeV, that are not included in the training.

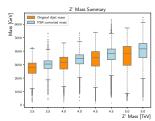
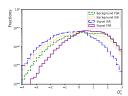


Figure: Left: Summary of the ratios between $\max(\frac{N_s^l}{\sqrt{N_B^l}})$ obtained using the FSR corrected mass and that using the original di-jet mass. Right: Summary of the FSR corrected mass distributions (light blue) and the original di-jet masses (dark orange), for extrapolated signal points.


CLHCP2025 Nov 1, 2025

Motivation Datasets Kinematic Properties Algorithm Application Back up 000000

Re-defining the Descriminant

$$D_{\mathrm{s}}^{\mathrm{f}} = \log \frac{p_{\mathrm{s}}^{\mathrm{f}}}{\left(\mathit{f}_{\mathrm{s}}^{\mathrm{f}} \cdot p_{\mathrm{s}}^{\mathrm{i}} + \mathit{f}_{\mathrm{b}}^{\mathrm{f}} \cdot p_{\mathrm{b}}^{\mathrm{f}} + (1 - \mathit{f}_{\mathrm{s}}^{\mathrm{f}} - \mathit{f}_{\mathrm{b}}^{\mathrm{f}}) \cdot p_{\mathrm{b}}^{\mathrm{i}} \right)}$$

Set $f_s^i = 1$ and $f_b^i = 0$, fully concentrated on distinguishing "sig-isr"

Positive Rate Against background isr (area = 0.64) False Positive Rate

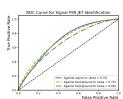


Figure: Distributions of the D_s^f for the four categories

Figure: "sig-fsr" identifica- Figure: "sig-fsr" identifica $f_{\rm s}^{\rm i}(f_{\rm b}^{\rm f}) = 1(0)$

tion efficiency with tion efficiency with $f_{\rm s}^{\rm i}(f_{\rm h}^{\rm f}) = 0.15(0.7)$

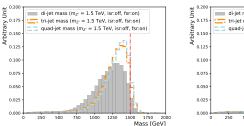
20 / 24

CLHCP2025 Nov 1, 2025 Motivation Datasets Kinematic Properties Algorithm Application Conclusion Back up 000 00 000 000 00000 € 000

Conclusion

A classifier is developed to identify FSR jets in Z' events while rejecting the ISR jets in Z' and FSR/ISR jets in multi-jet background.

- Improvement of 12-20% in the sensitivity of m_{jj} , across a wide mass region.
- 40% sig-fsr identification, around 20% fake rate.
- Flexible to be adapted for different goals.
- Implementation in ATLAS analysis ongoing


CLHCP2025 Nov 1, 2025 21 / 24

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 000
 00
 000000
 000000
 0
 ●00

Back up

- Simply including softer jets in the mass calculation, without checking whether they are from FSR or ISR, is not a viable strategy.
- It's sufficient to focus on the hardest fsr jet.

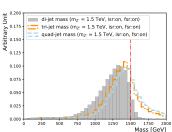


Figure: Comparison of Z' mass reconstruction with and without third/fourth jet

CLHCP2025 Nov 1, 2025

Input Features

Table: Summary of the input features to train the classifier

Type	Features
angular	$\eta^{{ m j}_1}$, $\eta^{{ m j}_2}$, $\eta^{{ m j}_3}$, $\phi^{{ m j}_1}$, $\phi^{{ m j}_2}$, $\phi^{{ m j}_3}$
ratio	$m^{ m j_1}/p_{ m T}^{ m j_1}, m^{ m j_2}/p_{ m T}^{ m j_2}, m^{ m j_3}/p_{ m T}^{ m j_3}, p_{ m T}^{ m j_3}/p_{ m T}^{ m j_1}, p_{ m T}^{ m j_2}/p_{ m T}^{ m j_2}$

CLHCP2025 Nov 1, 2025 23 / 24

 Motivation
 Datasets
 Kinematic Properties
 Algorithm
 Application
 Conclusion
 Back up

 000
 00
 000
 000000
 000000
 0
 0●

No Mass Sculpting

The background estimation methods applied in di-jet resonance searches require the background mass to be smoothly falling.

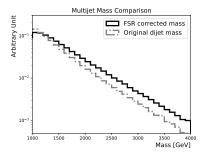


Figure: Comparison of the FSR corrected masses (solid line) and the original di-jet masses (dotted-dashed line), for the multi-jet background.

CLHCP2025 Nov 1, 2025