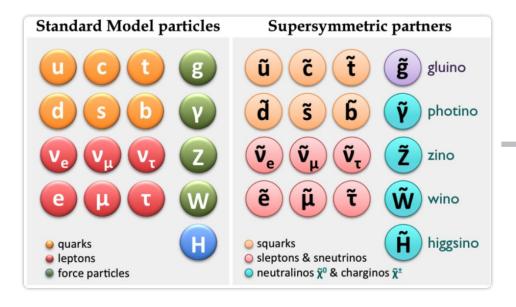
Strong SUSY and RPV SUSY searches summary in ATLAS

Shiyi Liang, on behalf of IHEP SUSY group

Institute of High Energy Physics, Chinese Academy of Sciences

1 November 2025

CLHCP2025


Outline

- 1. Introduction of SUSY
- 2. Strong SS/3L analysis
- 3. Strong SUSY searches summary
 - SUSY particle with RPC decay
 - SUSY particle with RPV decay
- 4. Long-lived SUSY particles searches summary

Introduction of SUSY

Supersymmetry is a fermion—boson symmetry.

Minimal Supersymmetric
Standard Model

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$	h^0 H^0 A^0 H^\pm
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	(same)
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ u}_ au$	$\widetilde{ au}_1 \widetilde{ au}_2 \widetilde{ u}_{ au}$
neutralinos	1/2	-1	\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}_u^0 \widetilde{H}_d^0	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}	\widetilde{C}_1^\pm \widetilde{C}_2^\pm
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

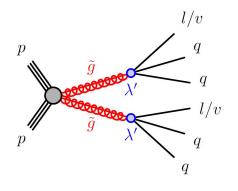
1 November 2025 Shiyi Liang

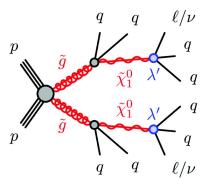
Introduction of SUSY

R-parity: $P_R = (-1)^{3(B-L)+2S}$: SUSY particles \rightarrow odd R-parity; SM-particles \rightarrow even R-parity

R-parity conserved(RPC): SUSY particles produced in pairs, lightest SUSY particle(LSP) stable as a dark matter candidate.

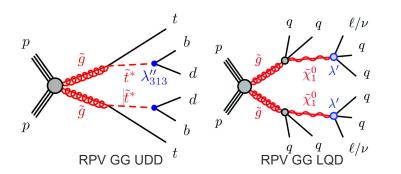
R-parity-violating(RPV): SUSY particles decay to SM particle.

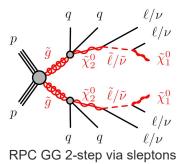

MSSM superpotential

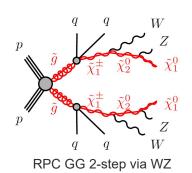

$$\frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \frac{1}{2}\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k + \kappa_iL_iH_2$$
 \widetilde{X}_1^0 ->llv, violate lepton number conservation \widetilde{X}_1^0 ->lqq/vqq, violate lepton and baryon number conservation

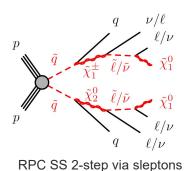
 \widetilde{X}_1^0 ->qqq, violate baryon number conservation

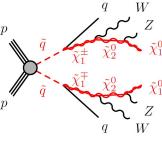
L_i: lepton SU(2)-doublet superfields Q_i : quark SU(2)-doublet superfields \overline{E}_i : charged lepton singlet superfields \overline{U}_i : up-type quark singlet superfields \overline{D}_i : down-type quark singlet superfields H₂: Higgs SU(2)-doublet superfield

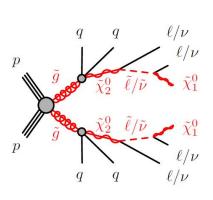

 λ_{ijk} , λ'_{ijk} , λ''_{ijk} : Yukawa couplings

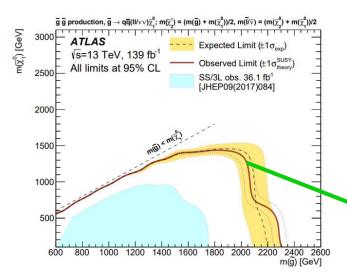


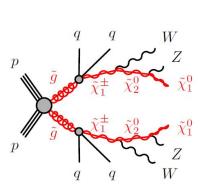


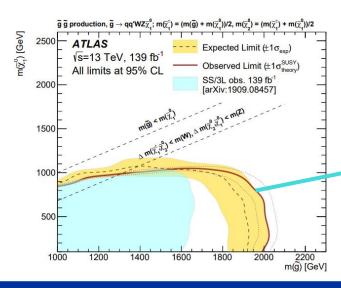

SS/3L: Squarks/gluinos search in SS/3L final states

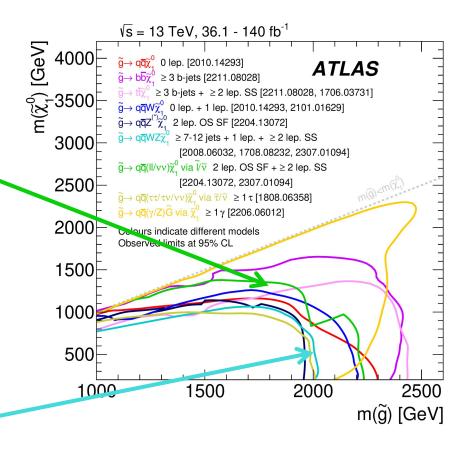

- > Target process: pair production of squarks or gluinos decaying via sleptons or WZ bosons or decay into SM particles with RPV coupling.
- Low SM backgrounds in this final state increase sensitivity for Beyond-Standard-Model(BSM) processes with two same-sign or three leptons final states espeacially in small gluino/squark-LSP mass gap scenario.

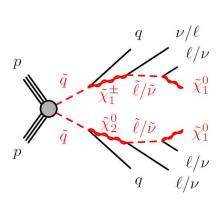

RPC SS 2-step via WZ

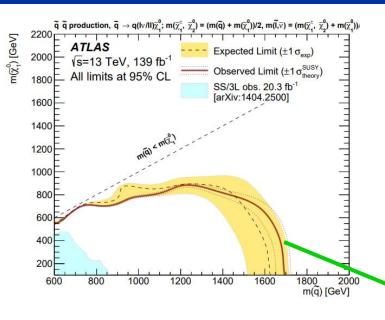

SS/3L: Analysis strategy

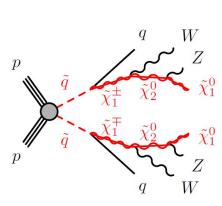

- Input: full run2 data of 139 fb⁻¹ from ATLAS detector of LHC
- Stragety:
 - For each signal model, design several signal regions targeting benchmark points in different region on gluino/squark-LSP mass plane.
 - For one signal model and for each signal grid, use exclusion fit result from SR providing lowest expected confidence level(CL) to form exclusion limit.
- Background estimation
 - Prompt (irreducible) backgrounds:
 - WZ+jets: Normalisation obtained from a simultaneous fit of the CRWZ2j and the SR.
 - Others: estimated with MC samples
 - Detector (reducible) backgrounds:
 - Charge-flip background, Fake/non-prompt lepton: data-driven method, cross-check with MC samples

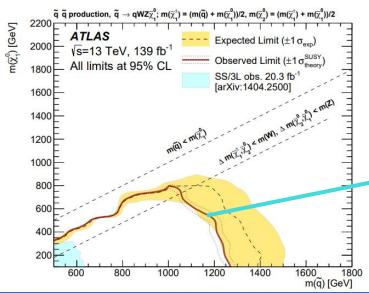


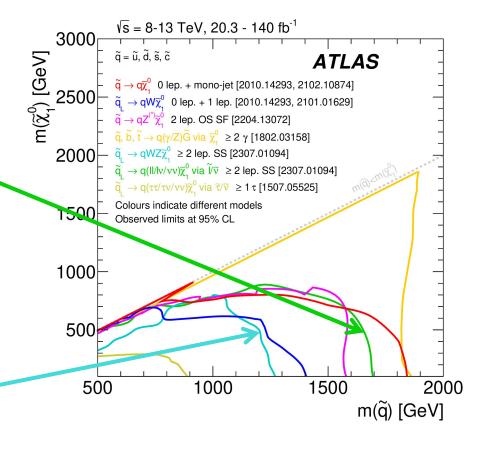

SS/3L: Results

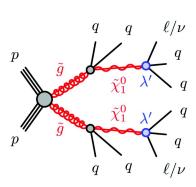


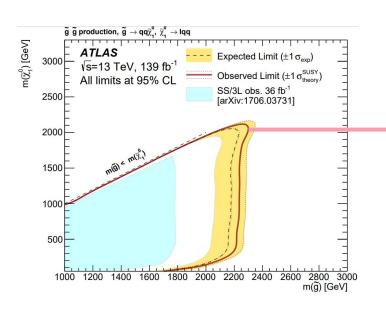


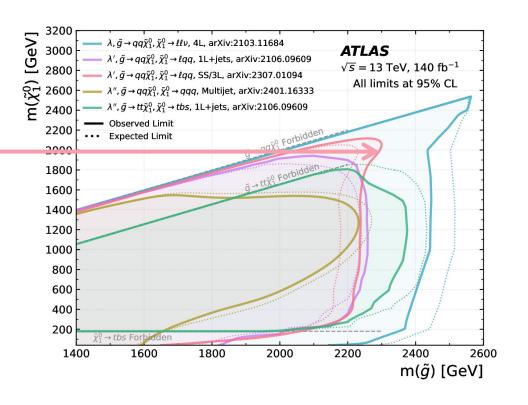


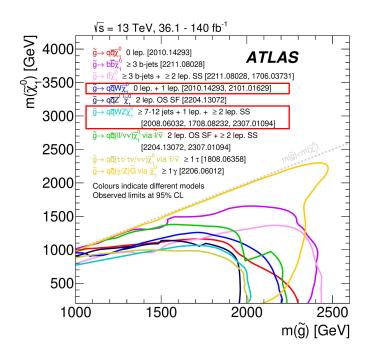


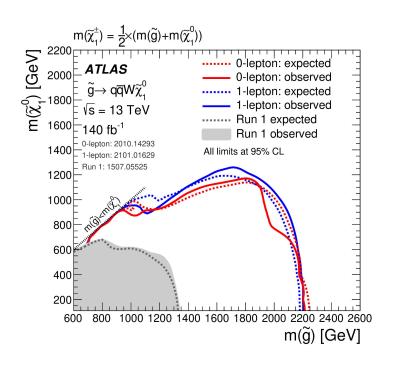

SS/3L: Results

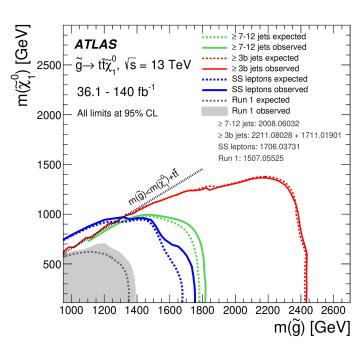




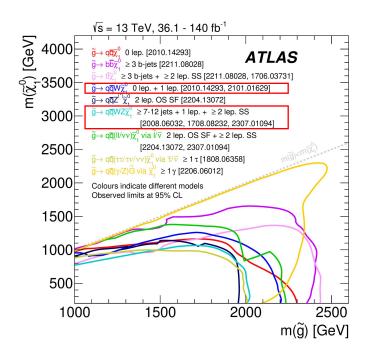


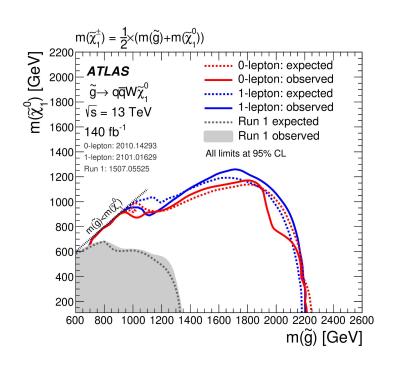

SS/3L: Results

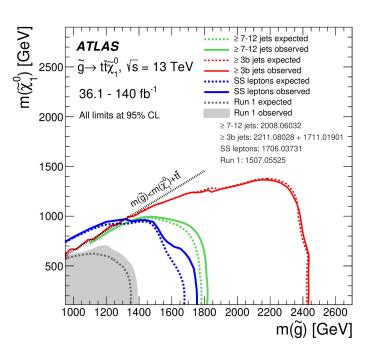




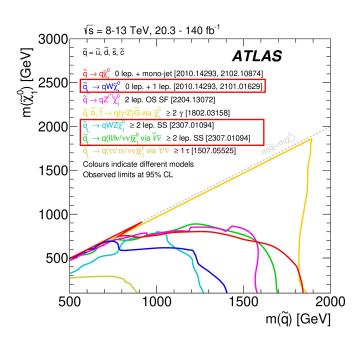
Strong SUSY searches: gluino pair production with RPC decay

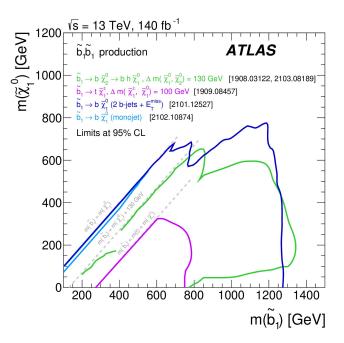


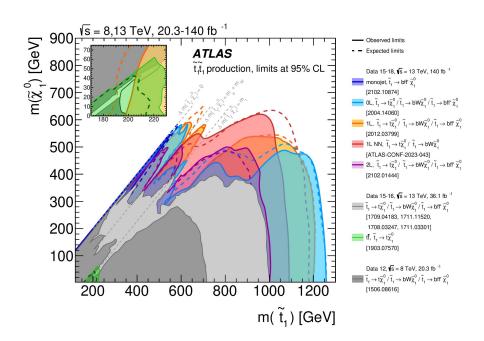



- $ightharpoonup \widetilde{g}$ ->qq \widetilde{X}_1^0 : gluino masses up to about 2.2 TeV are excluded for massless \widetilde{X}_1^0 . Exclusion on \widetilde{X}_1^0 mass reach up to 1.3 TeV.
- $ightharpoonup \widetilde{g}$ ->qq $W\widetilde{\chi}_1^0$: gluino masses up to about 2.2 TeV are excluded for massless $\widetilde{\chi}_1^0$. Exclusion on $\widetilde{\chi}_1^0$ mass reach up to 1 TeV. (IHEP contributions).
- \widetilde{g} ->qqWZ $\widetilde{\chi}_1^0$: gluino masses up to about 2 TeV are excluded for massless $\widetilde{\chi}_1^0$. Exclusion on $\widetilde{\chi}_1^0$ mass reach up to 1 TeV. (IHEP contributions).
- $ightharpoonup \widetilde{g}$ ->qq(γ/**Z**) \widetilde{G} : gluino masses up to about 2.4 TeV.
- $ightharpoonup \widetilde{g}$ -> $t\overline{t}\widetilde{\chi}_1^0$, \widetilde{g} -> $bb\widetilde{\chi}_1^0$: gluino masses up to about 2.4 TeV are excluded for massless $\widetilde{\chi}_1^0$.

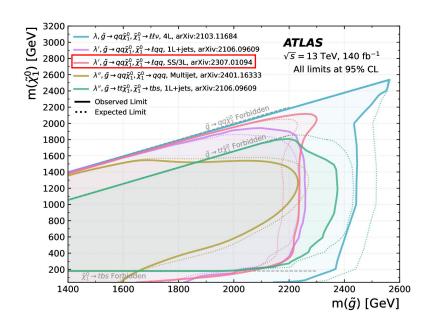
Strong SUSY searches: gluino pair production with RPC decay



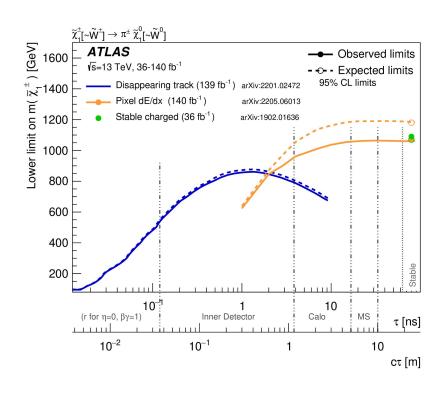



- Exclusion limit with assuming different RPC gluino decays are showed.
- \triangleright For massless \widetilde{X}_1^0 , gluino masses are excluded above 2 TeV.
- ➤ IHEP SUSY group contribute to Strong 1L analysis and SS2L/3L analysis.

Strong SUSY searches: squark pair production with RPC decay



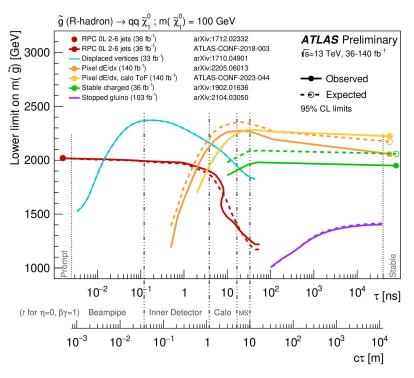
- Assuming different squark decay modes, exclusion limit on squark masses for first/second generation squarks range from 1.3 to 1.9 TeV for massless \widetilde{X}_1^0 .
- $\succ \widetilde{b}_1$ masses up to about 1.25 TeV are excluded for massless \widetilde{X}_1^0 .
- \succ \tilde{t}_1 masses up to about 1.25 TeV are excluded for massless $\tilde{\chi}_1^0$. Exclusion on $\tilde{\chi}_1^0$ mass reach up to 600 GeV.


Strong SUSY searches: RPV decay

$$\frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \frac{1}{2}\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k + \kappa_iL_iH_2$$

- $> \lambda_{iik} \neq 0$: \widetilde{g} ->qq \widetilde{X}_1^0 , \widetilde{X}_1^0 ->llv, gluino masses up to 2.5 TeV are excluded.
- $\lambda'_{ijk}\neq 0: \widetilde{g}$ ->qq $\widetilde{X}_1^0,\widetilde{X}_1^0$ ->lqq/vqq, gluino masses up to 2.2 TeV are excluded.(IHEP contribution in SS/3L analysis)
- λ''_{ijk}≠0:
 - $\geqslant \widetilde{g}$ ->qq \widetilde{X}_1^0 , \widetilde{X}_1^0 ->qqq, gluino masses up to 2.2 TeV are excluded.
 - $\geqslant \widetilde{g}$ ->tt \widetilde{X}_1^0 , \widetilde{X}_1^0 ->tbs, gluino masses up to 2.35 TeV are excluded.

Long-lived supersymmetric particles



- Slepton or chargino
- **Disappearing-track analysis**: a track in the inner detector until the point of decay, where that track then disappears. ->0.1-10 ns lifetime
- Large-dE/dx analysis: a track with high ionisation energy loss (dE/dx)
 in the pixel detector.
 ->above 1 ns lifetime

- ➤ The disappearing-track analysis excludes pure-wino charginos with masses up to ~850 GeV for lifetimes of about 1 ns.
- ➤ Wino-like charginos with masses up to ~1050 GeV are excluded for lifetimes longer than 10 ns.

Long-lived supersymmetric particles

Neutral long-lived SUSY particles

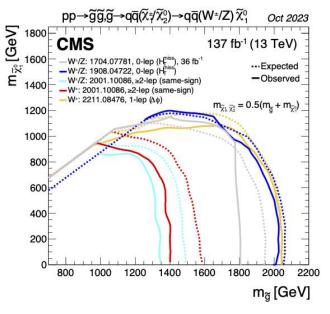
- Reconstruct the long-lived particle's decay products: charged decay products
 leave tracks that can be traced back to a common displaced vertex.
- A long-lived gluino may form an R-hadron with a SM vacuum quark, travel part way through the detector, and then stop in the calorimeter due to energy losses via ionisation and nuclear scattering.
 ->above 100 ns lifetime

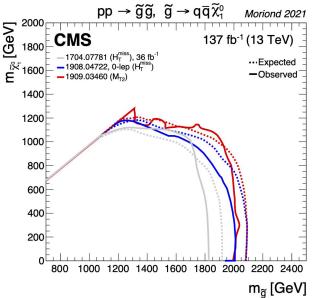
- > Prompt-decay SUSY analyses are typically more sensitive to gluino lifetimes below 0.01 ns.
- Gluino masses are excluded up to 2400 GeV for lifetimes of 0.1 ns.
- ➤ Long-lived gluinos with masses up to 1400 GeV are excluded for lifetimes of 10⁴–10¹² ns.

Summary

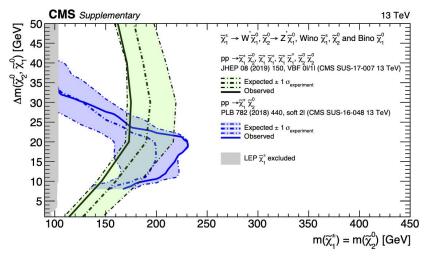
- Strong RPC SUSY searches
 - Gluino masses up to 2 TeV are excluded for massless \tilde{X}_1^0 .
 - For first/second generation squarks, squark masses up to range from 1.3 to 1.9 TeV are excluded for different squark decay modes for massless \tilde{X}_1^0 .
 - \tilde{t}_1 , \tilde{b}_1 masses up to 1.25 TeV are excluded for massless \tilde{X}_1^0 .
- Strong RPV SUSY searches
 - Gluino masses up to 2.2 TeV are excluded for massless \tilde{X}_1^0 .
- Long-lived SUSY searches
 - Exclusion limit on \widetilde{X}_1^0 mass and gluino mass are set.

Reference


The quest to discover supersymmetry at the ATLAS experiment, Physics Reports, Volume 1116, 2025, Pages 261-300, ISSN 0370-1573



Backup


CMS SUSY Summary

5 1400 1200 **CMS** 137 fb⁻¹ (13 TeV) - 1705.04650, 0-lep (M_{T2}), 36 fb⁻¹
- 1909.03460, 0-lep (M_{T2})
- 1908.04722, 0-lep (H_T^{hills}) 1200 ے چ ···Expected Observed $\widetilde{q}_1 + \widetilde{q}_2 (\widetilde{u}, \widetilde{d}, \widetilde{s}, \widetilde{c})$ 1000 800 600 one light q 200 800 1000 1200 1400 1600 1800 2000 m_α [GeV]

Run2 SUSY summary of strong SUSY production

Run2 SUSY summary of EWK SUSY production

