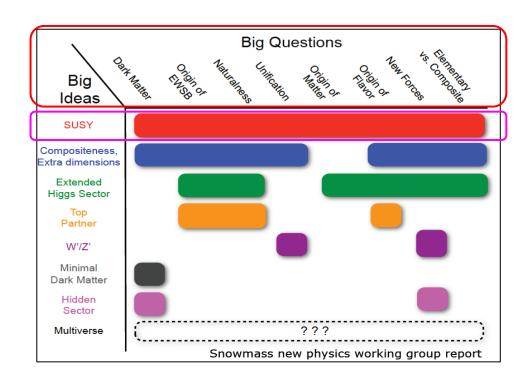


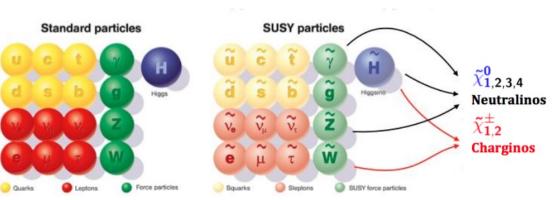
Electroweakino and slepton search summary in ATLAS

Jiarong Yuan on behalf of IHEP SUSY group

Institute of High Energy Physics, Chinese Academy of Sciences

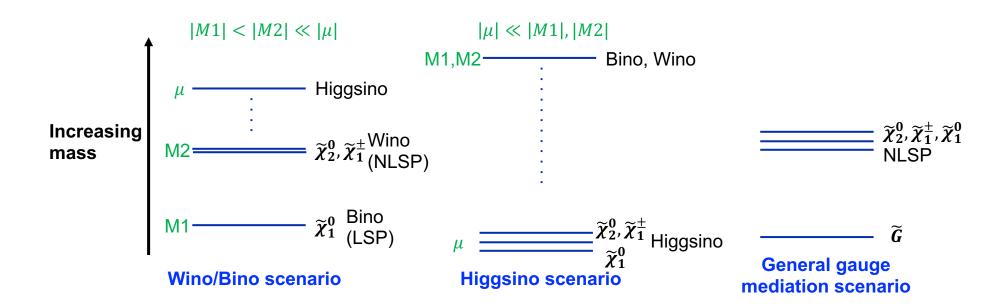
1st, Nov, 2025

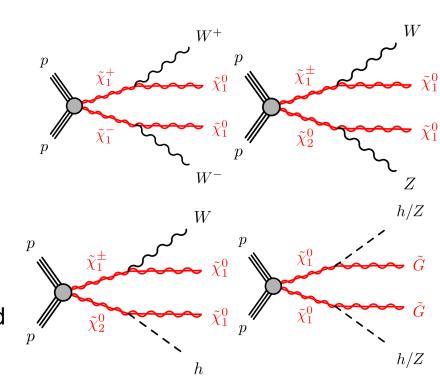

SUSY


The Standard Model (SM) is the most accurate and successful description of fundamental particles and their interactions

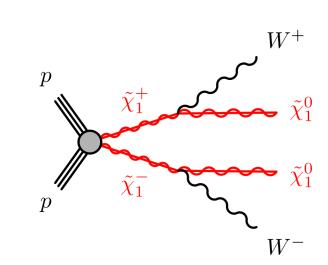
- However, it leaves several big questions to be solved
 - Hierarchy Problem
 - Dark matter
 - Unification of Forces
 - Cosmological Asymmetry
- Motivating searches for physics beyond the Standard Model (BSM)
- SUSY provides solution for most of the big questions

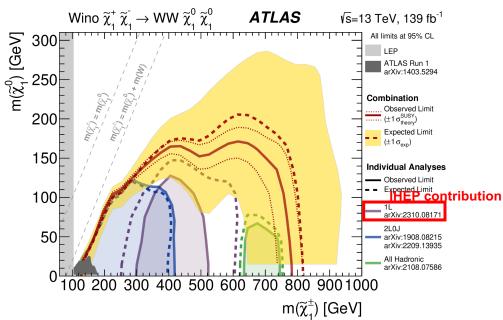
A superpartner of each SM particle with spin differing by $\frac{1}{2}$


- Leptons and neutrinos have sleptons $\tilde{\ell}$ and sneutrinos \tilde{v}
- Partners to $W^{\pm,0}$ and B bosons are winos \widetilde{W} and binos \widetilde{B} , partners to Higgs are higgsinos \widetilde{H}
 - Mix and form charginos $\tilde{\chi}_{1,2}^{\pm}$ and neutralinos $\tilde{\chi}_{1-4}^{0}$

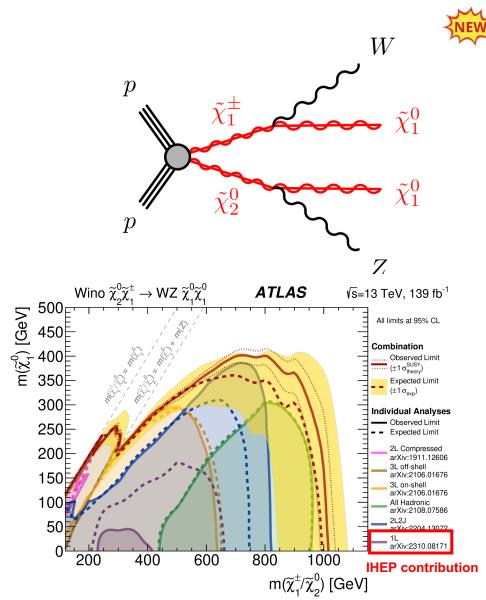

Electroweak SUSY

- Progressively stringent constraints on strong-production SUSY (upper limits on masses up to ~ TeV)
 - Electroweak-production SUSY are key analyses to search for SUSY
- Wino, Bino, Higgsino mixing \rightarrow 2 charginos $\widetilde{\chi}_i^{\pm}$ + 4 neutralinos $\widetilde{\chi}_i^0$ \rightarrow different possible mass spectrum in different scenarios

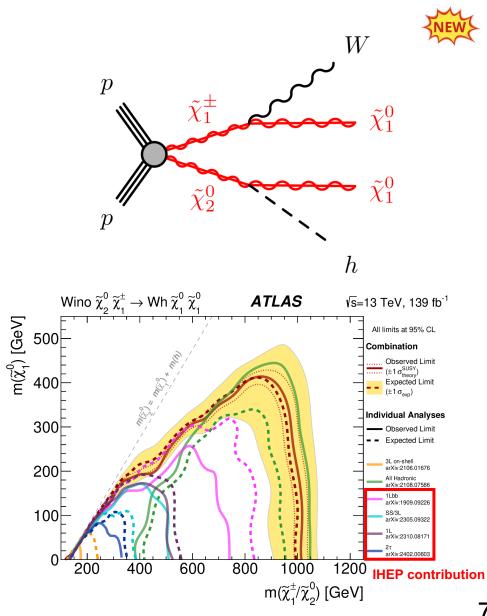




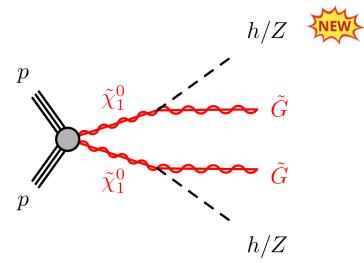
- Signal model
 - Electroweakino production
 - Wino/bino scenario and GGM scenario
 - decay via W, Z, h
- Statistical combination
 - Overlap between searches
 - avoided for most part by lepton multiplicity
 - If searches overlap, the search with the best expected sensitivity is used.
 - Systematic uncertainty
 - Experimental uncertainties are correlated between CRs and SRs with common nuisance parameters
 - Theoretical uncertainties are uncorrelated since searches target at different final states and parameter space

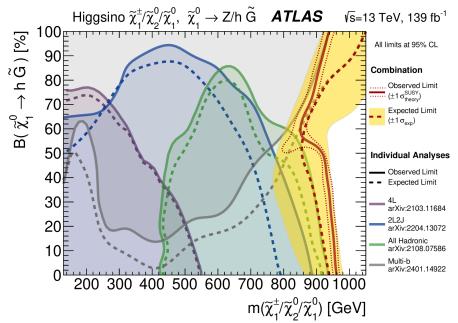


- Signal model: wino-bino scenario
 - Pure-wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production decaying via W
- Fully leptonic: Two **2L0J searches** overlap, so the one with lowest expected C.L. value is used.
- Semileptonic: 1L search is statistically independent of other searches
- Fully hadronic: All Hadronic search is statistically independent of other searches
- Combination fills the gap at $m(\widetilde{\chi}_1^0) \sim 600$ GeV, increase sensitivity to high $m(\widetilde{\chi}_1^0)$, and the upper limit on cross-section is decreased by 20%-30% for $m(\widetilde{\chi}_1^0) \in [400,800]$ GeV

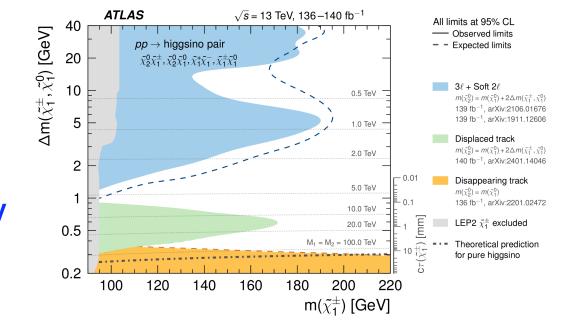


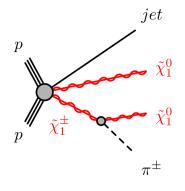
- Signal model: wino-bino scenario
 - Pure-wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via W, Z
- All searches are statistically independent:
 2L Compressed, 3L, 2L2J, 1L and All Hadronic
- Extends limits by ~ 50 GeV at high m(NLSP)
- Extends limits of m(LSP) by 40 100 GeV at m(NLSP) around 550 GeV and 800 GeV,
- Decreases the upper limit on the cross-section by 20% 40% for NLSP 600 1000 GeV

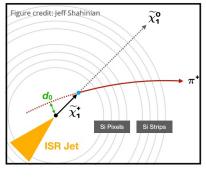


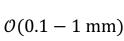

- Signal model: wino-bino scenario
 - Pure-wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production decaying via W, h
- All Hadronic and 1Lbb searches dominate the sensitivity
- SS/3L and 3L and 2τ searches are sensitive to low mass **NLSP**
 - SS/3L and 3L searches overlap, so the one with lowest expected C.L. value is used.
- Extends limits up to 30 GeV in m(LSP) for m(NLSP) in range of 300 - 600 GeV
- Decreases upper limit on the cross-section by 20% **30%** for m(NLSP)< 600 GeV

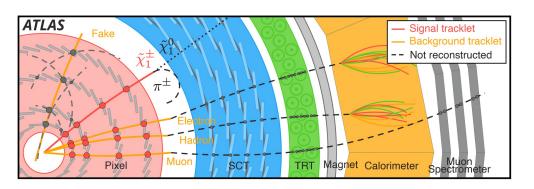
- Signal model: GGM scenario
 - Pure-higgsino $\widetilde{\chi}_1^+\widetilde{\chi}_1^-$, $\widetilde{\chi}_2^0\widetilde{\chi}_1^0$, $\widetilde{\chi}_1^\pm\widetilde{\chi}_{1,2}^0$ production decays to $\widetilde{\chi}_1^0$, and $\widetilde{\chi}_1^0 \to h/Z \widetilde{G}$
- 4L, 2L2J, All Hadronic searches targets leptonic or hadronic decays of Z boson
- **Multi-b** search selects $h \rightarrow bb$
 - All Hadronic and Multi-b are overlap, so the one with lowest expected C.L. value is used.
- Extends the exclusion by $\sim 60 \text{ GeV}$ for high mass Higgsino
- The upper limit on the cross section is decreased by 15% 40% for $\text{Br}(\widetilde{\chi}_1^0 \to h\widetilde{G}) < 80\%$

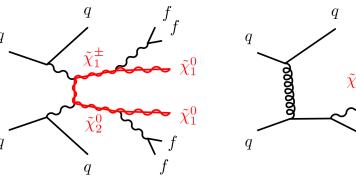


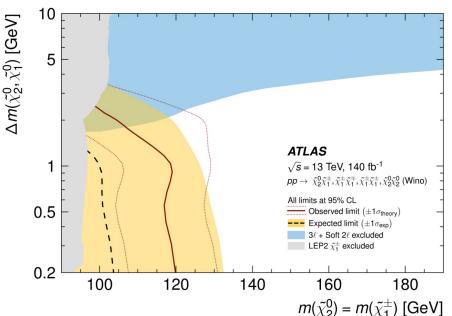



Higgsino Searches


Phys. Rep. 1116 (2025) 261-300

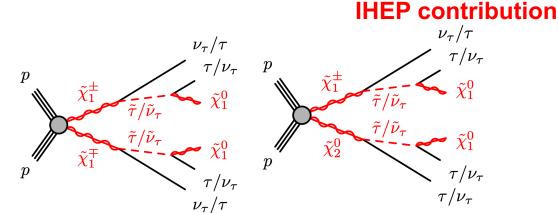

- Higgsino scenario
 - Light higgsino → Hierarchy problem
 - Naturally compressed $\Delta m \sim \mathcal{O}(0.1-50)$ GeV
- The combination of 3L and soft 2L $(\Delta m \sim \mathcal{O}(1-40))$ GeV)
 - Exclude up to 180 GeV for $\Delta m \sim 30$ GeV and up to 190 GeV for $\Delta m \sim 5$ GeV
- Displaced track (△m < 1 GeV)
 - Exclude up to 170 GeV for 0.3 GeV $< \Delta m < 0.9$ GeV
- Disappearing track (smallest △m)
 - Exclude up to 210 GeV for $\Delta m < 0.3$ GeV

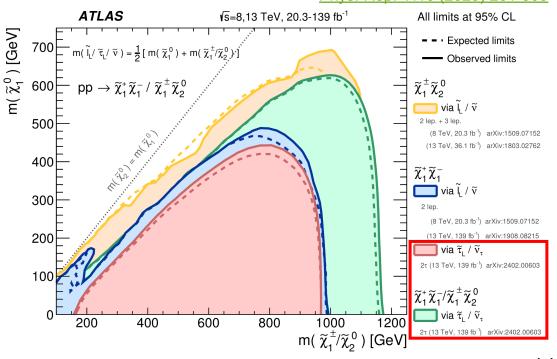




Electroweakino VBF 0L

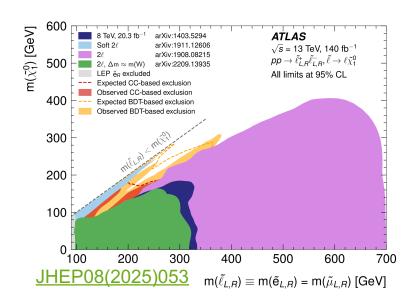
- Pure-wino $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ production through VBF
- \geq 2 forward jets (VBF) + large E_T^{miss} + no lepton (too soft to be reconstructed)
 - Targeting compressed region, favored by Dark Matter
- Dedicated cross-section estimation
 - Interference between pure-EWK and EWK/QCD diagrams
- Event selection
 - VBF tag: a pair of jets with largest value of m_{jj} and opposite signed pseudo-rapidity
 - A Boosted Decision Tree is used to discriminate between signal and background
 - Complementary search strategies based on jet multiplicity: '2j', '≥3j'
 - maximize sensitivity
 - takes into account V+jets modeling dependence
- No significant excess above the SM expectation
- NSLP mass excludes up to 117 GeV with $\Delta m(\widetilde{\chi}_2^0,\widetilde{\chi}_1^0)\sim 1$ GeV
- Improve sensitivity with $\Delta m(\tilde{\chi}^0_2,\tilde{\chi}^0_1)<2$ GeV


JHEP 12 (2024) 116 (IHEP contribution)


Electroweakino with intermediate-slepton

- Pure-wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production via intermediate tau-slepton
- $2\tau_{had}$ + large E_T^{miss}
- Analysis strategy
 - Final states: C1C1, C1N2 (OS, SS)
 - First use same-sign ditau at ATLAS, enhance sensitivity at compressed region
 - Parameter space: low-mass and high-mass
- No significant excess above SM expectation
- High mass reach improved by ~400 GeV
 - $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production excludes up to 970 GeV
 - $\widetilde{\chi}_1^+ \widetilde{\chi}_1^- / \widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ production excludes up to 1160 GeV
- Sensitivity also improved at compressed region

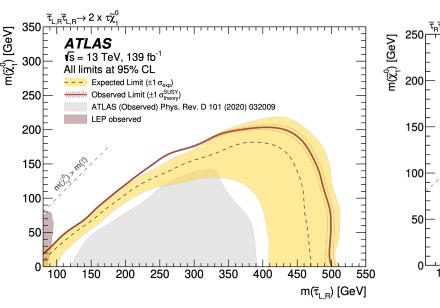
Phys. Rep. 1116 (2025) 261-300

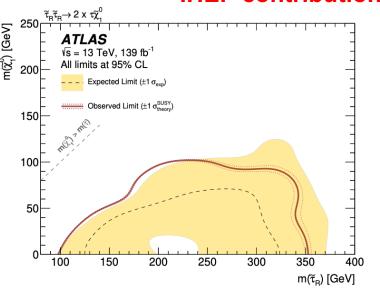

JHEP05(2024)150

Slepton Searches

Searches for 1st/2nd generation slepton

- Direct pair production: exclude up to 700 GeV
- Soft 2ℓ: exclude < 250 GeV
- Compressed slepton: reduce gap in compressed region



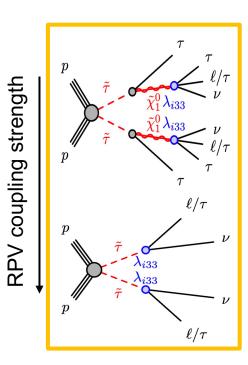

Search for tau-slepton

Phys. Rep. 1116 (2025) 261-300 JHEP08(2025)053 JHEP05(2024)150

- 3rd generation slepton is expected to be the lightest slepton
- Four BDTs targeting different $\tilde{\tau}-\widetilde{\chi}_1^0$ mass regimes
- No significant excess above SM expectation
- τ masses exclude up to ~500 GeV
- Sensitivity to $\tilde{\tau}_R$ -only scnario at ATLAS for the first time, exclude up to ~350 GeV $_{\rm JHEP05(2024)150}$

IHEP contribution

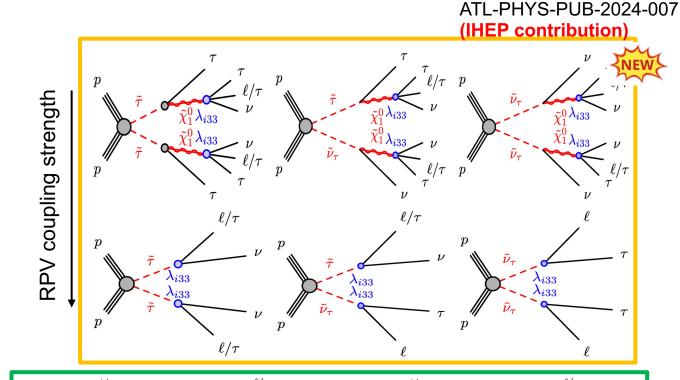
RPV reinterpretation of tau final states

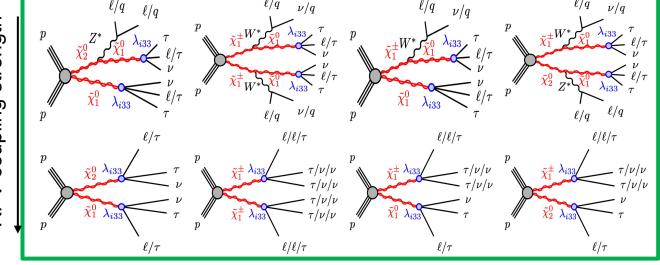

ATL-PHYS-PUB-2024-007 (IHEP contribution)

- R-parity violation (RPV) allows baryon and lepton number violation, and the LSP decay to SM particles.
- RPV superpotential has coupling λ of lepton doublets L_i and singlets E_i

$$W_{\text{RPV}} = \boxed{\frac{\lambda_{ijk}}{2} L_i L_j \bar{E}_k} + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{\lambda''_{ijk}}{2} \bar{U}_i \bar{D}_j \bar{D}_k + k_i L_i H_u$$

- Couplings related to tau are considered λ₁₃₃, λ₂₃₃
- Small λ_{i33} leads to long-lived LSP decaying beyond the detector volume, mimicking the MET
- Moderate λ_{i33} leads to LSP decays inside the detector with displaced signatures
- Large λ_{i33} leads to LSP prompt decay or NLSP decays to SM particles

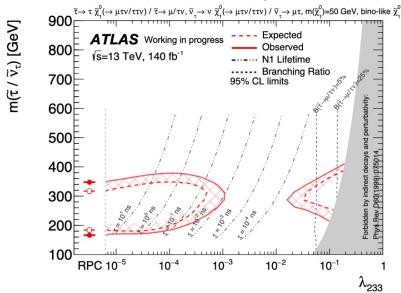

RPV reinterpretation of tau final states

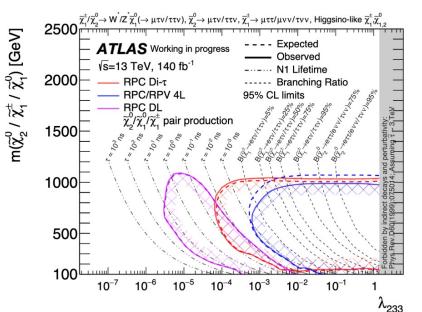

Stau model

- Production of stau pair, stau-snu, snu pair
- Mass degenerate left-handed and righthanded stau

Higgsino model

- Production of $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$
- Nearly mass-degenerate higgsino-like $\tilde{\chi}_1^0, \; \tilde{\chi}_2^0, \; \tilde{\chi}_1^\pm$

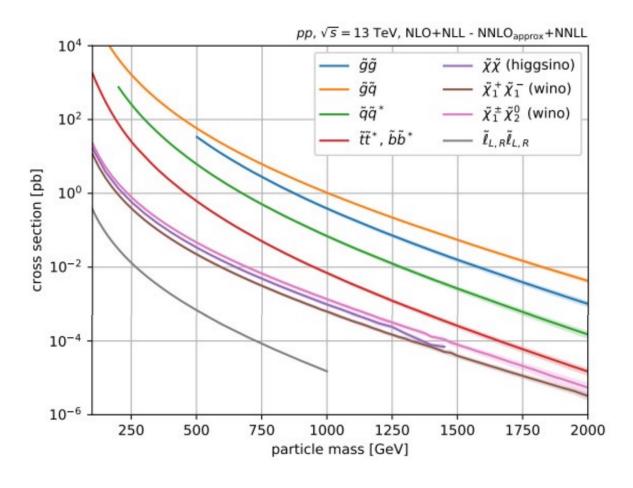



RPV coupling strength

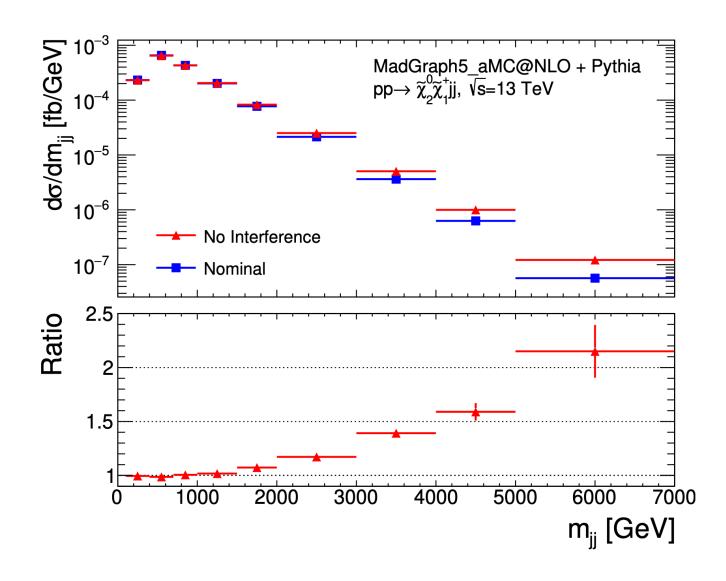
RPV reinterpretation of tau final states

- Reinterpreted searches
 - Di-tau JHEP05(2024)150
 - ≥ 2 hadronic tau, large MET
 - Displaced Lepton Phys. Rev. Lett. 127, 051802
 - Leptons with high pT and large impact parameter
 - 4L JHEP07(2021)167
 - ≥ 4 charged leptons, large MET
- $m(\tilde{\tau}) \in [160, 340]$ GeV excluded for lifetime below 10^{-2} ns
 - Left contour for RPC-like escaping long-lived $\tilde{\chi}_1^0$
 - Right contour for di-tau final states from NLSP RPV decay
- Higgsino mass excluded up to 1100 GeV
 - Longer lifetime leads to displaced particles

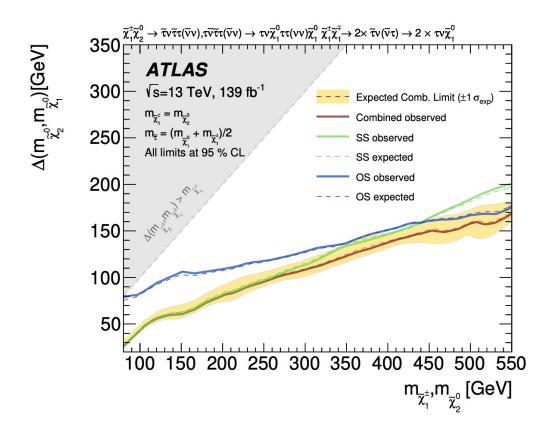
ATL-PHYS-PUB-2024-007 (IHEP contribution)

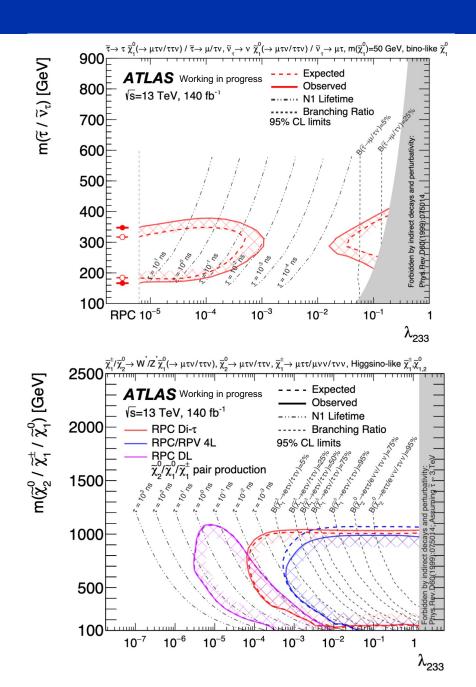


Summary


- Presented latest ATLAS results on EWK SUSY searches
 - Challenging but well motivated scenarios such as compressed region
 - Investigate previously unexplored region of parameter space
 - ML techniques employed to improve sensitivity
- No significant excess above SM expectation
- Covered only a small part of ATLAS results
 - ATLAS SUSY Run2 summary: Physics Reports 1116 (2025) 261–300
 - Run3 analyses are ongoing, many interesting results are coming soon!

• BACKUP


Electroweak SUSY



Electroweakino VBF 0L

Electroweakino with intermediate-slepton

