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Higgs potential 
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 Since the discovery of the Higgs boson in 2012, understanding its properties has been a central task

 Studying the Higgs potential reveals the structure of the Higgs field
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Physics Motivation for HHH->6b
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 New topology

 SM tri-Higgs production is sensitive to tri-linear and quartic Higgs 

self-couplings (�3 & �4)

 Constrain modifications to SM coupling values (�3 & �4, no experimental 

bounds before)

 Quartic couplings can only be accessed directly this way

 Small SM tri-Higgs ggF production cross-section at � =  13 푇�� 

      ~ 0.08푓� at NNLOg

 Some BSM theories predict 

      nontrivial tri-Higgs production

 Rare process → 6b final state 

      (large branching ratio: � → �� ~58%)



BSM of Higgs 6b production
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 Simplified TRSM model

 TRSM breaks unitarity at high masses, and becomes 

dominated by the non-resonant diagrams. Simplify 

model to avoid TRSM problems.

 Only consider resonant ggF production 

      (x → SH → HHH).

 Simple model for dark matter and CP violation (DM-CPV)

 Dark matter as a vector-like dark fermion

 Interacts with SM through scalars 

      similar as the scalars in TRSM

 Negligible differences are found in HHH event kinematics 

between TRSM and DM-CPV

 Two Real Singlet Model(TRSM)

 Extending the SM by adding two real scalar 

      bosons  X and S

 The production cross section can 

       reach values up to ~ 50푓� (LO)

 Resonant + non-resonant, all LO ggF 

      production modes (BSM + SM)
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S
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Analysis overview
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 Data: run2 dataset (126 푓�−1)

 Three interpretations based on 
      the kinematics of the signal models.

 Non-resonant: �� < 2��(250퐺��)
 Resonant: �� > 2��(250퐺��)
 Heavy resonant: �� > 275퐺��,
     �� > 550퐺��; (narrow & wide decay widths)

 Each search follows the same general analysis strategy

 Dominant background: QCD multi-jet production
      Estimate by data-driven method

 A profile likelihood fit  is performed on Deep Neural 
      Network (DNN) score to obtain the final results

550 < mx < 1500 GeV     275 < ms  <1000 GeV
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Event selection
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≥ 6 b-tags 
Signal Region (SR) 

= 5 b-tags 
Control Region (CR)

Background estimation 
& validation 

= 4 b-tags 
Control Region (CR)

Background estimation 
& validation

≥ 6 jets
≥ 4 jets with pT > 40 GeV 

≥ 4 jets passing DL1dv01 77% WP

ATLAS Run-2 data (126푓�−1)

selected by triggers 
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Deep Neural Network(DNN)

6

 Three DNNs are trained for discriminant and fitting 

 Training samples
 Background: 5b data

 Signal: nonresDNN (6b SM HHH + 6b TRSM non-resonant), resDNN (all 6b resonant TRSM), 

      heavyresDNN (all 6b heavy resonance)

 For each DNN, ten variables (good shape separation, minimal correlation with the b-jet multiplicity) 

      are chosen as inputs. extrapolation uncertainty estimate by Double ratio � = �ퟔ�/��
���/��

~�



Background Estimation
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 Dominant background: QCD multi-jet production
 Data-driven method
 Assumption: properties of the background do not significantly sensitive to 

     � -jet multiplicity (validate by double ratio � = �ퟔ�/��
���/��

~�)

 Extrapolation: 4� → 5� → 6�(��), 
      extrapolate shape in b-tag multiplicity, 
      normalized to 6b yields

 Excluded region: large shape 
      difference between 4b, 5b and 
      6b, exclude from fit
 Low-score region: B-tag 
       extrapolation, validate 
       background estimate, derive 
       shape systematics
 High-score region: 6b SR

퐵푎푐푘푔����� ������ = ��
5� ×

�6�

�5� ×
��

5�/��
4�(퐷�� �푐���)
�5�/�4�

Derive background systematice Included in fit

normalised to 6b yields Extrapolate the shape of DNN score



Uncertainties
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 Background shape uncertainty is the dominant one in experimental uncertainties. 

     The expected limits are changed from 14% to 45%.

 Theoretical uncertainties: (��+PDF) & QCD scale.



Non-resonant & resonant interpretations
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 In all cases, the observed data agree well with the background, and no significant excess is seen.
 In non-resonant interpretation: largest deviation is at (��, ��) = (550,200) GeV with 0.19σ
 In resonant interpretation: signal strength �  = 0.

Non-resonant Resonant

normalise to background



Non-resonant & resonant interpretations
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 Cross-section upper limits in the 

      (��, ��) plane of non-resonant 

      interpretation and resonant 
      interpretation. (Observed: 
      48~310 푓�)

 Observed cross-section upper limit: 59푓�

 SM HHH production:

� = ����
����

��  ~ 750



Heavy resonant interpretation
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 In all cases, the observed data agree well with the background, and no significant excess is seen.
 In heavy resonant interpretation: largest deviation is at (��, ��) = (1500,275) GeV with 0.51�.
 Observed limits for the narrow heavy resonance signals: 5.7~38 푓�



     and      scan
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�� ��

 Constraints on quartic coupling modifier set for the first time

 At the 95% CL none of the phase space inside the unitarity bounds is excluded

Theoretical dependence



Summary
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 Search for tri-Higgs production in 6b final state with 126푓�−1 ATLAS run2 data. It’s the 

first search of such topology at the LHC

 Three different DNNs are used in non-resonant (including a search for SM like signals), 
resonant and heavy resonant interpretations. Data-driven method is used to estimate 
background

 No significant excess observed in the search for SM like and various BSM signals 
Constrains of �3 and �4 (for the first time) are presented
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Different interpretations
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The event kinematics differ depending on the type of production – resonant vs non-resonant

Resonant HHH production

·Both X and S in TRSM are in-shell

                                     resonant TRSM

                                     border TRSM

 Non-resonant HHH production

· S in TRSM is off-shell, i.e.

                       
   non-resonant TRSM



Object definition
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 PFlow jets, �푇 > 20 GeV, � < 2.5
 B-tagged by DL1d 77% working point
 �-in-jet correction for semi-leptonic b-hadron decay



DNN input
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Background estimation
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 The non-closure in the extrapolation method in low-score region is used to estimate the 
systematic uncertainty.

 3 Kinematic shape variations employed for each interpretation.
 The shape variations are always smaller than the statistical uncertainty.



Jet pairing
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 Reconstruct high-level kinematic variables that are 
      effective at signal/background discrimination

 Three Higgs boson candidates:
       6 jets are selected & paired. 15 ways to pair them
 

 Pairing algorithm:

  minimizing | ��1 − 120퐺��| +  | ��2 − 115퐺��| +  | ��3 − 110퐺��|

For
 
5b

 
(4b)

 
events:

For 6b events:

 Pairing efficiencies:
 SM-like ~ 60%
 Resonant TRSM ~ 50%
 Heavy resonant ~ 80%



Jet pairing efficiency
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SM-like TRSM



Jet pairing efficiency
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narrow heavy resonant wide heavy resonant


