





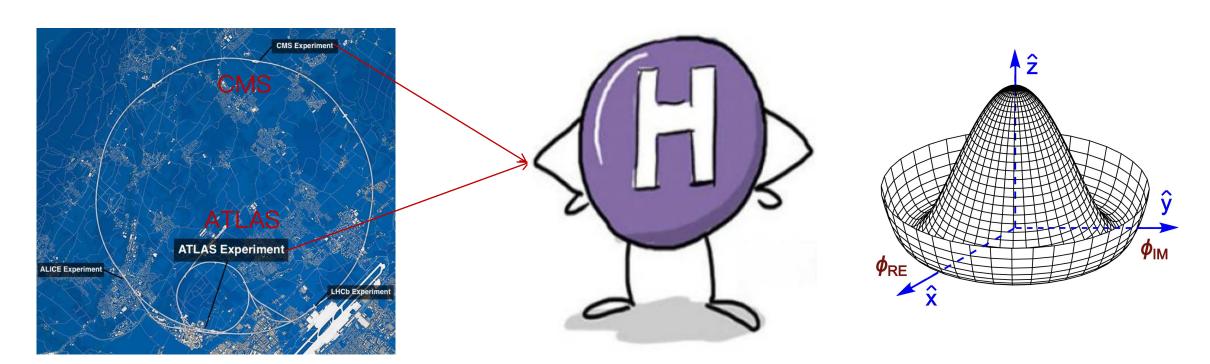
# Search for triple Higgs boson production in the 6b final state at 13TeV with the ATLAS detector

#### Xinzhu Wang

With Jing Chen, Shu Li, Haijun Yang, Baihong Zhou, Xuliang Zhu

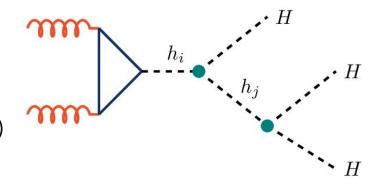
2025.10.31

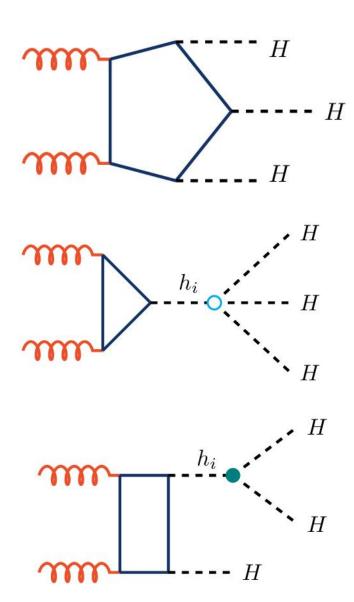
CLHCP2025, Henan, China


Phys. Rev. D 111, 032006

饮水思源•爱国荣校

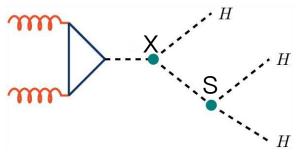
# Higgs potential

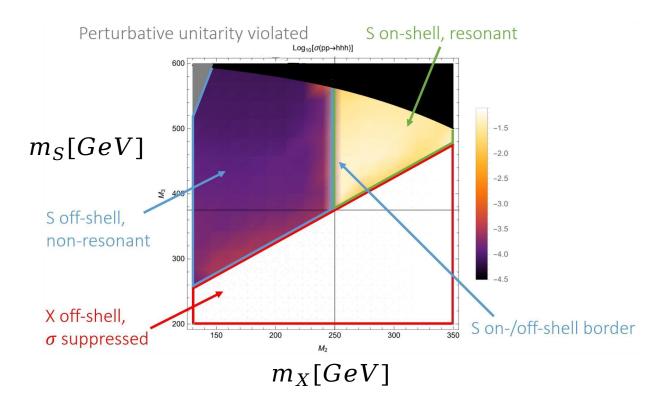

- Since the discovery of the Higgs boson in 2012, understanding its properties has been a central task
- Studying the Higgs potential reveals the structure of the Higgs field


$$V(H) = \frac{1}{2}m_H^2H^2 + \lambda_3\nu H^3 + \lambda_4 H^4 + O(H^5)$$



## Physics Motivation for HHH->6b


- New topology
  - $\blacksquare$  SM tri–Higgs production is sensitive to tri–linear and quartic Higgs self–couplings (  $\lambda_3$  &  $\lambda_4$  )
  - $f \Box$  Constrain modifications to SM coupling values ( $K_3$  &  $K_4$ , no experimental bounds before)
  - Quartic couplings can only be accessed directly this way
- Small SM tri-Higgs ggF production cross-section at  $\sqrt{s}=13~TeV$  ~ 0.08 fb at NNLOg
- Some BSM theories predict nontrivial tri-Higgs production
- Rare process  $\rightarrow$  6b final state (large branching ratio:  $H \rightarrow b\bar{b}$  ~58%)






### **BSM of Higgs 6b production**

- Two Real Singlet Model(TRSM)
  - Extending the SM by adding two real scalar bosons X and S
  - The production cross section can reach values up to  $\sim 50 fb$  (LO)
  - Resonant + non-resonant, all LO ggF production modes (BSM + SM)

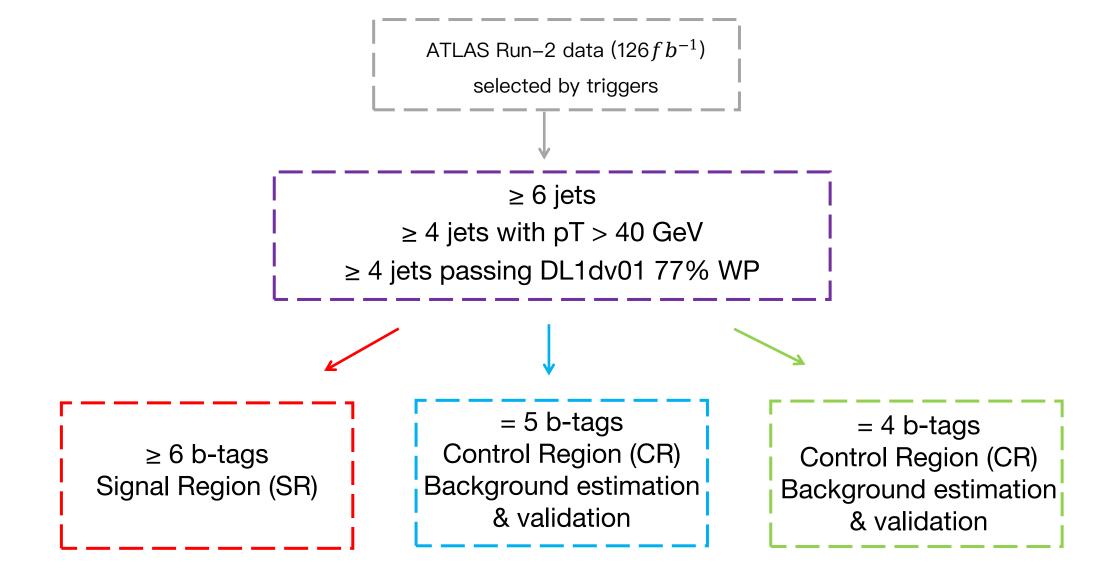




- Simple model for dark matter and CP violation (DM–CPV)
  - Dark matter as a vector-like dark fermion
  - Interacts with SM through scalars similar as the scalars in TRSM
  - Negligible differences are found in HHH event kinematics between TRSM and DM-CPV

- Simplified TRSM model
  - TRSM breaks unitarity at high masses, and becomes dominated by the non-resonant diagrams. Simplify model to avoid TRSM problems.
  - Only consider resonant ggF production  $(x \rightarrow SH \rightarrow HHH)$ .

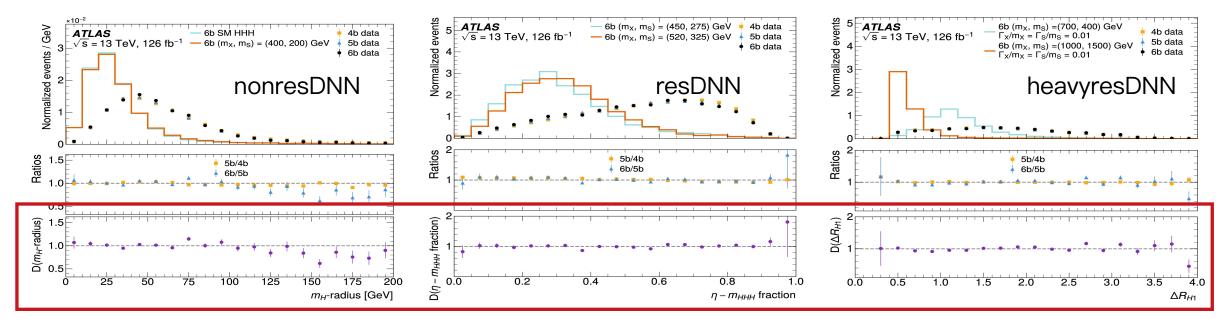
# **Analysis overview**


- Data: run2 dataset  $(126 fb^{-1})$
- Three interpretations based on the kinematics of the signal models.
  - Non-resonant:  $m_S < 2m_H(250GeV)$
  - Resonant:  $m_S > 2m_H(250GeV)$
  - Heavy resonant:  $m_S > 275 GeV$ ,  $m_X > 550 GeV$ ; (narrow & wide decay widths)
- Each search follows the same general analysis strategy
- Dominant background: QCD multi-jet production Estimate by data-driven method
- A profile likelihood fit is performed on Deep Neural Network (DNN) score to obtain the final results

Generic heavy resonance  $Log_{10}[\sigma(pp\rightarrow hhh)]$ Heavy resonant -1.5Resonant production -2.0Non-resonant  $m_{x}$  [GeV] -2.5production -3.0-3.5-4.0300 150 200 250 300 m<sub>s</sub> [GeV]

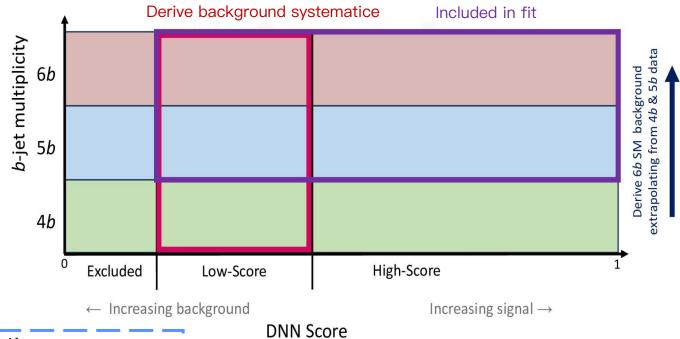
550 < m<sub>x</sub> < 1500 GeV 275 < m<sub>s</sub> <1000 GeV

Phys. Rev. D 111, 032006


#### **Event selection**



# Deep Neural Network(DNN)


- Three DNNs are trained for discriminant and fitting
- Training samples
  - Background: 5b data
  - □ Signal: nonresDNN (6b SM HHH + 6b TRSM non-resonant), resDNN (all 6b resonant TRSM), heavyresDNN (all 6b heavy resonance)
- For each DNN, ten variables (good shape separation, minimal correlation with the b-jet multiplicity)

are chosen as inputs. extrapolation uncertainty estimate by Double ratio  $\mathbf{D} = \frac{\mathbf{R_{6b/5b}}}{\mathbf{R_{5b/4b}}} \sim 2$ 

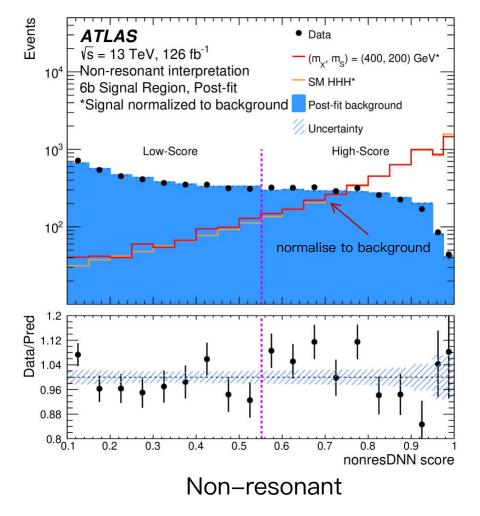


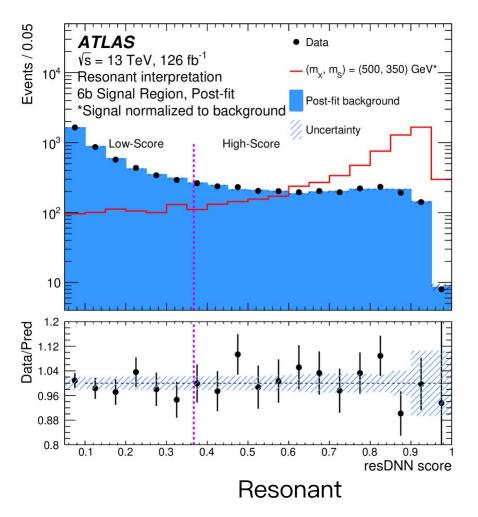
# **Background Estimation**

- Dominant background: QCD multi-jet production
- Data-driven method
- Assumption: properties of the background do not significantly sensitive to b-jet multiplicity (validate by double ratio  $\mathbf{D} = \frac{\mathbf{R_{6b/5b}}}{\mathbf{R_{5b/4b}}} \sim \mathbf{1}$ )
- Extrapolation:  $4b \rightarrow 5b \rightarrow 6b(SR)$ , extrapolate shape in b-tag multiplicity, normalized to 6b yields
  - Excluded region: large shape
    difference between 4b, 5b and
    6b, exclude from fit
  - Low-score region: B-tag
     extrapolation, validate
     background estimate, derive
     shape systematics
  - □ High-score region: 6b SR



 $Background\ model_i = N_i^{5b} \times \frac{N^{6b}}{N^{5b}} \times \frac{N_i^{5b}/N_i^{4b}(DNN\ Score)}{N^{5b}/N^{4b}}$ 

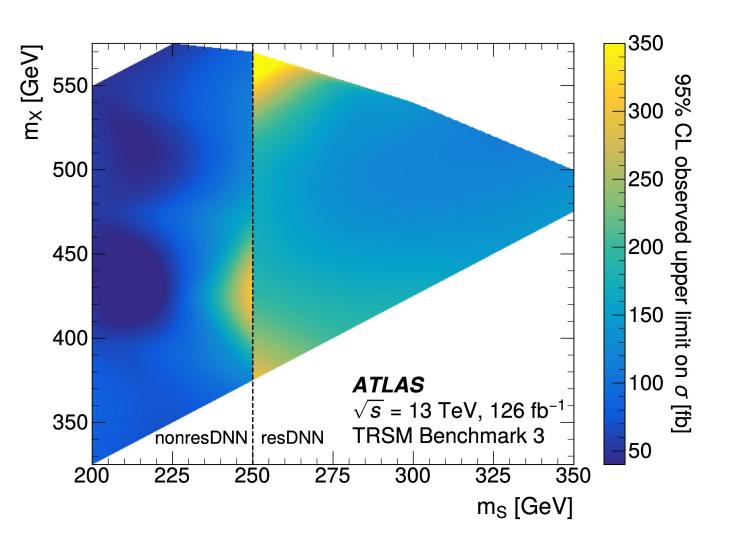

## **Uncertainties**


| Uncertainty source    | Relative impact of systematic uncertainties [%] |                   |               |                 |  |
|-----------------------|-------------------------------------------------|-------------------|---------------|-----------------|--|
| Uncertainty source    | SM-like                                         | TRSM non-resonant | TRSM resonant | Heavy resonance |  |
| All uncertainties     | 24                                              | 20–46             | 33–42         | 24–53           |  |
| Experimental          | 22                                              | 20–45             | 33–41         | 24–53           |  |
| Detector response     | 7.4                                             | 6.6–14            | 16–24         | 4.1–15          |  |
| Luminosity and pileup | <1                                              | <1                | <1            | <1              |  |
| Flavor tagging        | 3.2                                             | 2.8-5             | 6.9-8.8       | 1.5-5.6         |  |
| Jet reconstruction    | 2.7                                             | 2.3-6.5           | 3.6–7.1       | 1.0-6.3         |  |
| Trigger efficiency    | 2.0                                             | 1.8-3.5           | 6–10          | 1.4-4.2         |  |
| Background modeling   | 16                                              | 14–36             | 18–30         | 20–45           |  |
| Theoretical           | 1.5                                             | <1                | <1            | <1              |  |
| MC statistical        | <1                                              | <1                | <1            | <1              |  |

- Background shape uncertainty is the dominant one in experimental uncertainties.
  The expected limits are changed from 14% to 45%.
- Theoretical uncertainties: ( $\alpha_s$ +PDF) & QCD scale.

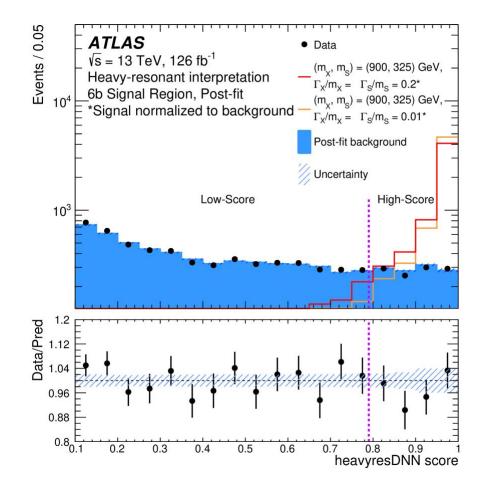
## Non-resonant & resonant interpretations

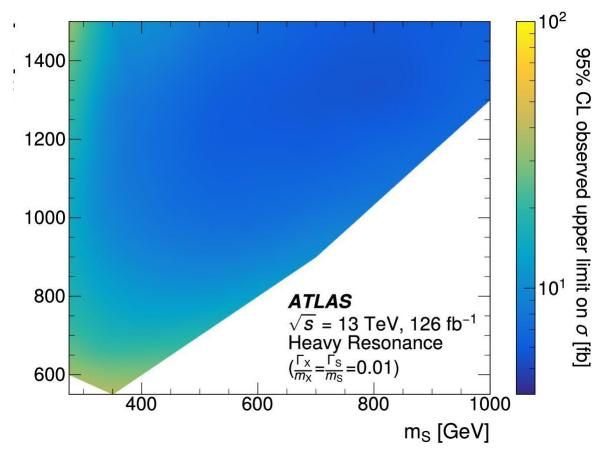
- In all cases, the observed data agree well with the background, and no significant excess is seen.
- In non-resonant interpretation: largest deviation is at  $(m_X, m_S) = (550,200)$  GeV with 0.19 $\sigma$
- In resonant interpretation: signal strength  $\mu = 0$ .





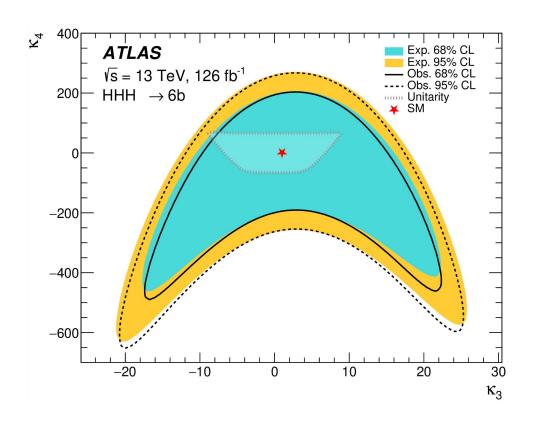

## Non-resonant & resonant interpretations

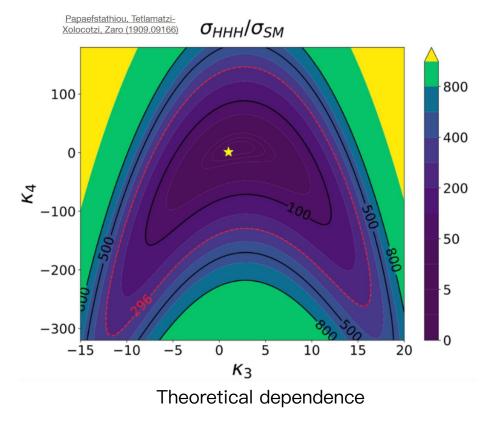

- Cross-section upper limits in the  $(m_X, m_S)$  plane of non-resonant interpretation and resonant interpretation. (Observed:  $48 \sim 310 \ fb$ )
- Observed cross–section upper limit: 59 fb
- SM HHH production:


$$\mu = \frac{\sigma_{HHH}}{\sigma_{HHH}^{SM}} \sim 750$$



## Heavy resonant interpretation


- In all cases, the observed data agree well with the background, and no significant excess is seen.
- In heavy resonant interpretation: largest deviation is at  $(m_X, m_S)$  = (1500,275) GeV with 0.51 $\sigma$
- Observed limits for the narrow heavy resonance signals: 5.7~38 fb






#### $K_3$ and $K_4$ scan

- Constraints on quartic coupling modifier set for the first time
- At the 95% CL none of the phase space inside the unitarity bounds is excluded





## **Summary**

- Search for tri–Higgs production in 6b final state with  $126fb^{-1}$  ATLAS run2 data. It's the first search of such topology at the LHC
- Three different DNNs are used in non-resonant (including a search for SM like signals), resonant and heavy resonant interpretations. Data-driven method is used to estimate background
- No significant excess observed in the search for SM like and various BSM signals Constrains of  $K_3$  and  $K_4$  (for the first time) are presented



Phys. Rev. D 111, 032006







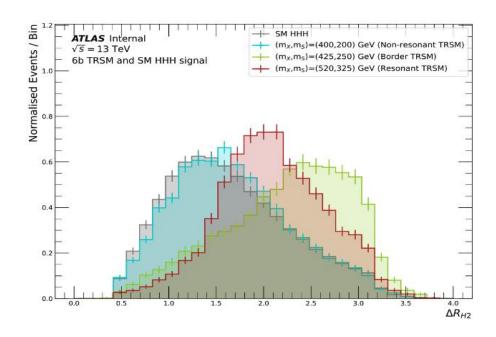
## Different interpretations

The event kinematics differ depending on the type of production – resonant vs non-resonant

# Resonant HHH production

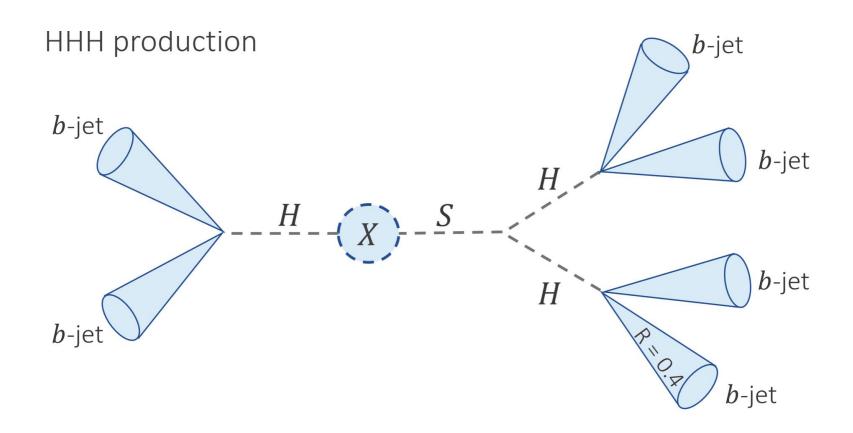
Both X and S in TRSM are in-shell

$$m_S > 2m_H(250GeV)$$
 resonant TRSM


$$m_S = 2m_H(250GeV)$$
 border TRSM

## Non-resonant HHH production

• S in TRSM is off-shell, i.e.


$$m_S < 2m_H(250GeV)$$

non-resonant TRSM



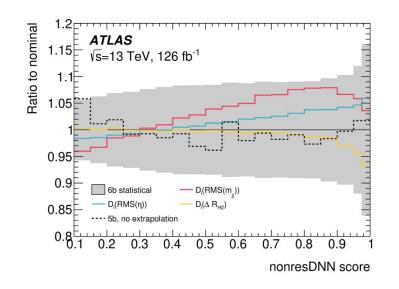
# **Object definition**

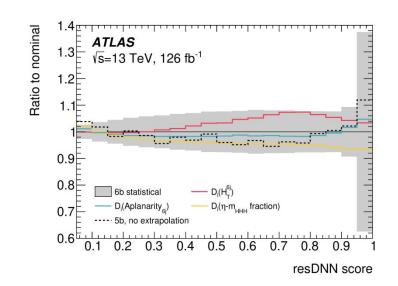
- PFlow jets, pT> 20 GeV,  $\eta$ < 2.5
- B-tagged by DL1d 77% working point
- *µ*-in-jet correction for semi-leptonic b-hadron decay

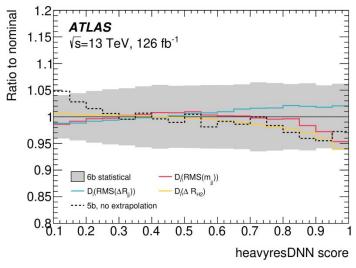


# **DNN** input

TABLE I. Summary of the input variables used in each DNN. Check marks denote which input is used for each DNN.


| Variable                            | Definition                                                                                                                                                                                                                              | Nonres   | Res | Heavyres |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----------|
| $m_H$ -radius                       | Distance between the event $(m_{H1}, m_{H2}, m_{H3})$ vector and expected vector for signal events, $(120, 115, 110)$ GeV.                                                                                                              | 1        |     | 1        |
| $m_{H1}$                            | Reconstructed mass of the highest $p_T$ Higgs boson candidate.                                                                                                                                                                          | /        |     | 1        |
| $RMS(m_{ii})$                       | Root-mean-squared (RMS) of the invariant mass of all 15 possible jet pairs.                                                                                                                                                             | 1        |     | 1        |
| $RMS(\Delta R_{ii})$                | RMS of the angular separation between all 15 possible jet pairs.                                                                                                                                                                        | 1        | 1   | ✓        |
| $RMS(\eta)$                         | RMS of the pseudorapidity of the Higgs boson candidates.                                                                                                                                                                                | 1        |     | ✓        |
| Skewness $\Delta A_{ii}$            | Skewness of $\cosh(\Delta \eta_{ik}) - \cos(\Delta \phi_{ik})$ , where i, k are all 15 possible jet pairs.                                                                                                                              |          | 1   |          |
| $H_T^{6\mathrm{j}}$                 | Scalar sum of the $p_{\rm T}$ of the 6 jets selected to reconstruct the 3 Higgs boson candidates.                                                                                                                                       |          | 1   |          |
| $\cos \theta$                       | In the $(m_{H1}, m_{H2}, m_{H3})$ coordinate system, $\theta$ is the angle between the vector from the origin to the event's reconstructed mass of the Higgs boson candidates, and the vector from the origin to $(120, 115, 110)$ GeV. |          | 1   |          |
| Aplanarity <sub>6j</sub>            | The fraction of $p_T$ from the 6 jets selected lying outside the plane formed by the 2 highest $p_T$ jets [58].                                                                                                                         | 1        | 1   | ✓        |
| Sphericity <sub>6j</sub>            | Isotropy of the momenta of the 6 jets selected to reconstruct the 3 Higgs boson candidates [58].                                                                                                                                        |          | ✓   |          |
| Transverse Sphericity <sub>6j</sub> | Isotropy of the $p_T$ of the 6 jets used for Higgs reconstruction, within the $x - y$ plane [58].                                                                                                                                       | 1        |     |          |
| Sphericity                          | Isotropy of the momenta of all jets in the event [58].                                                                                                                                                                                  |          |     | ✓        |
| $\eta - m_{HHH}$ fraction           | $\frac{\sum_{i,k} 2p_{\mathrm{T}}^{i} * p_{\mathrm{T}}^{k} * (\cosh(\Delta \eta(ik)) - 1)}{m_{HHH}^{2}}, \text{ where } i, k \text{ are all 15 possible jet pairs, and } m_{HHH} \text{ is}$                                            |          | 1   |          |
| A.D.                                | the reconstructed tri-Higgs invariant mass.                                                                                                                                                                                             | ,        | ,   | ,        |
| $\Delta R_{H1}$                     | Angular separation between the jets paired to form the highest $p_T$ Higgs boson candidate.                                                                                                                                             | <b>V</b> | •   | <b>V</b> |
| $\Delta R_{H2}$                     | Angular separation between the jets paired to form the second-highest $p_T$ Higgs boson candidate.                                                                                                                                      | 1        | 1   | ✓        |
| $\Delta R_{H3}$                     | Angular separation between the jets paired to form the lowest $p_T$ Higgs boson candidate.                                                                                                                                              | 1        | 1   | 1        |


## **Background estimation**


 The non-closure in the extrapolation method in low-score region is used to estimate the systematic uncertainty.

$$D(\nu) = \frac{\left(N^{6b}/N^{5b}\right)_{(\nu)}}{N^{6b}/N^{5b}} \div \frac{\left(N^{5b}/N^{4b}\right)_{(\nu)}}{N^{5b}/N^{4b}} \qquad \nu: \text{DNN input variables}$$

- 3 Kinematic shape variations employed for each interpretation.
- The shape variations are always smaller than the statistical uncertainty.





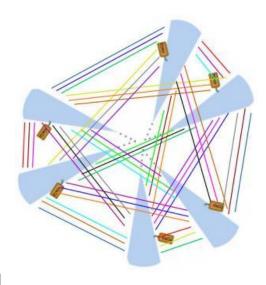


# Jet pairing

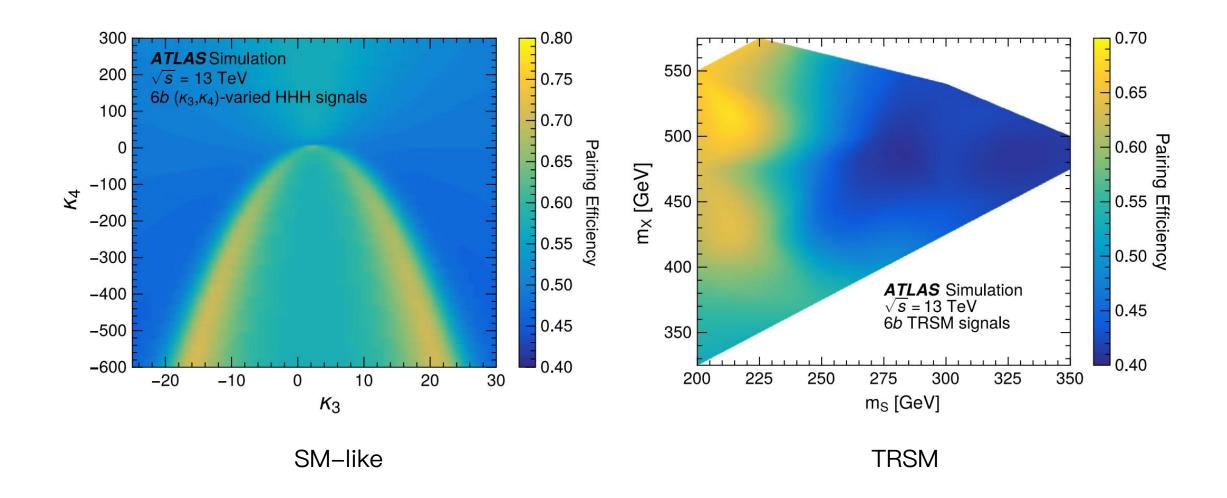
- Reconstruct high-level kinematic variables that are effective at signal/background discrimination
- Three Higgs boson candidates:
  6 jets are selected & paired. 15 ways to pair them
- Pairing algorithm:

minimizing 
$$|m_{H1} - 120GeV| + |m_{H2} - 115GeV| + |m_{H3} - 110GeV|$$

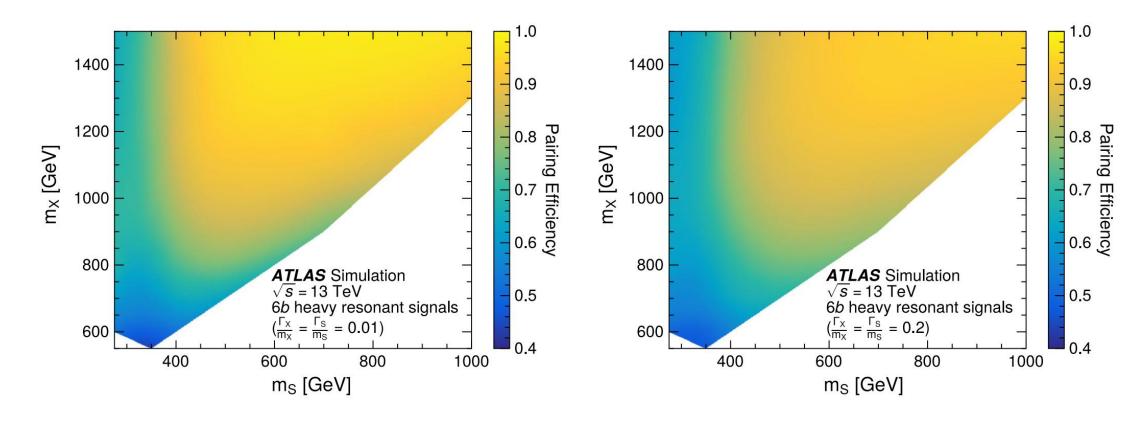



- SM-like ~ 60%
- Resonant TRSM ~ 50%
- Heavy resonant ~ 80%

For 6b events:




For 5b (4b) events:






# Jet pairing efficiency



# Jet pairing efficiency



narrow heavy resonant

wide heavy resonant