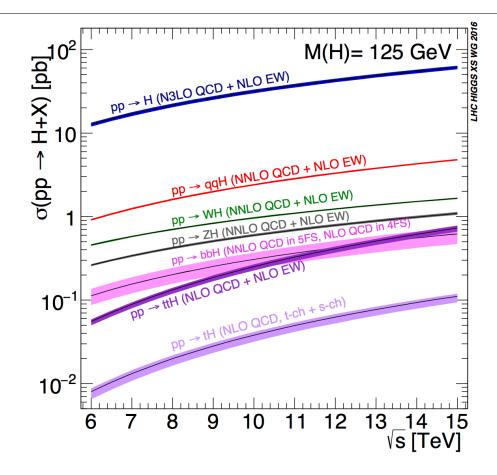
Study of the Higgs boson CP properties in vector-boson fusion production and ditau final state with the ATLAS detector

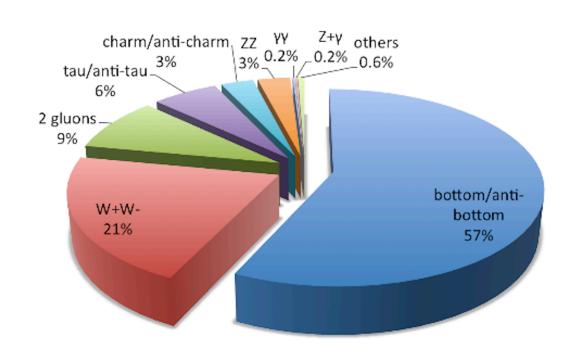
JHEP10(2025)092

Antonio De Maria

CLHCP 2025 Conference

Introduction


- Baryons asymmetry observed in the universe
- Sakharov condition: Charge-Parity (CP) symmetry has to be violated to have different reaction rates for baryons and anti-baryons


$$\Gamma(N \xrightarrow{\mathcal{L}(\Delta n_{\mathrm{Bar}} \neq 0)} f) \neq \Gamma(\bar{N} \xrightarrow{\mathcal{L}(\Delta n_{\mathrm{Bar}} \neq 0)} \bar{f})$$

- In the Standard Model (SM), CP violation is encoded in the CKM (PMNS) matrix for quarks (leptons)
 - Source of CP violation only appears in the charged current couplings
 - Effect too small to generate the observed matter-antimatter asymmetry
- Higgs boson predicted to be a scalar ($J^{CP} = 0^{++}$) in SM with no CP-violating interactions:
 - The measurement of a CP-odd contribution in the Higgs boson couplings would be a sign of physics beyond the SM (BSM)

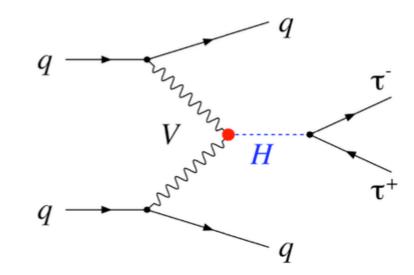
Higgs production mode and decays

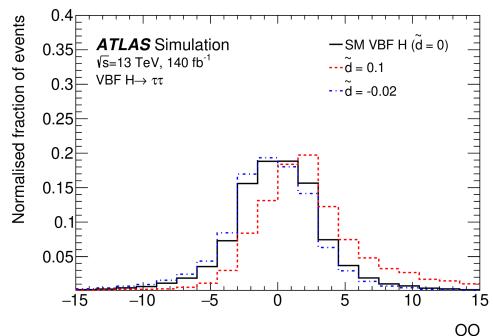
- Higgs boson production mostly through gluon-gluon fusion (ggF) and vector-boson fusion (VBF)
- For the Higgs boson decay, largest branching ratio is for $H \to bb$ and $H \to WW$. Among the decays, $H \to \tau\tau$ has good branching ratio and relatively high signal/background, so it's suited for studying the CP of the Higgs boson

Study of the Higgs CP in VBF and $H \to \tau \tau$ final state

- Search for possible CP violating effects in HVV vertex for VBF production mode
- EFT Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + rac{f_{ ilde{B}B}}{\Lambda^2} H^\dagger B_{\mu
u}^{\hat{\hat{\imath}}} B_{\mu
u}^{\hat{\imath}} H + rac{f_{ ilde{W}W}}{\Lambda^2} H^\dagger W_{\mu
u}^{\hat{\imath}} W_{\mu
u} H$$

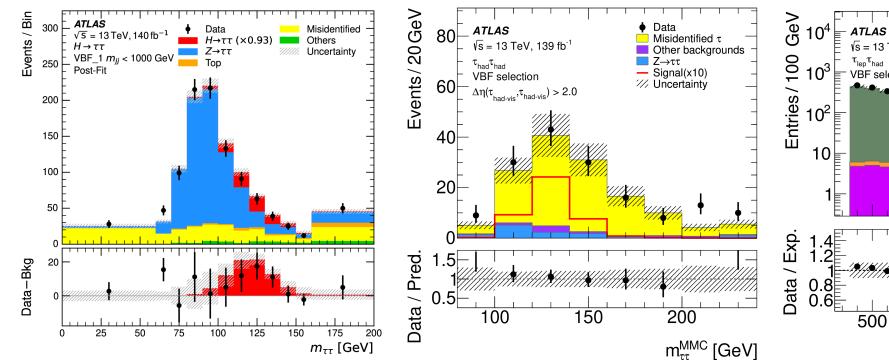

• Simplify using only one CP-violating parameter:

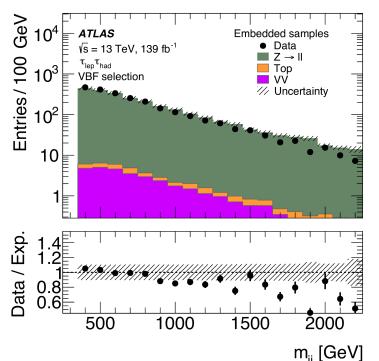

$$ilde{d} = -rac{m_W^2}{\Lambda^2} f_{ ilde{W}W} = -rac{m_W^2}{\Lambda^2} an^2 (heta_W) f_{ ilde{B}B}$$

• Use Optimal Observable to measure \tilde{d} :

$$OO = \frac{Re(M_{SM}^* M_{CP-Odd})}{|M_{SM}^2|}$$

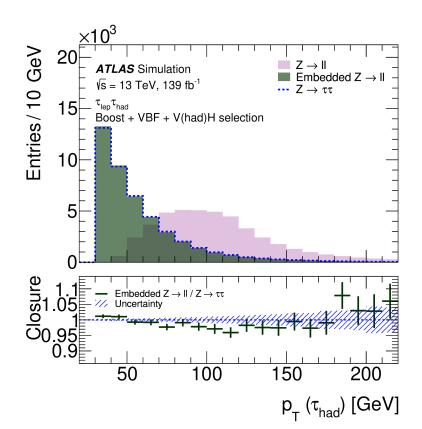
• Full phase space information in 1-dim. observable for small \tilde{d} . $< OO > \neq 0 \rightarrow$ CP violation neglecting rescattering effects by new light particles in loops

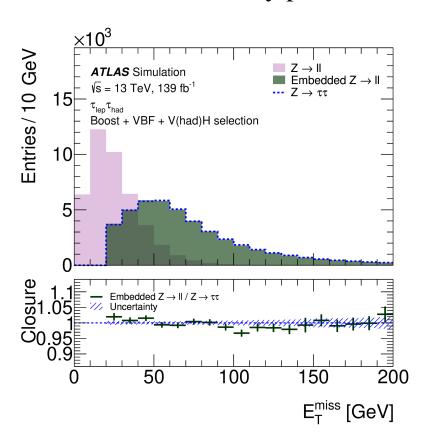




Background estimation

- Analysis considers all ditau final states, $\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$
- Mostly based on simulation except for misidentified τ , which is estimated using data-driven method
- $Z \rightarrow \tau \tau$ is the largest and irreducible background; validated and normalised through the kinematic embedding procedure
- Mis. τ estimated using the Matrix Method ($\tau_{lep}\tau_{lep}$) and the Fake Factor method ($\tau_{lep}\tau_{had}/\tau_{had}\tau_{had}$)





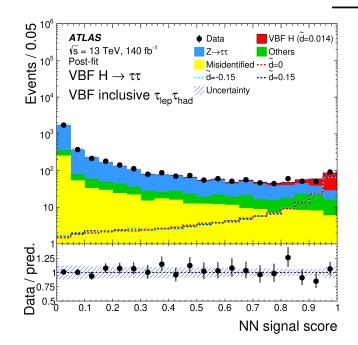
Kinematic Embedding (JHEP 08 (2022) 175)

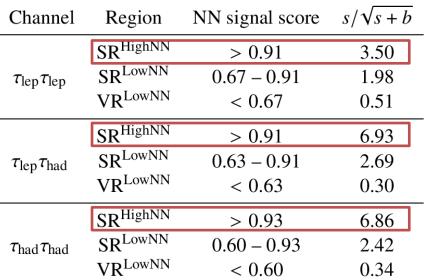
- Select $Z \rightarrow ll$ events in control regions defined to be orthogonal to the signal regions
- Unfold $Z \rightarrow ll$ events taking into account the lepton reconstruction/identification efficiencies
- Mimic $Z \to \tau\tau$ events through kinematics parameterisation of the τ decay products

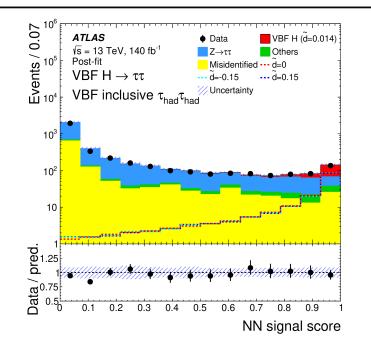
MVA analysis strategy

NANTE DESCRIPTION

- Neural Networks implemented in Keras using TensorFlow, with separate network across different channels
- Each channels uses a different set of input observables, taking into account the peculiar jets back-to-back topology for VBF; most important features are the reconstructed masses and the p_T of the ditau, E_{miss}^T and jets system
- Binary classifier for $\tau_{lep}\tau_{had}/\tau_{had}\tau_{had}$ while multi-classifier for $\tau_{lep}\tau_{lep}$ due to different relevant background composition
- The Networks are trained assuming SM predictions, then tested with different CP-violating hypotheses and no bias found

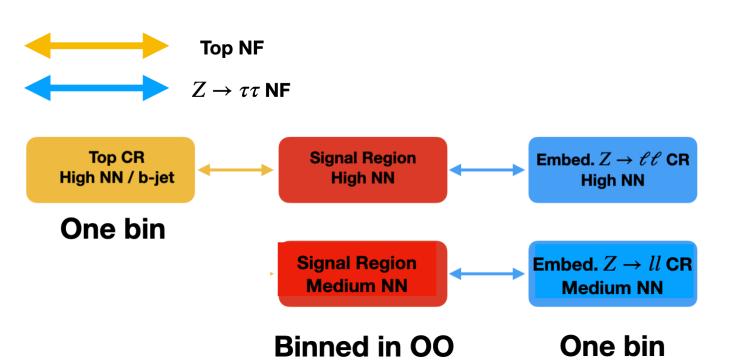

			NO UNITED		
	Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$	
	$\eta(\tau_1), \eta(\tau_2)$		•		
au-lepton properties	$p_{\mathrm{T}}(au_1), p_{\mathrm{T}}(au_2)$		•		
	$\phi(\tau_1),\phi(\tau_2)$		•		
	$E(au_1), E(au_2)$		•		
	$C_{jj}(au_1)$	•	•	•	
	$C_{jj}(au_2)$	•	•	•	
	$m_{ au au}^{ ext{MMC}}$	•	•	•	
	$m_{ au au}^{ m vis}$	•	•	•	
Mass	m_{jj}	•	•	•	
Mass	$m_{\mathrm{T}}(au_{1},E_{\mathrm{T}}^{\mathrm{miss}})$	•	•	•	
	$m_{\mathrm{T}}(au_2, E_{\mathrm{T}}^{\mathrm{miss}})$	•	•	•	
	$m\left(au_{1}, au_{2},j_{1} ight)$	•	•	•	
	$\eta^{j_1} imes \eta^{j_2}$	•	•	•	
	$\Delta R_{ au_1 au_2}$	•	•	•	
A 1 1°	$\Delta\eta_{ au_1 au_2}$	•	•	•	
Angular distances	$\Delta\phi_{ au_1 au_2}$	•	•	•	
	$\Delta\eta_{jj}^{-2}$	•	•	•	
	$\Delta\phi_{H,j_1}$	•	•	•	
	$p_{\mathrm{T}}(au_{1}, au_{2},j_{1},j_{2})$		•		
	$p_{\mathrm{T}}\left(j_{1},j_{2} ight)$	•	•	•	
	$p_{\mathrm{T}}(au_1, au_2,j_1,j_2,E_{\mathrm{T}}^{\mathrm{miss}})$	•	•	•	
	$p_{\mathrm{T}}(j_2), p_{\mathrm{T}}(j_3)$	•		•	
	$\eta(j_1), \eta(j_2)$		•		
	$\phi(j_1),\phi(j_2)$		•		
	$E(j_1), E(j_2)$		•		
Jet properties	$p_{\mathrm{T}}(\tau_1) + p_{\mathrm{T}}(\tau_2)$	•		•	
jet properties	$p_{\mathrm{T}}(au_1, au_2)$	•	•	•	
	$p_{ m T}(au_1, au_2,E_{ m T}^{ m miss})$	•	•	•	
	$p_{\mathrm{T}}(au_1, au_2,j_1,\dot{E}_{\mathrm{T}}^{\mathrm{miss}})$	•	•	•	
	$p_{\mathrm{T}}(au_1)/p_{\mathrm{T}}(au_2)$	•		•	
	$\Delta p_{\rm T}(\tau_1, \tau_2)/(p_{\rm T}(\tau_1) + p_{\rm T}(\tau_2))$	•		•	
	$E_{ m T}^{ m miss} \ E_{ m T}^{ m miss} \phi \ E_{ m T}^{ m miss}/p_{ m T}(au_1)$		•		
	$E_{ m T}^{ m niss}\phi$		•		
	$E_{ m T}^{ m miss}/p_{ m T}(au_1)$	•	•	•	
Niceina tuanavanaa as	$E_{ m T}^{ m miss}/p_{ m T}(au_2)$	•	•	•	
Missing transverse energy	$E_{\rm T}^{\rm miss} - \phi$ -centrality/ $\sqrt{2}$	•	•	•	
	$E_{ m T,HPTO}^{ m miss}$	•		•	


MVA score distribution and signal region selection

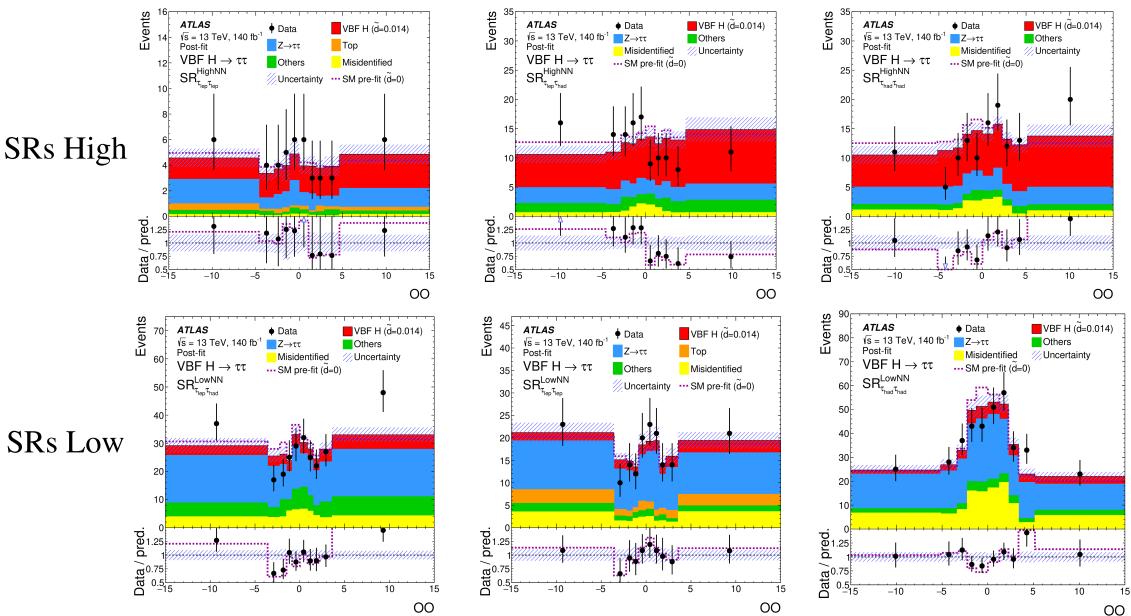


- Selection over MVA Score to classify events in SR high/Low and Validation region. Optimal value for SR high definition is chosen to give the strongest expected 68% C.L. on \tilde{d} interval
- $S/\sqrt{S+B} > 6.8$ (3.5) for $\tau_{had}\tau_{lep}/\tau_{had}\tau_{had}$ ($\tau_{lep}\tau_{lep}$) for SR high regions

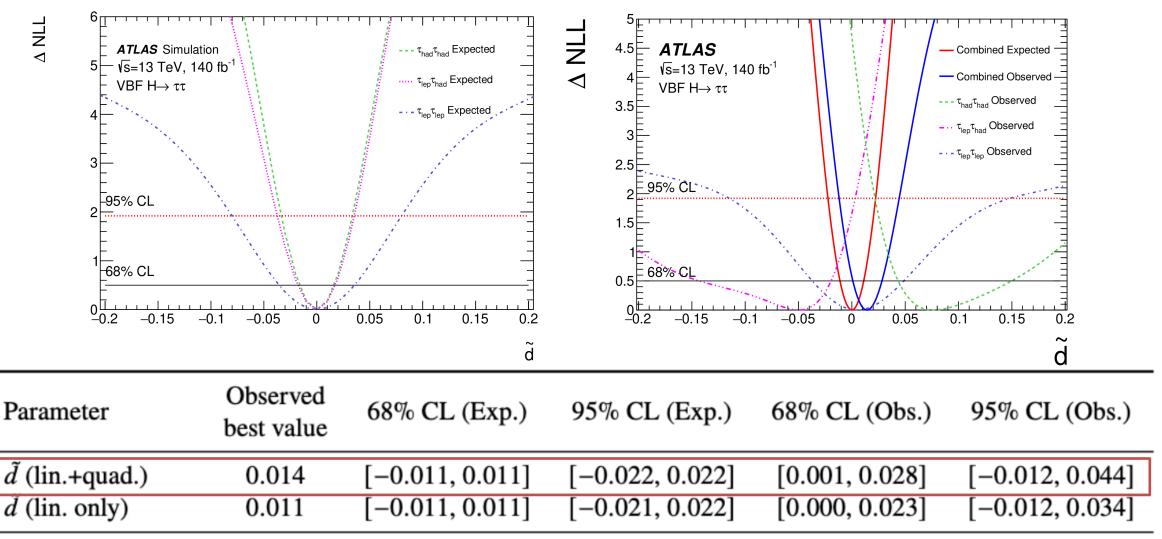
	10 ⁵ c										
Events / 0.07	10 ⁴	ATLAS √s = 13 Post-fit VBF VBF	$H \rightarrow$	ττ		ер	Z C d	eata	VBF H Top Miside d=-0.1	5	14)
	10 ²	-			pome.		200000				
ıta / pred.	1 .25 1 0.75 0.5		· · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	**************************************	++++ 4/ <i>/</i> ///	· · · · · · · · · · · · · · · · · · ·	<u></u> }////∳/	+++++ 575 + 777	1
Da	0.5	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
								NN:	signa	ıl scc	ore



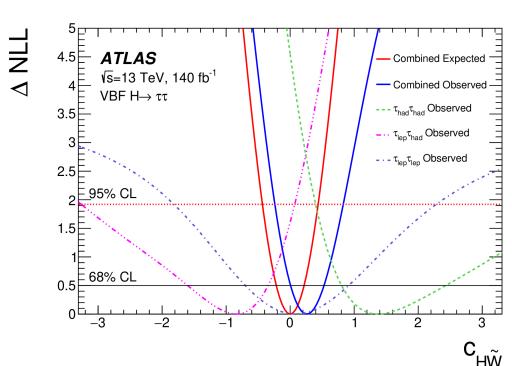
Fit model and signal extraction



- Fit includes SRs High/Low from all the channels using OO distribution as fitting variable. For each signal region, a control region is defined though embedding to constrain the $Z \to \tau\tau$ background
- Signal normalisation is added as common free floating normalisation factor, since this analysis is only interested in the OO shape changes and not to overall cross-section effects
- Results extracted by doing a negative log-likelihood scan for different hypotheses of the parameter of interest, using signal templates constructed by reweighing the SM VBF Higgs sample


Optimal Observable distributions in signal regions

Results for \tilde{d} interpretation (HISZ basis)



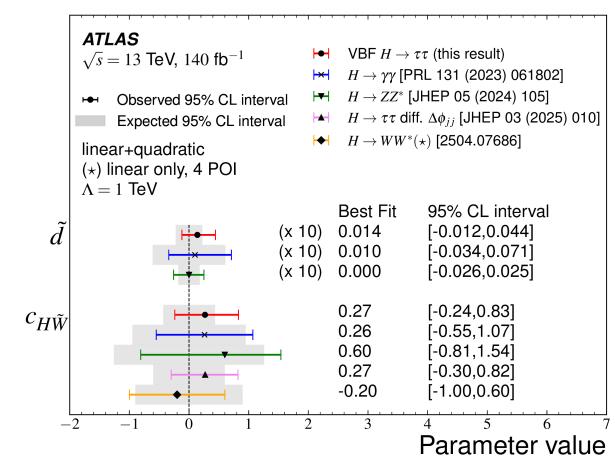
• Great improvement with respect to previous analysis using partial Run2 dataset, now being able to set constraints also at 95% C.L.

Results for Warsaw basis interpretation

- "Convert" the results from HIGZ to Warsaw basis; results for most sensitive EFT CP-odd operators for VBF production process, $c_{H\tilde{W}}$, $c_{H\tilde{B}}$ and $c_{H\tilde{W}B}$
- Both linear and linear+quadratic EFT parameterisation are tested. Small differences between the two will ensure that the EFT interpretation is correct
- Agreement between the combined fit and the singlechannel fits is 2.8σ , due to statistical fluctuations
- Very stringent results for $c_{H\tilde{W}}$

Parameter	Observed Best Value	68 % CI (Exp.)	95 % CI (Exp.)	68 % CI (Obs.)	95 % CI (Obs.)
$c_{H\tilde{W}}$ (lin.+quad.)	0.26	[-0.22, 0.22]	[-0.43, 0.44]	[0.01, 0.53]	[-0.24, 0.83]
$c_{H\tilde{W}}$ (lin. only)	0.21	[-0.21, 0.22]	[-0.41, 0.44]	[-0.02, 0.45]	[-0.23, 0.70]
$c_{H\tilde{B}}$ (lin.+quad.)	7.2	[-3.8, 3.6]	[-8.0, 7.2]	[2.0, 12.7]	[-3.8, 19.0]
$c_{H\tilde{B}}$ (lin. only)	4.0	[-3.6, 3.7]	[-7.0, 7.5]	[-0.3, 7.7]	[-4.0, 11.9]
$c_{H\tilde{W}B}$ (lin.+quad.)	4.0	[-2.1, 2.0]	[-4.4, 3.9]	[1.1, 7.0]	[-2.1, 10.4]
$c_{H\tilde{W}B}$ (lin. only)	2.0	[-2.0, 2.0]	[-3.8, 4.1]	[-0.2, 4.2]	[-2.2, 6.5]

Uncertainty breakdown on $ilde{d}$ estimation


- Impact of the main systematic uncertainties in the final \tilde{d} 68% C.L. interval
- Main limitations on the sensitivity comes from the statistical uncertainties in the actual observed data
- Among the systematic uncertainties, large impact coming from Jet/E_T^{miss} (expected because of jet selection to target VBF Higgs boson production mode). High impact also from Signal theory uncertainties, driven by Parton Shower uncertainty

Systematic source	Uncertainty [%]			
Jet/ $E_{\rm T}^{\rm miss}$ reconstruction	± 20			
Signal theory	± 15			
Background theory	± 11			
Normalisation factors	+6.0 -5.5			
Misidentified τ -leptons	± 4.8			
τ -leptons reconstruction	± 4.0			
Sample size	± 3.0			
Leptons reconstruction	± 2.4			
Luminosity	± 0.4			
Flavour tagging	± 0.3			
Embedding	± 0.2			
Total systematic uncertainty	± 30			
Total statistical uncertainty	± 95			

Comparison with other analyses

- Results in both HISZ and Warsaw basis interpretations are compared with similar measurements for other Higgs boson decays
- In both interpretations, this analysis provides among the most stringent limits on the CP odd Higgs boson hypothesis
- Results coming from orthogonal measurements and harmonised between them will lead to future combination results

Summary

- The measurement of a CP-odd contribution in the Higgs boson couplings would be a sign of physics beyond the Standard Model
- Search for possible CP violating effects in HVV vertex for VBF production mode and $H \to \tau\tau$ final state is promising due to relatively large branching ratio and signal over background
- Use Multivariate Analysis to select high purity regions and fit the Optimal Observable distribution to look for possible CP-odd Higgs component
- Results interpreted both in HISZ and Warsaw basis, imposing among the stringent limits on CP-odd operators:
 - \tilde{d} constrained to a 95% C.L. interval of [-0.012,+0.044], while the Warsaw basis parameter $c_{H\tilde{W}}$ is constrained to [-0.24, +0.83] for new physics scale $\Lambda = 1$ TeV
 - Main limitations on the sensitivity comes from the statistical uncertainties in the actual observed data

Thanks a lot for your attention