

Measurements of W^+W^- production cross-sections in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector: first measurement of the boost asymmetry

Zihan Zhao

University of Science and Technology of China

CLHCP | 1st Nov 2025

Significance of proton structure at high-energy scale

High-energy scale: negligible interactions between partons

$$\rightarrow$$
 (proton + X) = \sum (parton_i + X_i)

- Pure physics of the structure of the proton
 - Flavor asymmetry: \bar{u} , \bar{d} , $s(\bar{s})$
 - Intrinsic heavy quark?
- A global test for QCD
 - perturbative QCD calculation, α_s determination \cdots
- Initial state description for hadron experiments
 - PDF: leading systematic in many important topics:

$$sin\theta_W^{eff}$$
, m_W , Higgs differential, Z' , W' ...

Significance of proton structure at high-energy scale

- Initial state description for hadron experiments
 - PDF: leading systematic in many important topics:

$$sin\theta_W^{eff}$$
, m_W , Higgs differential, Z' , W' ...

$$sin\theta_W^{eff}$$
, CMS (2025): $sin^2\theta_{eff}^\ell = 0.23152 \pm 0.00010$ (stat) ± 0.00015 (exp) ± 0.00008 (theo) ± 0.00027 (PDF)

m_W , CMS (2024):

Source of uncertainty	Impact (MeV
	in $m_{ m W}$
Muon momentum scale	4.8
Muon reco. efficiency	3.0
W and Z angular coeffs.	3.3
Higher-order EW	2.0
$p_{\mathrm{T}}^{\mathrm{V}}$ modeling	2.0
PDF	4.4
Nonprompt-muon backg	rοι 3.2
Integrated luminosity	0.1
MC sample size	1.5
Data sample size	2.4
Total uncertainty	9.9

Z', CMS (2021):

	Impact on background [%]			
Uncertainty source	$m_{\ell\ell}$:	$> 1 \mathrm{TeV}$	$m_{\ell\ell} >$	· 3 TeV
	ee	μμ	ee	μμ
Lepton selection efficiency	6.8	0.8	6.4	1.3
Muon trigger efficiency	_	0.9	_	0.9
Mass scale	7.0	2.7	15.4	2.4
Dimuon mass resolution		0.1		0.6
Pileup reweighting	0.3	_	0.5	
Trigger prefiring	0.5		0.2	
PDF	3.7	3.0	9.4	10.2
Cross section for other simulated backgrounds	0.6	0.8	0.2	0.4
Z peak normalization	2.3	5.0	2.0	5.0
Simulated sample size	0.4	0.4	1.3	1.6

Proton structure study and PDF global analysis

Non-perturbative parameterization at low Q:

$$u(x), \overline{u}(x), d(x), \overline{d}(x), s(x), \overline{s}(x), g(x)$$

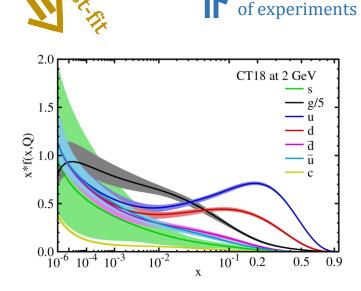
e.g.
$$f_i(x,Q_0) = a_0 x^{a_1-1} (1-x)^{a_2} P_i(y;a_3,a_4,...)$$

Better experimental measurements

Better QCD global fit

Better proton structure study

• Experimental measurements: fit for the non-perturbative part

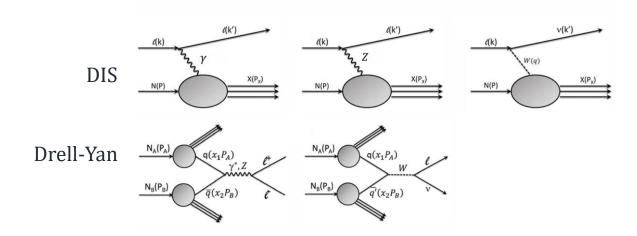

- Perturbative QCD calculation: Evolution to high Q $c(x), \bar{c}(x), b(x), \bar{b}(x) \dots$
- Other assumptions:

$$\int u - \overline{u} = 2, \int d - \overline{d} = 1, \int q_{s,c,b} - \overline{q}_{s,c,b} = 0$$

SM assumptions

$$\overline{u} = \overline{d}$$
 at $x \to 0$

...


not a direct reflection

Better experimental measurements

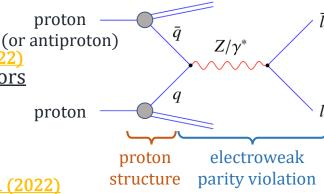
Previous experiments for high-energy scale proton structure:

cross-section measurements (DIS, Drell-Yan...)

parton density mix

New measurements:

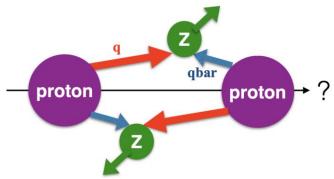
asymmetries due to electroweak interaction \rightarrow different quark densities individually (non-flavor: without big fragmentation uncertainty)

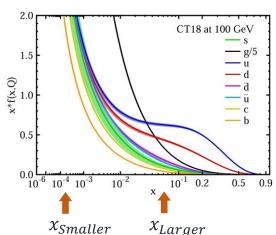

parton density difference

lower the mixing → closer to individual determination of each parton

Parton density differences

The first parton density difference : Phys. Rev. D 106, 033001 (2022)

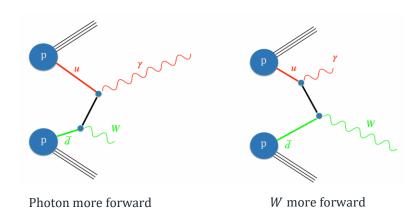

- provide parton density difference between <u>different flavors</u>
- in single boson processes


The second parton density difference : Phys. Rev. D 106, L051301 (2022)

- provide parton density difference between <u>different x regions</u>
- in diboson processes

Bjorken variable x: the fraction of the parton momentum to the energy of the proton, $x = \frac{\sqrt{Q_T^2 + M^2}}{\sqrt{s}} \cdot e^{\pm i x}$

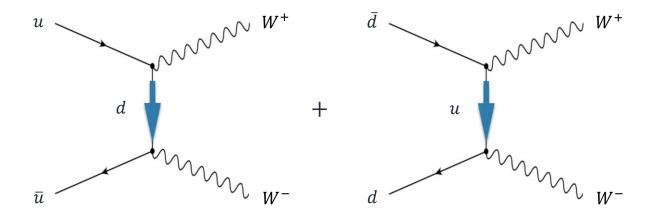
hadron collider: high energy \rightarrow large x region mixing $(q_i(x_L)\bar{q}_i(x_S) + \bar{q}_i(x_L)q_i(x_S))$


independent information at x_S and x_L in experiment

provide distinct large and small x region quark information

Diboson productions and boost asymmetry

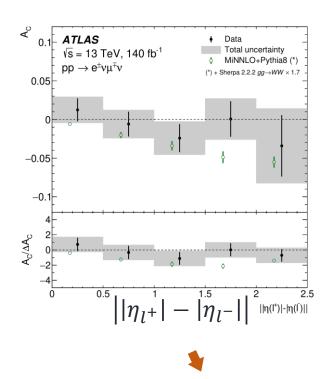
- $W\gamma$, WZ, and W^+W^-
- dominant subprocess: u-channel and t-channel
 comparison of the two bosons' kinematics → comparison of the two quarks' energies
- The boost asymmetry in VV' event can be defined as:

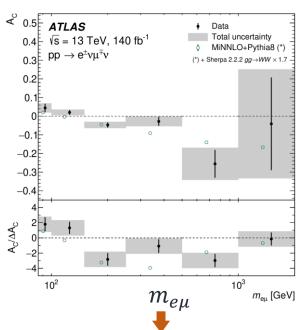

$$A_{\text{boost}}^{VV'} = \frac{N(|Y_V| > |Y_{V'}|) - N(|Y_V| < |Y_{V'}|)}{N(|Y_V| > |Y_{V'}|) + N(|Y_V| < |Y_{V'}|)}$$

Boost Asymmetry in W^+W^- process

• The boost asymmetry in W^+W^- event can be defined as :

$$A_{Boost}^{WW} = \frac{N(|\eta_{\ell^+}| > |\eta_{\ell^-}|) - N(|\eta_{\ell^+}| < |\eta_{\ell^-}|)}{N(|\eta_{\ell^+}| > |\eta_{\ell^-}|) + N(|\eta_{\ell^+}| < |\eta_{\ell^-}|)}$$


• A_{boost}^{WW} represents to the difference between :


	$ {m \eta}_{l^+} > {m \eta}_{l^-} $	$ oldsymbol{\eta}_{l^+} < oldsymbol{\eta}_{l^-} $	
W^+W^-	$u(x_L)\bar{u}(x_S) + \bar{d}(x_L)d(x_S)$	$\bar{u}(x_L)u(x_S) + d(x_L)\bar{d}(x_S)$	

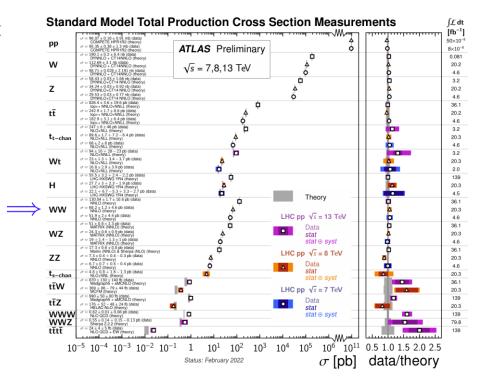
• The boost asymmetry in W^+W^- process :

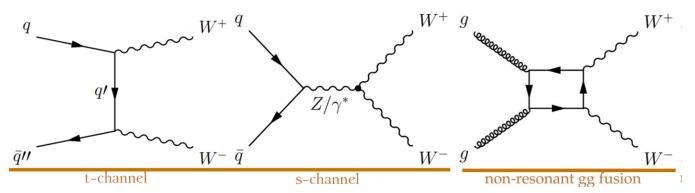
$$A_{\rm C} = -0.004 \pm 0.008 \text{ (stat.)} \pm 0.006 \text{ (syst.)}$$

NNPDF3.0NNLO prediction = -0.023 ± 0.003

 $e\mu$ opening angle & $e\mu$ energy

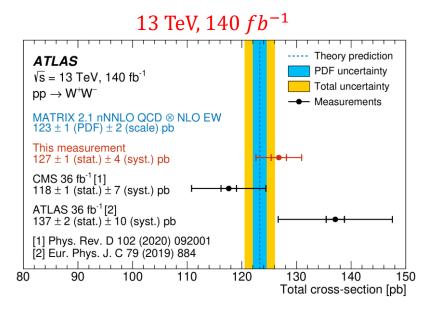
Difference between x_q and $x_{\bar{q}}$ in the initial state


Event selection in signal regions


• The number of events is reduced by rejecting background :

		Requirement	Criteria		
		$p_{ m T}$	$> 27\mathrm{GeV}$		
		$ \eta $	$\in [0, 1.37) \cup (1.52, 2.47)$		
	Electron	Identification	TightLH working point	W^+W	$V^- o e^\pm v\mu^\mp v$
		Isolation	Gradient		
		Impact parameters	$ d_0/\sigma_{d_0} < 5; z_0 \cdot \sin \theta $	$< 0.5\mathrm{mm}$	
		$p_{ m T}$	$> 27 \mathrm{GeV}$		
		$ \eta $	< 2.5		
	Muon	Identification	Medium working point		
		Isolation	${\tt Tight_FixedRad}$		
		Impact parameters	$ d_0/\sigma_{d_0} < 3; z_0 \cdot \sin \theta $	$< 0.5\mathrm{mm}$	
		$p_{ m T}$	$> 20\mathrm{GeV}$		
	b-jets	$ \eta $	< 2.5		
	<i>0</i> -jets	Pile-up suppression	jet-vertex tagger [91] fo	or $p_{\mathrm{T}} < 60\mathrm{GeV}$ and $ \eta < 2.4$	
		b-tagging	DL1r, 85% efficiency we	orking point	
		$p_{ m T}$	$> 30 \mathrm{GeV}$		
Detection (7 and of	Jets	$ \eta $	< 4.5		
Rejecting $t\bar{t}$ producti	on	Pile-up suppression	jet-vertex tagger [91] fo	or $p_{\mathrm{T}} < 60\mathrm{GeV}$ and $ \eta < 2.4$	
(the largest backgrou	nd)		1 electron and 1 muon	of opposite electric charge;	
(the largest baengrou	1101)	Leptons	no additional lepton wi	th $p_{\rm T} > 10 {\rm GeV}$, Loose isolation,	
	Event		and LooseLH (electron)	/ Loose (muon) identification	
		Number of b -jets	0	Pojecting Droll	-Yan production
		$m_{e\mu}$	$> 85\mathrm{GeV}$	Nejecting Dien	ran production

(the second largest background)


- W⁺W⁻ production is a key process to test self-couplings predicted by the EW sector of the SM
 - Stringent tests of physics BSM
 - Sensitive to new physics via aTGCs
- Interesting test for QCD corrections
 - Important to verify and tune the simulation tools used to describe EW processes produced in association with jets
- Important background in other SM and BSM measurements (e.g. $H \rightarrow WW$)

- Tevatron:
 - [CDF 1.8 TeV][CDF 1.96 TeV][D0 1.96 TeV]
- LHC:
 - ATLAS: $[7 \text{ TeV}][8 \text{ TeV } (0\text{-jet})][13 \text{ TeV, } 3 fb^{-1}][13 \text{ TeV, } 36 fb^{-1}][13 \text{ TeV } (\ge 1\text{-jet}), 139 fb^{-1}]$
 - CMS: [5 TeV][7 TeV][8 TeV][13 TeV, 35.9 fb⁻¹] [13.6 TeV, 34.8 fb⁻¹]
- Most precise W⁺W⁻ cross section measurement in hadron-hadron collisions:

$$\sigma_{\rm total} = 127 \pm 1 \; ({\rm stat.}) \pm 4 \; ({\rm syst.}) \pm 1 \; ({\rm lumin.}) \, {\rm pb}$$

Data-driven backgrounds

Top background: *b*-tag counting

- Determine both number of $t\bar{t}$ events and probability ε_b of finding b-jets from event yields in one and two b-tag CRs
- Estimate yields in each bin of 0-*b*-jet region by extrapolation

$$\begin{cases}
N_{2b}^{t\bar{t}} = N^{t\bar{t}} \cdot C_b \varepsilon_b^2, \\
N_{1b}^{t\bar{t}} = N^{t\bar{t}} \cdot 2\varepsilon_b (1 - C_b \varepsilon_b), \\
N_{0b}^{t\bar{t}} = N^{t\bar{t}} \cdot \left(1 - 2\varepsilon_b + C_b \varepsilon_b^2\right)
\end{cases}$$

$$N_{0b}^{t\bar{t}} = \frac{C_b}{4} \frac{\left(N_{1b}^{t\bar{t}} + 2N_{2b}^{t\bar{t}}\right)^2}{N_{2b}^{t\bar{t}}} - N_{1b}^{t\bar{t}} - N_{2b}^{t\bar{t}}$$

- Corrections C_b from MC are needed
 - Correlations between finding 1st and 2nd jet
 - Modelling uncertainties evaluated on C_b

$$C_b = \frac{4 \cdot N_{\text{MC}}^{t\bar{t}} N_{2b,\text{MC}}^{t\bar{t}}}{\left(N_{1b,\text{MC}}^{t\bar{t}} + 2 \cdot N_{2b,\text{MC}}^{t\bar{t}}\right)^2}$$

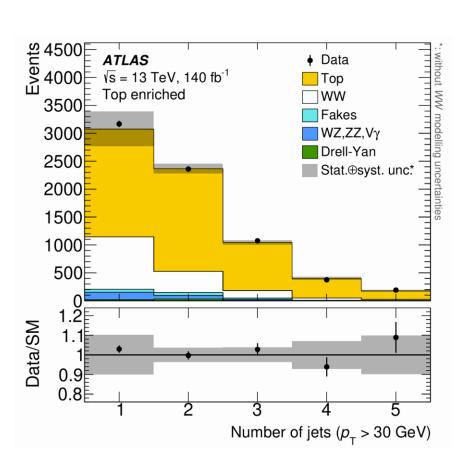
Fake lepton background: fake factor

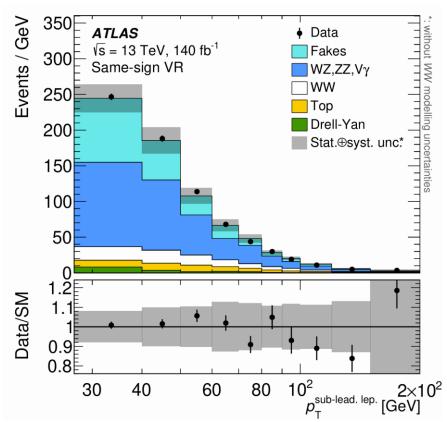
- Prompt leptons are well-modeled in MC.
- loose
 ≡ Loose selection but rejecting Tight
- Fake factor for electrons and muons separately, and computed from Dijet CR from data in bins of $(p_T^l, |\eta^l|)$:

$$f = \frac{N_{\text{tight}}^{\text{fake}}}{N_{\text{loose}}^{\text{fake}}}$$
$$= \frac{N_{\text{tight}}^{\text{Data}} - N_{\text{loose}}^{\text{prompt MC}}}{N_{\text{loose}}^{\text{Data}} - N_{\text{loose}}^{\text{prompt MC}}}$$

$\begin{array}{c} \text{GRL} \\ \text{Trigger} \\ \text{Trigger matching} \\ N_{\ell} = 1 \text{ and } p_T^{\ell} > 15 \text{ GeV} \\ N_{\text{jet}} > 0 \\ p_T^{\text{tag jet}} > 25(30) \text{ GeV} \\ |\eta|^{\text{tag jet}} < 2.5 \ (2.5, 4.5) \\ |\Delta \phi(l,j)| > 2.8 \\ E_T^{\text{miss,track}} + m_T < 50 \text{ GeV} \\ b\text{-jet veto} \\ \text{ID or AntiID lepton} \end{array}$

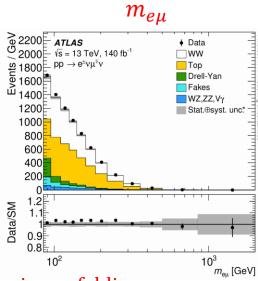
$$N_{\text{tight}}^{\text{fake}} = f_e \left(N_{\text{tight}}^{\text{Data}} - N_{\text{tight}}^{\text{prompt MC}} - N_{\text{tight}}^{\text{prompt MC}} \right)$$

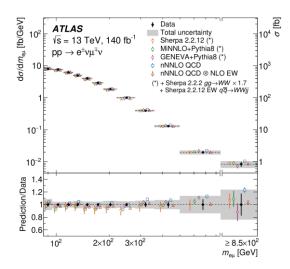

$$+ f_{\mu} \left(N_{\text{tight}}^{\text{Data}} - N_{\text{tight}}^{\text{prompt MC}} - N_{\text{tight}}^{\text{prompt MC}} \right)$$


Validation regions for Data-driven backgrounds

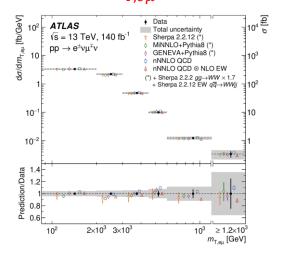
JHEP 08 (2025) 142

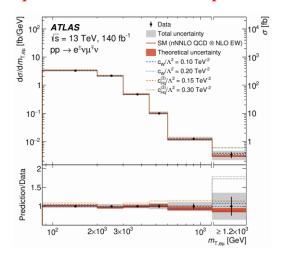
Top background: *b*-tag counting


Fake lepton background: fake factor


Cross-sections are measured differentially as a function of :

- the transverse momentum of the leading lepton, $p_{\mathrm{T}}^{\mathrm{lead.\;lep.}},$
- the transverse momentum of the sub-leading lepton, $p_{\rm T}^{\rm sub-lead. \, lep.}$,
- the transverse momentum of the dilepton system, $p_{T,e\mu}$,
- the absolute rapidity of the dilepton system, $|y_{e\mu}|$,
- the invariant mass of the lepton pair, m_{eu} ,
- the azimuthal separation of the two leptons, $\Delta \phi_{e\mu}$,
- $|\cos \theta^*| = |\tanh(\Delta \eta_{e\mu}/2)|$, which is sensitive to the spin structure of the W-boson pair [23],¹
- the magnitude $E_{\rm T}^{\rm miss}$ of the missing transverse momentum $\vec{p}_{\rm T}^{\rm miss}$, defined as the negative vectorial sum of the transverse momenta of all visible particles,
- the scalar sum of $E_{\mathrm{T}}^{\mathrm{miss}}$ and the lepton transverse momenta, $H_{\mathrm{T}}^{\mathrm{lep.+MET}}$,
- the transverse mass of the dilepton system and the missing transverse momentum,² $m_{\mathrm{T},e\mu}$,
- the scalar sum of all jet and lepton transverse momenta, $S_{\rm T}$, and
- the jet multiplicity.


Bayesian unfolding

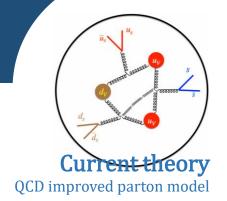


$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$$

Measured $m_{\mathrm{T},e\mu}$ differencial

Comparison with SMEFT predictions

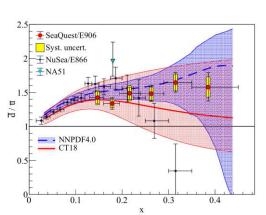
Constrain:


	$O(\Lambda^{-2})$, i	ndividual	$O(\Lambda^{-4})$,	individual	$O(\Lambda^{-4}),$	profiled
	Expected	Observed	Expected	Observed	Expected	Observed
$\overline{c_W}$	[-3.5, 3.2]	[-3.5, 3.4]	[-0.16, 0.16]	[-0.18, 0.18]	[-0.17, 0.16]	[-0.18, 0.18]
c_{HD}	[-8.9, 9.8]	[-11, 8]	[-7,21]	[-8, 21]	[-7,21]	[-8, 21]
c_{HWB}	[-8.4, 9.2]	[-10, 8]	[-1.5, 1.7]	[-1.7, 1.9]	[-1.7, 1.7]	[-1.8, 1.9]
$c_{Hq}^{(1)}$	[-2.5, 2.4]	[-2.2, 2.8]	[-0.27, 0.24]	[-0.29, 0.27]	[-0.29, 0.29]	[-0.31, 0.31]
$c_{Hq}^{(3)}$	[-0.69, 0.66]	[-0.7, 0.68]	[-0.28, 0.22]	[-0.31, 0.24]	[-0.3, 0.27]	[-0.34, 0.29]
c_{Hu}	[-3.2, 3.0]	[-3.0, 3.4]	[-0.31, 0.29]	[-0.35, 0.32]	[-0.32, 0.31]	[-0.35, 0.33]
c_{Hd}	[-11, 11]	[-11, 11]	[-0.45, 0.46]	[-0.5, 0.51]	[-0.49, 0.49]	[-0.52, 0.53]

Backup

Proton structure study at high-energy scale

A series of experiments that the current model cannot explain.



SU(2) flavor asymmetry:

 (\bar{u},\bar{d}) comparative density

Current theory: $\bar{u} = \bar{d}$

Experiment: $\overline{d} > \overline{u}$

SeaQuest: Nature 590, 561-565 (2021)

• SU(3) flavor asymmetry:

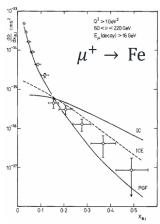
 (s, \bar{s}) vs (\bar{u}, \bar{d}) comparative density

Current theory: $s + \bar{s} = \bar{u} + \bar{d}$

Experiment: $(s + \overline{s}) \sim \frac{1}{2} (\overline{u} + \overline{d})$

$$\kappa_{s} = \frac{\int_{0}^{1} x[s(x, \mu^{2}) + \bar{s}(x, \mu^{2})]dx}{\int_{0}^{1} x[\bar{u}(x, \mu^{2}) + \bar{d}(x, \mu^{2})]dx} \sim [0.33, 0.59]$$

Experiment (year)	QCD order	κ_s
CDHS (1982)	LO	$\textbf{0.52} \pm \textbf{0.09}$
CCFR (1993)	LO	$0.373^{+0.048}_{-0.041}\pm0.018$
CCFR (1995)	NLO	$0.477^{+0.051}_{-0.050}{}^{+0.017}_{+0.036}$
CHARMII (1999)	LO	$0.388^{+0.074}_{-0.061}\pm0.067$
NOMAD (2000)	LO	$0.48^{+0.09}_{-0.07}{}^{+0.17}_{-0.12}$
NuTeV (2001) NuTeV (2007)	LO NLO	$0.38 \pm 0.08 \pm 0.043$
CHORUS (2008) NOMAD (2013)	NLO NNLO	$\begin{array}{c} 0.33 \pm 0.05 \pm 0.05 \\ 0.591 \pm 0.019 \end{array}$

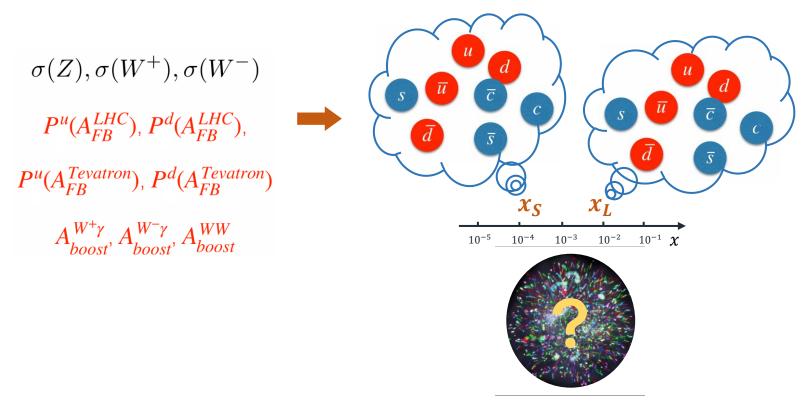

Review: Prog. Part. Nucl. Phys. 79 (2014) 95-135

Intrinsic heavy quark:

 (c, \bar{c}) vs (\bar{u}, \bar{d}) comparative density

Current: perturbative QCD dominant

Experiment: may have non-perturbative contribution



EMC: Phys. Lett. B 110 (1982) 73

What is our long-term plan?

An independent full analysis of hadron collider data aims to determine a set of specific proton structure information.

• Physics difference between old DIS data and hadron collider data

