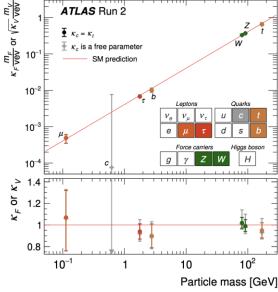
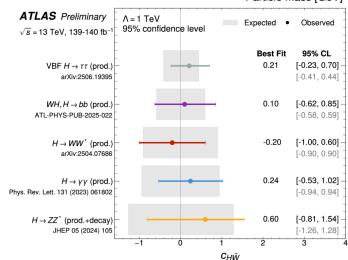

Test of CP Invariance in Higgs Boson Vector Boson Fusion Production in the $H \to \gamma\gamma$ Channel using 165 fb-1 ATLAS partial Run-3 data


Shudong Wang, IHEP CAS


The 11th CLHCP 2025 Oct 29 - Nov 02 2025, Xinxiang

Introduction

- CP violation: one of the key condition of baryon asymmetry
 - Current knowledge of CPV: CKM matrix, PMNS matrix, are insufficient
 - Must exists some unknown mechanism!
- Higgs boson discovered in 2012
 - Significant achievements on Higgs mass, width, spin, parity and couplings to gauge bosons and fermions...
 - A new field of CPV search: Higgs coupling
 - HVV CP property in SMEFT Warsaw basis: $c_{H\widetilde{W}}$ has been measured in several channels in Run2.
- In this talk:
 - Probing CP property of HVV vertex in VBF $H \rightarrow \gamma\gamma$ channel using ATLAS partial Run3 (2022-2024) data.

Theoretical Framework

- CP properties in SMEFT:
 - Consider **only dimension-6** operators: $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}$.

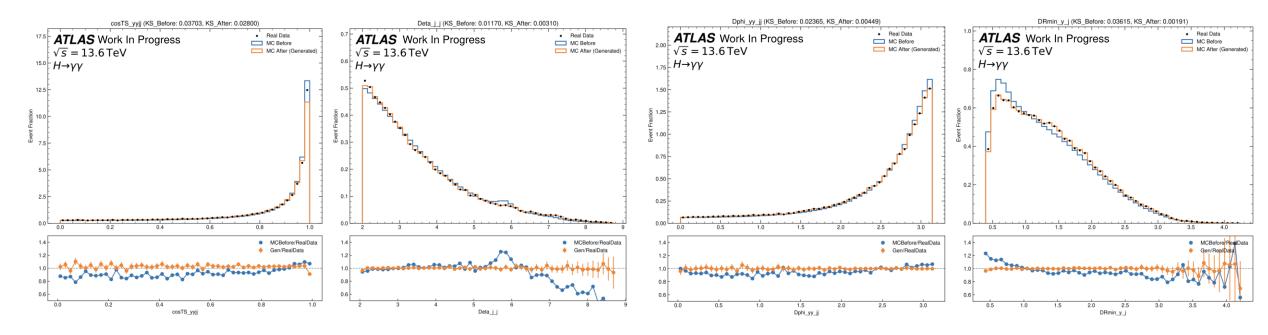
Operator	Structure	Coupling	
$O_{\Phi ilde{W}}$	$\Phi^\dagger\Phi ilde{W}^I_{\mu u}W^{\mu u I}$	$c_{H ilde{W}}$	
$O_{\Phi ilde{W}B}$	$\Phi^\dagger au^I \Phi ilde{W}^I_{\mu u} B^{\mu u}$	$c_{H\tilde{W}B}$	
$O_{\Phi ilde{B}}$	$\Phi^\dagger\Phi ilde{B}_{\mu u}B^{\mu u}$	$c_{H ilde{B}}$	

Dominant in VBF process

O(10) less sensitive but worth to probe

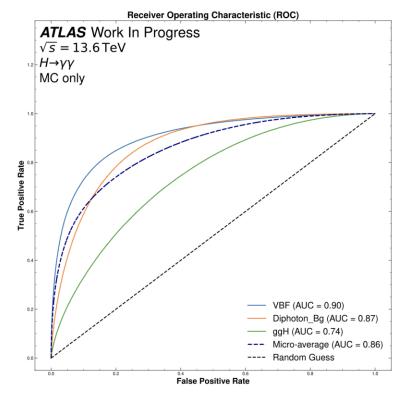
- Sensitive observable: Optimal observable (OO)
 - Defined from the matrix element ratio:

$$|\mathcal{M}_{MIX}(c)|^2 = |\mathcal{M}_{SM}|^2 + 2R(\mathcal{M}_{SM}\mathcal{M}_{BSM}^*(c)) + |\mathcal{M}_{BSM}|^2$$
$$OO(c) = \frac{2R(\mathcal{M}_{SM}\mathcal{M}_{BSM}^*(c))}{|\mathcal{M}_{SM}|^2}$$


- Has been used in several CP analyses in Run 2.
- Calculate the ME with MadGraph as ATLAS Run 2 HZZ CP analysis.

- Data and MC
 - using 2022-2024 Run3 data (165 fb⁻¹)
 - Standard ggF Higgs, $\gamma\gamma$ continuum and Dedicated SM/BSM VBF Higgs MC.
- Trigger, object definition and pre-selection
 - Common criteria used in ATLAS $H o \gamma \gamma$ analysis
 - Single photon and di-photon triggers
 - Common $H \rightarrow \gamma \gamma$ selections + VBF cuts

Event-level selection requirements				
Number of selected photons	$N_{\gamma} \geq 2$			
Number of selected jets	$N_j \ge 2$			
Invariant di-photon mass	$105\text{GeV} < m_{\gamma\gamma} \le 160\text{GeV}$			
Transverse momentum of the leading photon	n_ /m > 0.25			
relative to the invariant di-photon mass	$p_{\mathrm{T},\gamma_1}/m_{\gamma\gamma} > 0.35$			
Transverse momentum of the subleading photon	n /m > 0.25			
relative to the invariant di-photon mass	$p_{\mathrm{T},\gamma_2}/m_{\gamma\gamma} > 0.25$			
Pseudorapidity gap between the two leading jets	$\Delta \eta_{jj} > 2.0$			
Zeppenfeld observable	$ \eta^{\mathrm{Zepp}} < 5.0$			


- Discriminate VBF events from ggF and non-resonant background.
 - Using a 3-class DNN
 - Input features: 16 features pruned from 25 investigated features.
- Input feature modeling in continuum $\gamma\gamma$ background
 - The sherpa MC + data-driven γ -j cannot perfectly describe the sideband data.
 - Use **flow-matching model** to generate the feature distributions from sideband data to avoid performing training on mis-modelled inputs.

- Model training: DNN trained with PyTorch
 - 2-fold training to avoid bias from overfitting.

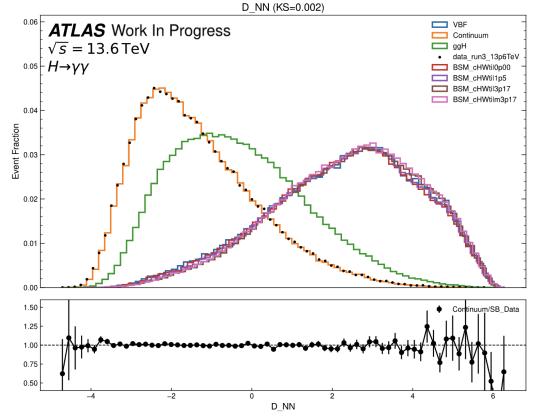
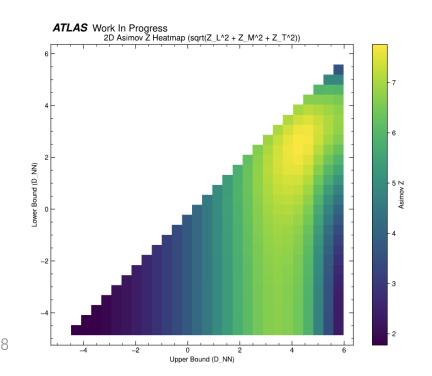
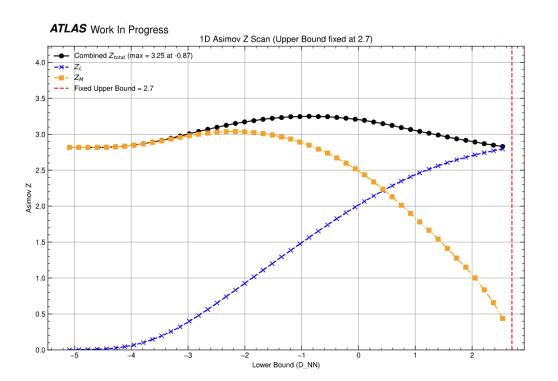

Layer #	Layer Type	Input Dim	Output Dim	Activation	Normalization	Dropout
1	Linear (Input)	16	128	ReLU	LayerNorm	No
2	Linear	128	64	ReLU	LayerNorm	Yes (0.1)
3	Linear	64	32	ReLU	LayerNorm	Yes (0.1)
4	Linear (Output)	32	3			No

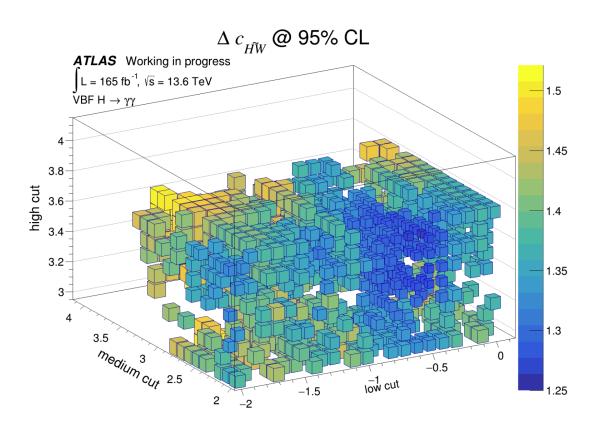
Table 7.4: Model Architecture with $in_len = 16$, $num_classes = 3$, and $dropout_rate = 0.1$

- Event categorization: for high VBF significance
 - The NN output provides the probability score for each class.
 - Define a discriminator:


$$D_{\text{NN}} = \ln \frac{P_{VBF}}{f_{ggH} \cdot P_{ggH} + f_{continum} \cdot P_{continuum}}, f_{ggH} = \frac{N_{ggH}}{N_{ggH} + N_{continuum}}, f_{continuum} = 1 - f_{ggH}$$

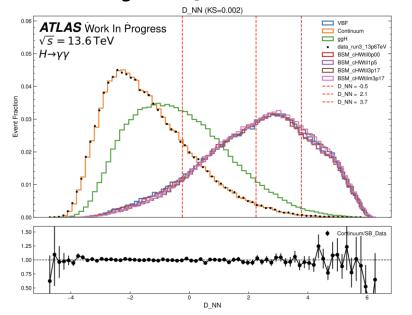


- Event categorization Maximize VBF significance
 - First, split events into 3 categories with D_{NN} : **Tight, Medium, Loose** by a **2D significance scan**.


•
$$Z = \sqrt{2[(s+b) \cdot \ln(1+\frac{s}{b}) - s]}, Z^{combined} = \sqrt{(Z^L)^2 + (Z^M)^2 + (Z^T)^2}$$

- Loose is further split into 2 categories: Loose and VeryLoose by a 1D scan, while optimizing the ggF significance.
- Gives a rough estimation of categorization boundaries which will be further optimized.

- Event categorization Minimize the $c_{H\widetilde{W}}$ 95% interval
 - A more direct way for the optimization, as $c_{H\widetilde{W}}$ is the POI of analysis.
 - Create the workspace with dummy signal/bkg modeling.
 - Simultaneous 3D scan for 3 cuts, based on Z_{VBF} results.

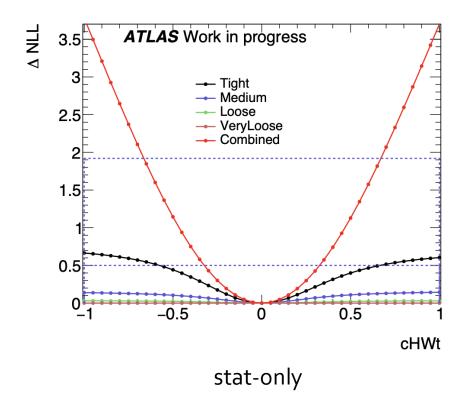


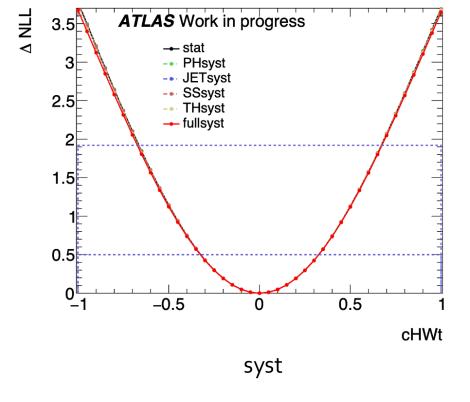
Requiring sideband data > 9 in any bins. Optimized cut:

• Low cut: -0.5

Medium cut: 2.1

• High cut: 3.7

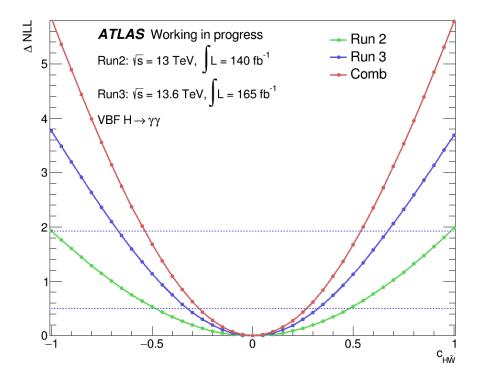

Statistics model


- Parameterization of CPV effects: based on morphing.
 - $\sigma(c) = \sigma_{SM} + \sigma_{int} + \sigma_{quad} = \sigma_{SM} + A \cdot c + B \cdot C^2$.
 - Derive A and B from VBF base samples with different $c_{H\widetilde{W}}$.
- Nominal systematics schemes
- Fit $m_{\gamma\gamma}$ in each OO bins to derive the OO shape
 - Likelihood constructed from the fit in all bins.
 - Floating μ_{VBF} to have a shape only measurement.
 - Template fit for different $c_{H\widetilde{W}}$ hypotheses.
 - POI: $c_{H\widetilde{W}}$, μ_{VBF} , μ_{ggF}

systematic source		Implementation	
Evn	lumi	N_{tot} log-normal	
Exp.	jet	N_t asymmetric	
	photon Isolation	N_t asymmetric	
	photon Identification	N_t asymmetric	
	photon Scale	N_t asymmetric	
	photon Resolution	N_t asymmetric	
	PU	N_t asymmetric	
	PDF	N_t log-normal	
Theo.	α_s	N_t log-normal	
	QCD	N_t log-normal	
	shower	N_t Gaussian	
Mass.	ATLAS-CMS m_H	$\mu_{\rm CB}$ Gaussian	
	Photon Scale	$\mu_{\rm CB}$ Gaussian	
	Photon Resolution	σ_{CB} log-normal	
Bkg.	spurious signal	N_{spur} Gaussian	

Expected results

- Expected constrain on $c_{H\widetilde{W}}$
 - Estimate ggF from data.
 - Floating μ_{ggF} in the fit.
 - For less dependence on SM.
 - Still statistical dominant.

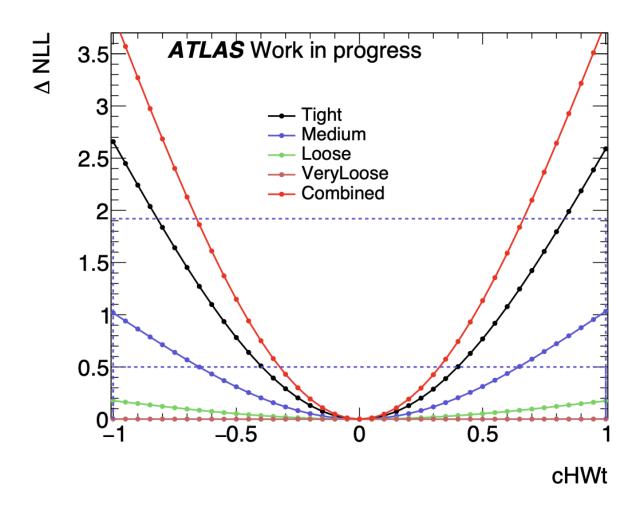


Combination of Run2 and Run3

- Workspace-level combination
 - Combined likelihood

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\theta}; \text{data}) = \prod_{c=1}^{N_{\text{cats}}} \mathcal{L}_c(\boldsymbol{\mu}, \boldsymbol{\theta}; \text{data}) \prod_{k=1}^{N_{\text{cons}}} \mathcal{G}(\theta_k; \tilde{\theta}_k)$$

• Stat-only results for now.



<u>Summary</u>

- Searching for new CP violation sources beyond SM
 - Motivated by baryon asymmetry puzzle.
 - HVV vertex provides a sensitive window to search new physics.
 - Great achievements from ATLAS Run2 HVV CP property studies.
- An analysis probing the HVV CP property with ATLAS partial Run3 data is converging
 - Preliminary result for $c_{H\widetilde{W}}$ is derived (statistical dominant).
 - Stat-only result for the combination of Run2 and Run3 CP study is derived.
- Future Plan:
 - Complete results.

<u>Backup</u>

Backup

