

CP violation measurement in charm meson decays at the CMS experimentriment

Vladimir Sergeychik, Zhen Hu

vladimir.sergeychik@cern.ch, zhen.hu@cern.ch

The 11th China LHC Physics Conference 01.11.2025

Agenda

- Introduction
- Data sample
- ACP in MC
- Fits to data
- Systematics uncertainties
- Results
- Further improvements

Motivation for CPV and lifetime measurements

- Baryon asymmetry of the Universe (BAU) remains one of the great mysteries of modern physics
- Andrei Sakharov proposed three necessary conditions for a BAU generating:
 - 1. Baryon number violation
 - 2. C and CP violation (CPV)
 - 3. Non thermal equilibrium
- CP-violation is allowed in the SM, but the amount is insufficient to account for the observed BAU
 - > Sources of CPV beyond the SM have to exist
 - > CPV observables are often precisely predicted, hence, they are very sensitive to new physics
- Observable CP violation in weak interaction can be classified into three different types

Direct CPV in decays

Indirect CPV in mixing (requires the deviation between CP-eigenstates and flavor states)

CPV in decay+mixing interference

$$Pr(M \to f) \neq Pr(\overline{M} \to \overline{f})$$

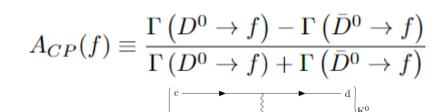
$$Pr(M^0 \to \overline{M}^0) \neq Pr(\overline{M}^0 \to M^0)$$

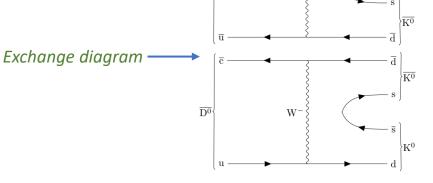
$$Pr(M o f) \neq Pr(\overline{M} o \overline{f})$$
 $Pr(M^0 o \overline{M}^0) \neq Pr(\overline{M}^0 o M^0)$ $Pr(M^0_{(\leadsto \overline{M}^0)} o f_{CP}) \neq Pr(\overline{M}^0_{(\leadsto M^0)} o f_{CP})$

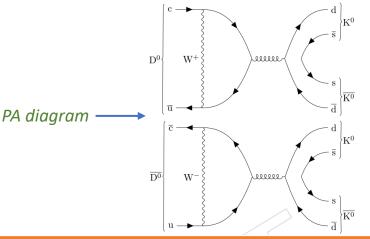
We will focus on the search for direct CPV in charm!

Introduction to the analysis

- CP-violation in up-quark sector is heavily suppressed in contrast to down-quark sector
 - Large enhancement would imply the presence of new physics
- Theoretical SM calculations [PRD92(2015)054036] predict CPV in $D^0 \to K_S^0 K_S^0$ to be as large as $O(1\%) \leftarrow$ more significant then in many other D^0 decay channels
- Latest experimental calculation by LHCb_[PRD104(2021)031102]:

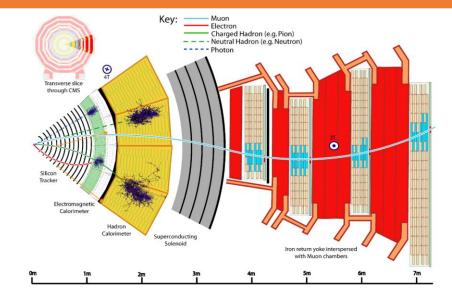

$$A_{CP}(D^0 \rightarrow K_S^0 K_S^0) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\% \leftarrow \text{no CPV}$$

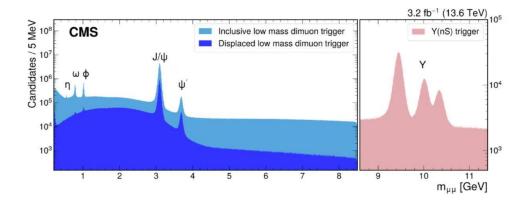

• Many systematic uncertainties in A_{CP} cancel if measured via ΔA_{CP} :


$$A_{raw} = \frac{N(D^{0}) - N(\overline{D}^{0})}{N(D^{0}) + N(\overline{D}^{0})} \qquad A_{CP} = A_{raw} - A_{prod} - A_{det}$$

$$A_{prod} = \frac{\sigma_{pp \to D^{*+}X} - \sigma_{pp \to D^{*-}X}}{\sigma_{pp \to D^{*+}X} + \sigma_{pp \to D^{*-}X}} \qquad A_{det} \approx \frac{\epsilon_{\pi^{+}} - \epsilon_{\pi^{-}}}{\epsilon_{\pi^{+}} + \epsilon_{\pi^{-}}}$$

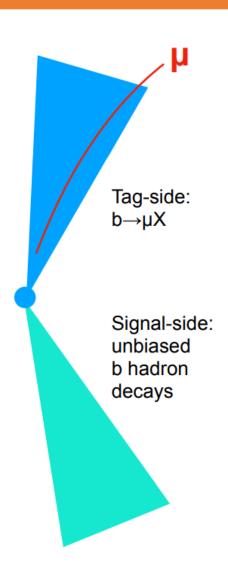
- $\Delta A_{CP} = A_{CP}^{raw}(D^0 \rightarrow K_S^0 K_S^0) A_{CP}^{raw}(D^0 \rightarrow K_S^0 \pi^+\pi^-)$
 - Reference channel is very similar in kinematics and topology \rightarrow A_{prod} and A_{det} cancel out.
- The flavor is tagged by $D^{*\pm} \rightarrow D^0 (\overline{D}^0) \pi^{\pm}$





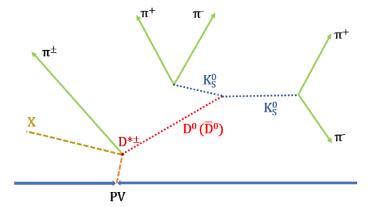
4

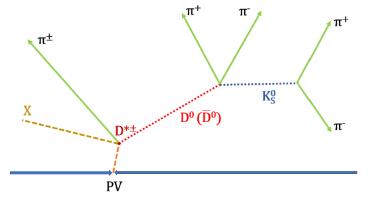
Challenges for charm CP violation measurement


- CMS can perform studies in the scope of Heavy Flavor Physics
 - Excellent tracking system able to reconstruct vertices with high decay time resolution (e.g., $\sigma t \sim 65$ fs for $B_s^0 \rightarrow J/\psi \phi$) up to $|\eta| < 2.5$
 - Complementary to LHCb (2 < $|\eta|$ < 5)
 - Enormous amount of data collected
 - \bullet ~ 7.5 \cdot 10¹³ bb pairs produced at Point 5 during Run 2 (geometric acceptance not considered)
- Some CMS flavor physics highlights from recent years:
 - $\underline{B}_S \rightarrow \mu^+ \mu^- \text{ (world's most precise)}$ [PLB842(2023)137955]
 - $\eta \to \mu^+ \mu^- \mu^+ \mu^-$ observation [PRL131(2023)091903]
 - <u>Triple J/ψ production observation</u> [Nat.Phys.19(2023)338]
 - Observation of Ξ_{b} (6100) \to $\Xi_{b}^{-}\pi^{+}\pi^{-}$ [PRL126(2021)252003]
 - Observation of X (6900) \rightarrow J/ ψ [PRL132(2024)111901]
- Our golden mode dimuon final states! (e.g. $J/\psi \rightarrow \mu^+ \mu^-$)
- **BUT:** D⁰ mainly decays to the *fully-hadronic final states*!
 - ➤ New revamped **trigger strategy** is required
 - > Collection of unbiased D⁰ events should be implemented

Bparking miniAOD 2018 data set

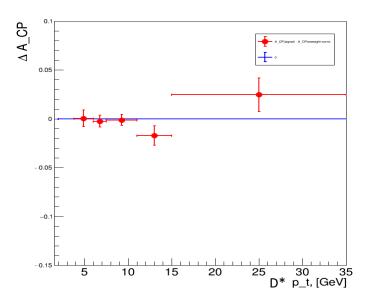
- A dedicated data set corresponding to the integral $L = 41 \text{ fb}^{-1}$ is used
- A set of single muon triggers with different thresholds on muon p_T and impact parameter are used
- Due to these thresholds, most(\sim 75-80%) of the events in dataset come from beauty semi-leptonic decays b $\rightarrow \mu X$
- Almost every time b $\rightarrow \mu cvX$
- The muon p_T cut at trigger level: 7-12 GeV => D has a high p_T , as both c and μ come from energetic b-hadron
- Thus, b-parking has $O(10^{10})$ events with charm hadrons with relatively high p_T => it is perfect for CPV search

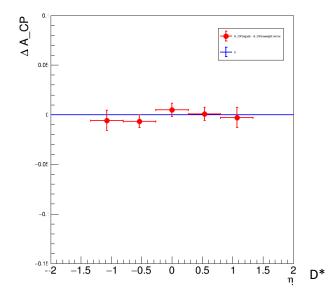

Event selection in data and MC

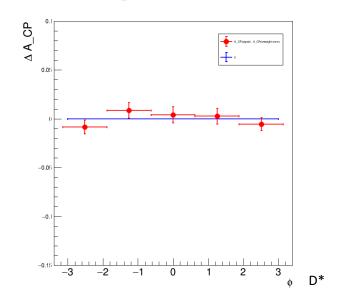

Data:

- $K_S^0\pi\pi$ (normalization channel) and $K_S^0K_S^0$ (signal channel) channels have almost identical kinematics and topology => the reconstruction efficiencies asymmetries cancel in the measured difference of differences ΔA_{CP}
- K_S^0 reconstructed from $\pi\pi$ fitted to the vertex with PDG mass constraint
- D⁰ momentum points to PV
- D^0 is the result of $K_S^0 K_S^0$ or $K_S^0 \pi \pi$ vertex fit
- $D^{*\pm}$ is the result of D^0 π^{\pm} vertex fit
- Selection criteria were optimized for improving accuracy of signal extraction in $D^0 \to K^0_S \, K^0_S$

MC:


 Generated with PYTHIA 8.230 and processed with GEANT-4 to include CMS detector simulation particularities





ΔA_{CP}^{raw} in MC

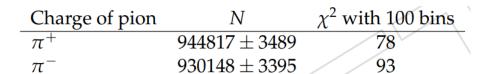
$$\Delta A_{CP} = A_{CP}^2 - A_{CP}^1 = A_{CP}^{raw2} - A_{CP}^{raw1}$$

 ΔA_{CP}^{raw} in whole MC sample: (0.126 \pm 0.336)%

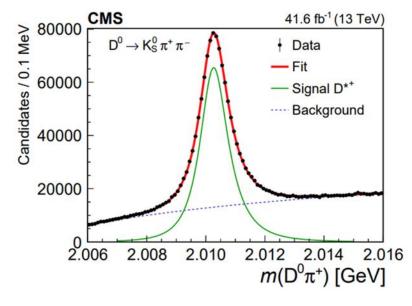
Perfect agreement with 0!

Possible p_T , η or ϕ dependence in individual channel cancels out in ΔA_{CP} – as expected!

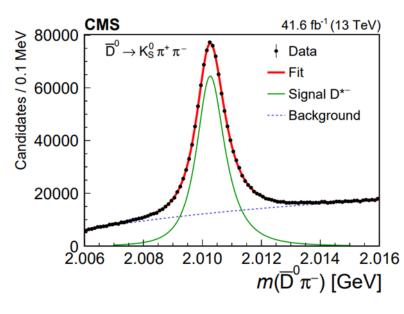
8


Signals and A_{CP}^{raw} in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Fits of "+" and "-" are simultaneous: all parameters of their pdfs are shared; only yields are floating


1d-fit of $(M(D \pi) - M(D) + M_D^{PDG})$ is applied

Signal pdf: Johnson function


Background pdf: Threshold function • Pol₁

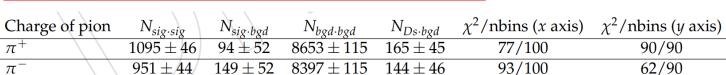
Fit to D*+ candidates

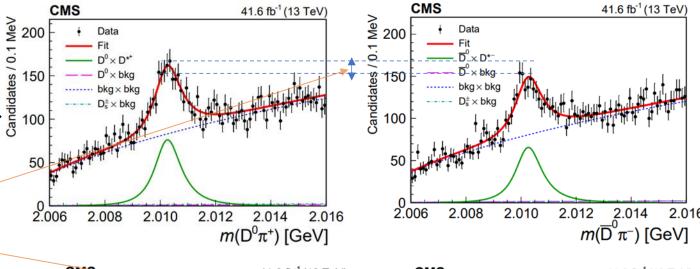
Fit to D*- candidates

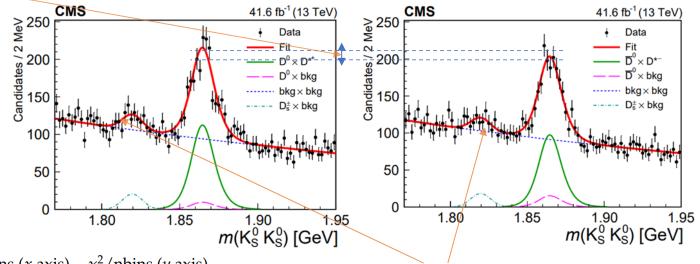
$$A_{CP}^{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

$$A_{CP}^{raw}(D^0 \to K_S^0 \pi^+ \pi^-) = (0.78 \pm 0.10)\%$$

Signals and A_{CP}^{raw} in $D^0 \rightarrow K_S^0 K_S^0$


2d-fit of (M(D π^{\pm}) – M(D) + M^{PDG}_D) vs M(K⁰_S K⁰_S) is used


Projections on $x^+ = m(D\pi^+)$ and $x^- = m(D\pi^-)$ axes of 2d-fit


$$A_{CP}^{\text{raw}} = \frac{N^+ - N^-}{N^+ + N^-}$$

Projections on $y^+ = m(K_S^0 K_S^0)$ and $y^- = m(K_S^0 K_S^0)$ axes of 2d-fit

 $A_{CP}^{raw}(D^0 \to K_S^0 K_S^0) = (7.065 \pm 3.022)\%$

10

Sources of systematical uncertainties

Source	Uncertainty, %
$m(\mathrm{D}\pi^\pm)$ signal model	0.10
$m(\mathrm{D}\pi^\pm)$ background model	0.02
$m(K_S^0K_S^0)$ signal model	0.04
$m(K_S^0K_S^0)$ background model	0.02
$m(K_S^0K_S^0)$ fit range	0.04
Reweighting	0.09
ΔA_{CP} in MC	0.13
Total	0.20

Systematics is much smaller than statistics: 0.2% vs. 3%

EPJC84(2024)1264

Results

• This is the first measurement of CP-violation in charm in CMS

$$\mathbf{A}_{\mathrm{CP}}(\mathsf{D^0} \to \mathsf{K}^0_{\mathsf{S}} \, \mathsf{K}^0_{\mathsf{S}}) \ (via \ \Delta A_{\mathit{CP}} = A_{\mathit{CP}}(D^0 \to \mathsf{K}^0_{\mathit{S}} \, \mathsf{K}^0_{\mathit{S}}) - A_{\mathit{CP}}(D^0 \to \mathsf{K}^0_{\mathit{S}} \, \pi^+ \pi^-))$$

- Using RUN 2 2018 b-parking dataset with a lot of charm hadrons produced in semileptonic b decays
- The resulting ΔA_{CP}^{raw} :

$$\Delta A_{CP}^{raw} = (6.3 \pm 3.0 \text{ (stat)} \pm 0.2 \text{ (syst)})\%$$

• Using PDG A_{CP} (D⁰ \rightarrow $K_S^0 \pi^+ \pi^-$), we derive the A_{CP} (D⁰ \rightarrow $K_S^0 K_S^0$):

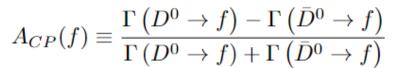
$$A_{CP}$$
 (D⁰ \rightarrow K_S⁰ K_S⁰) = (6.2 ± 3.0 (stat) ± 0.2 (syst) ± 0.8 (A_{CP} (D⁰ \rightarrow K_S⁰ $\pi^+\pi^-$)))%

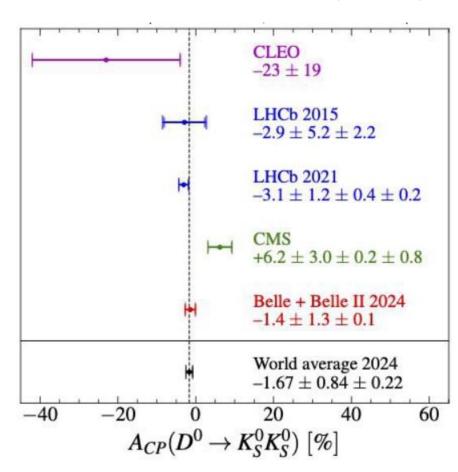
- The result is consistent with **no CPV in D⁰** \rightarrow $K_S^0 K_S^0$ at the level of 2.0 σ
- The value is consistent with LHCb [PRL122(2019)211803] results at the level of 2.7 σ [(6.2 ± 3.1)% vs. (-3.1 ± 1.3)%] and with Belle [PRL119(2017)171801] measurement at the level of 1.8 σ [(6.2 ± 3.1)% vs. (0.0 ± 1.5)%] , but is worse in precision ~ 2 times! Improvement is required!

EPJC84(2024)1264

Further improvement

• The final result for the first charm CP violation measurement on CMS:


$$A_{CP}(D^0 \rightarrow K_S^0 K_S^0) = (6.2 \pm 3.1)\%$$


 Though this result is in agreement with <u>previous measurements</u>, it has worse precision (compared with <u>the LHCb results</u> and <u>the Belle II</u> <u>results</u>):

$$(6.2 \pm 3.1)\%$$
 vs. $(-3.1 \pm 1.3)\%$ or $(-1.4 \pm 1.3)\%$

~2 times worse precision!

- The CMS experiment is working on the improvement of the precision:
 - > Adding RUN3 data, collected with similar parking triggers on single muon
 - ightharpoonup Adding the data of semileptonic D⁰ origin ${f B}
 ightharpoonup \mu^{\mp} {f D}^{0} (\overline{{f D}}{}^{0}) \, \overline{v_{\mu}} \, (v_{\mu}) \, {f X}$

13

PJC84(2024)1264

Summary

• The first CMS measurement of CP violation in charm is performed:

```
A_{CP} (D<sup>0</sup> \rightarrow K<sub>S</sub><sup>0</sup> K<sub>S</sub><sup>0</sup>) = (6.2 ± 3.0 (stat) ± 0.2 (syst) ± 0.8 (A_{CP} (D<sup>0</sup> \rightarrow K<sub>S</sub><sup>0</sup> \pi^+\pi^-)))%
```

- Though initially not optimized for such searches, CMS is able to perform studies of CP violation in charm:
 - New Parking single muon triggers allow to collect unbiased charm events and exploit fully-hadronic final states
- The results of CMS are compatible with B-factories and LHCb
- The CMS will extend its charm CP violation program with:
 - New RUN 3 data
 - \square New tagging techniques (involving $\mathbf{B} \to \mu^{\mp} \mathbf{D}^0(\overline{\mathbf{D}}^0) \overline{v_{\mu}} (v_{\mu}) \mathbf{X}$ decays)
 - ☐ New decays for the search

Thank you!

EPJC84(2024)1264