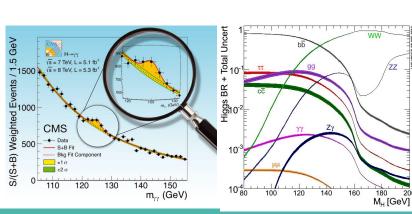
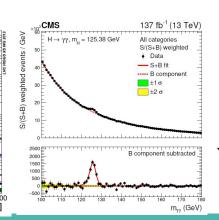


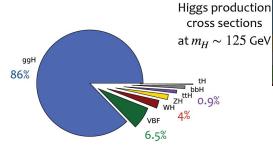
中國科學院為能物限研究所 Institute of High Energy Physics Chinese Academy of Sciences

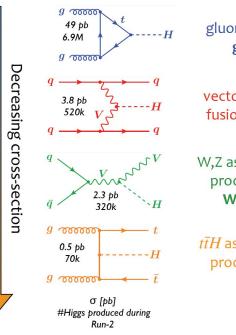
Measurements of Higgs boson properties in the γγ decay channel at CMS

F. lemmi 1


on behalf of the CMS Collaboration

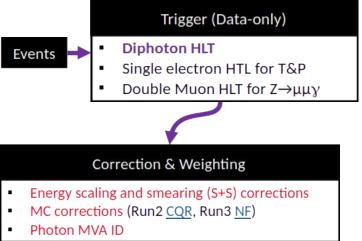

CLHCP - Xinxiang, Henan, October 29 to November 2, 2025

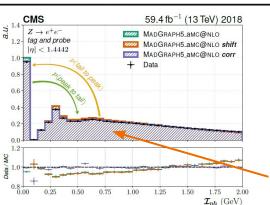

¹ Institute of High Energy Physics (IHEP), Beijing, China

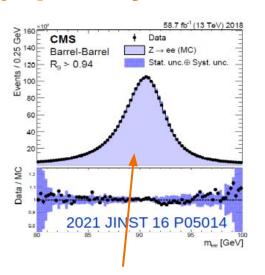

Introduction

- LHC is a Higgs factory: O(8M) Higgs bosons produced in Run2 for each experiment
- H(yy) is one of the golden channels for discovery, measurements, and searches
 - Relatively clean final state, fully reconstructable
 - Excellent mass resolution, O(1%)
- Branching ratio somewhat small (~0.23%)

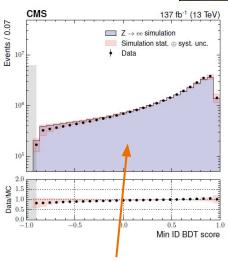
gluon fusion ggH


vector boson fusion (VBF)

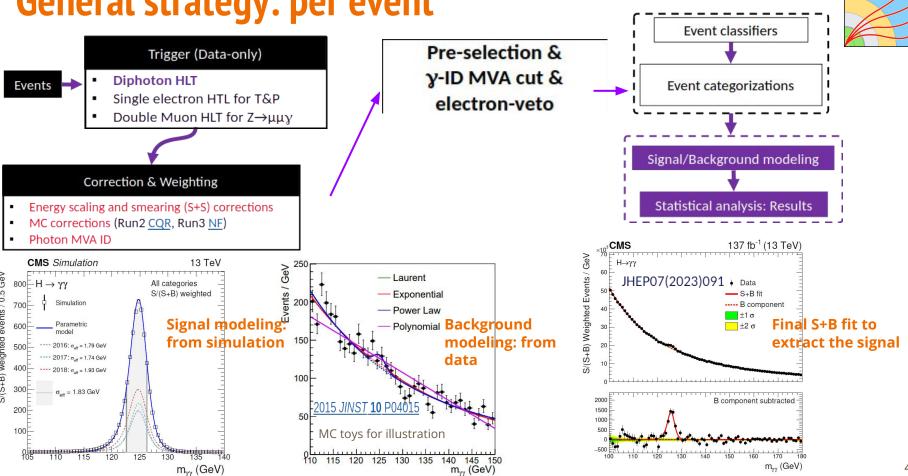

W,Z associated production WH/ZH


tīH associated production

General analysis strategy: per object



Photon energy scale and smearing corrections

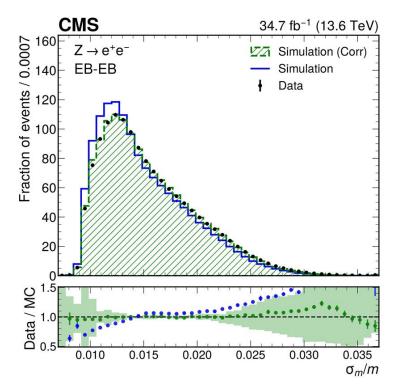


PhotonID MVA to separate prompt photons from fakes

Chain Quantile regression corrections to improve data/MC agreement

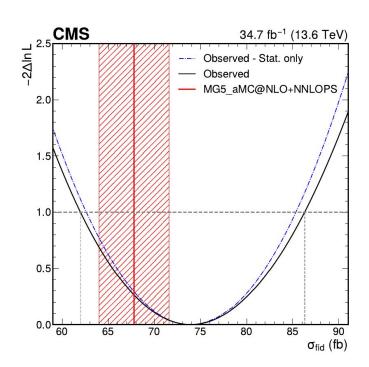
General strategy: per event

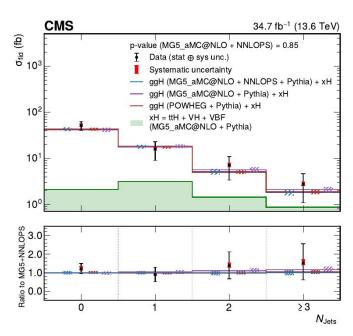
m_{vv} (GeV)



Fiducial cross section with 13.6 TeV data [JHEP09(2025)070]

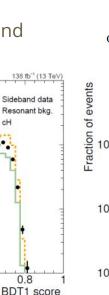
Fiducial cross section with 2022 data

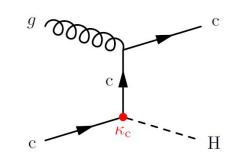


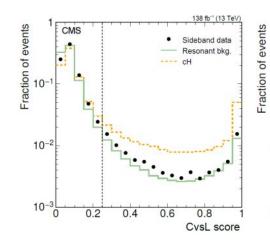

- First H(γγ) analysis with CMS Run3 data
- Measurement of inclusive and differential cross sections
 - Provide model independent results
- Several novel techniques are used
 - NN to improve photon energy resolution
 - Data/MC corrections for shower-shape variables obtained with normalizing flows → reduction of uncertainties
- Categorize based on σ_m /m to improve sensitivity
 - o 3 categories; high, medium, low resolution

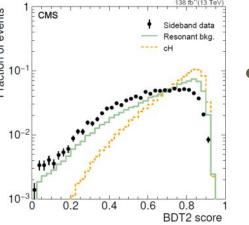
Fiducial cross section with 2022 data

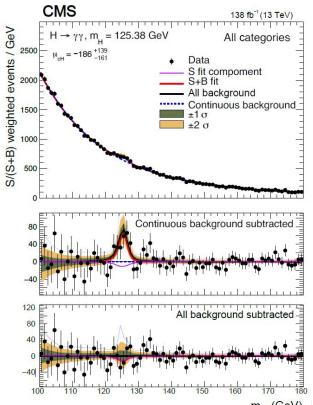
 Both the inclusive and differential results are found to be in agreement with the SM predictions


First search for cH associated production [accepted by JHEP]


First search for cH associated production


- Unique opportunity to study charm coupling in production
- Pt-leading jet must be c-tagged
- Two BDT classifiers
 - BDT1: cH vs ggH
 - o BDT2: cH vs continuum background


10-2



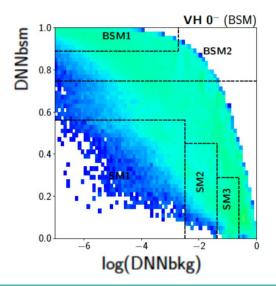
H

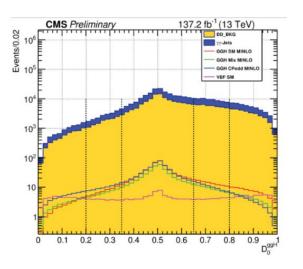
First search for cH associated production

- Upper limit on cH signal strength < 243 (355) x σ_{sm} obs. (exp.) at 95% CL
- Constraints on c-H coupling strength modifier $|\kappa_c|$ < 38.1 (72.5) obs. (exp.) at 95% CL
- **Dominated by statistical uncertainty**; most important systematic is theory uncertainties on cH and continuum background

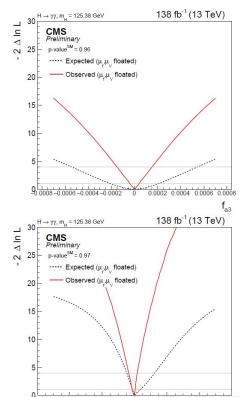
Search for anomalous couplings [CMS-PAS-HIG-24-006]

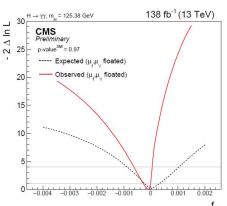
CP properties: anomalous couplings

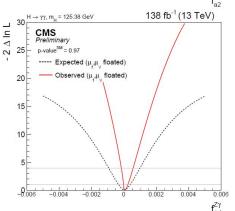

- So far, properties of Higgs boson found to be consistent with SM
- In particular, J^{CP} = 0⁺⁺
- Limited precision allows for CP-violating anomalous couplings
 - o E.g., CP-odd coupling to top quarks or new BSM interactions would result in CP violation
- Anomalous, CP-violating couplings (ACs) studied in large spectrum of production and decay modes
- Events categorized based on matrix-element discriminants (MELA, [1]) or on advanced Machine Learning techniques
- Results usually expressed in terms of cross-section ratios f_{ai} , depending on ACs a_i


$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_i |a_i|^2 \sigma_i} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$

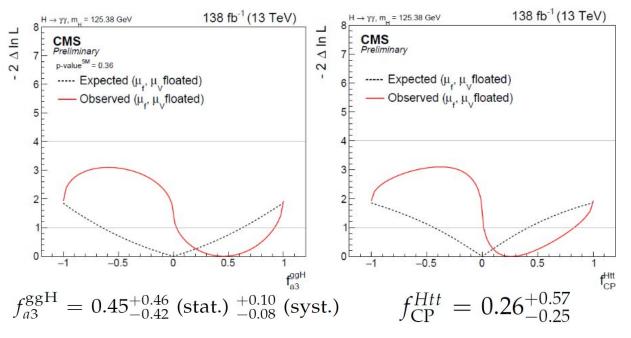
CP-violating ACs


CMS


- Determine constraints on ACs using H(γγ) decays
- Maximize sensitivity to AC targeting VBF-like kinematics
- Target VBF+VH events and ggH+jets events
- Two analyses produce separate results (don't want to lose ggH sensitivity by requiring orthogonality)
- Selection is based on STXS bins + cuts on MVA and MELA variables



CP-violating ACs: HVV


68% CL intervals for ACs

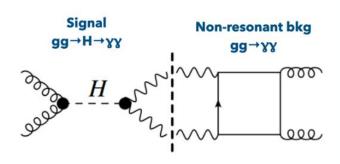
Parameter	Expected/ (10^{-4})	Observed/ (10^{-4})	Expected/ (10^{-4})
	$H \rightarrow \gamma \gamma$ (68% CL)	$\mathrm{H} ightarrow \gamma \gamma$ (68% CL)	$H \rightarrow 4\ell + H \rightarrow \tau^+\tau^-$ (68% CL)
f_{a3}	$0.0^{+2.1}_{-2.1}$	$0.00^{+0.39}_{-0.39}$	[-0.5,0.5]
f_{a2}	$0.0^{+3.1}_{-2.3}$	$-0.81^{+0.65}_{-2.0}$	[-4,5]
$f_{\Lambda 1}$	$0.0^{+0.35}_{-0.12}$	$-0.014^{+0.032}_{-0.14}$	[-0.4, 1.1]
$f_{\Lambda 1}^{Z\gamma}$	$0.0^{+3.7}_{-3.3}$	$0.83^{+1.5}_{-0.92}$	[-10,10]

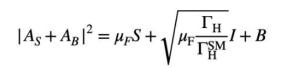
- Results are compatible with SM expectations: no ACs (f_{ai}=0)
- These are among the most stringent limits to date

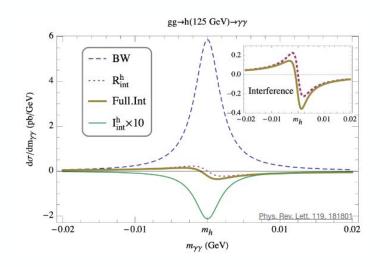
CP-violating ACs: ggH

 Results are compatible with the SM

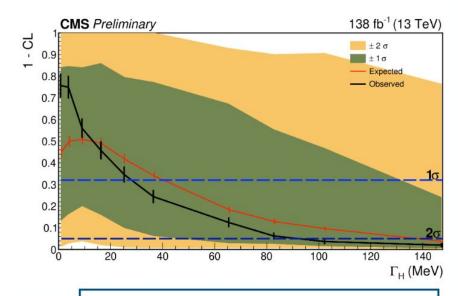
- Uncertainty dominated by statistical component (systematics cancel in ratios)
- Results expected to improve with more LHC data




Higgs boson natural width [CMS-PAS-HIG-25-004]


Higgs natural width

- Complementary to standard approach using on-shell and off-shell production in H(4L)
- First time at the LHC: use interference between H(γγ) signal and γγ continuum background to measure the Higgs width



Higgs natural width

- 11 mutually exclusive categories
 - ggH: use diphoton BDT to reject background and pt_{yy} to enhance sensitivity to interference
 - VBF: cut based analysis
- Maximum-likelihood fit to templates
 - S and S+I from MC
 - B from data sidebands
- Competitive approach, sensitivity in between direct measurement and off-/on-shell measurement

 $\Gamma_{\rm H}$ < 91.8 (138) MeV @ 95 % CL

Conclusions

- Presented latest results on Higgs properties with γγ decays
 - First xsec measurement with Run3 data
 - First search for cH associated production
 - Search for anomalous couplings
 - Measurement of natural width using sig/bkg interference
- All the results are compatible with the SM
- More results to come!
 - Mass & width
 - HHH(4b2y) Run2
 - STXS with Run3
 - HH(bbγγ) (out already! <u>CMS-PAS-HIG-25-007</u>)
- Please stay tuned

Backup slides