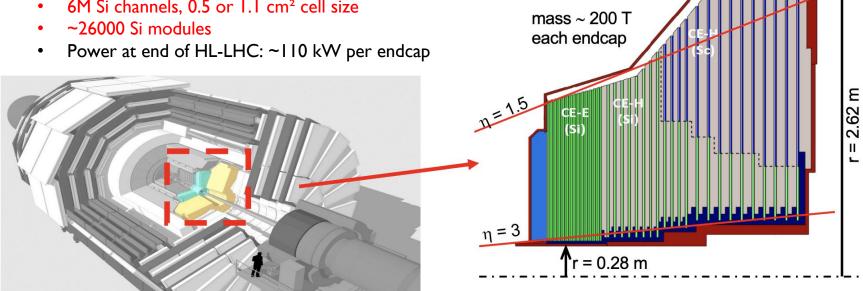


Status of HGCal Module Production at IHEP

Baorui Hou (IHEP) On behalf of the Chinese HGCal group Oct.31, 2025

Outline

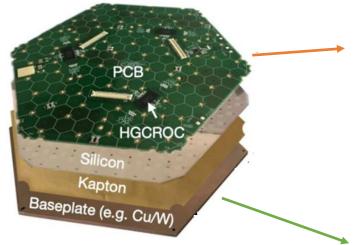

□ Introduction ☐ Module Production Ramping-up Stage: Module Assembly Bonding & Encapsulation **Electronics Test** ■ Quality Control □ Database/GUI & Production Web UI ☐ Future Plan **□** Summary

Introduction

CMS-HGCal upgrade

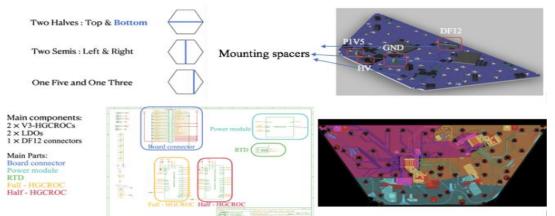
Key Parameters:

- HGCAL covers $1.5 < |\eta| < 3.0$
- Full system maintained at -30 °C
- ~620 m² of silicon sensors
- ~370 m² of scintillators
- 6M Si channels, 0.5 or 1.1 cm² cell size



•Endcap Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 26 layers, 25.5 X₀ & ~1.3 λ •Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 21 layers, ~8.5 λ

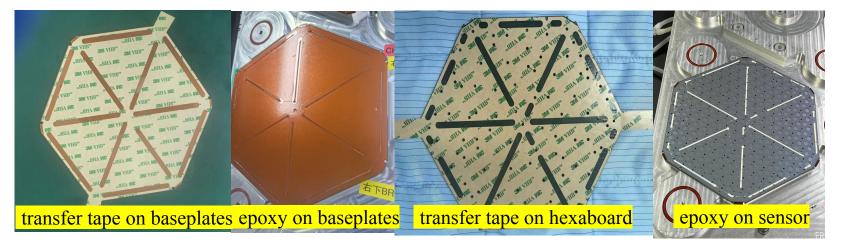
Introduction

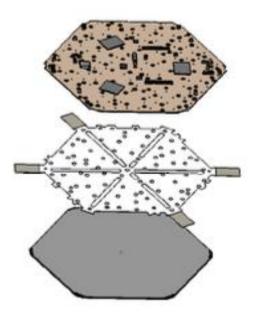

Role of China in the HGCal module production

☐ The tasks mainly consist of three parts:

I Module Assembly

- Basically like making a "sandwich"
- I/5 (~5000) Low density (LD) full Si-modules production
 @IHEP MAC
- The total area is ~100 m²

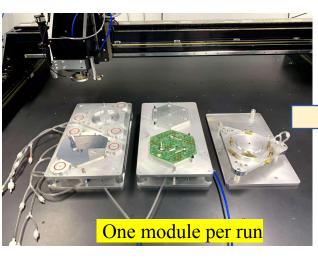

2. Partial Hexaboard Design (ZJU)

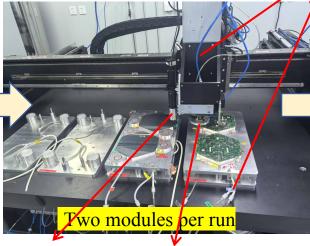


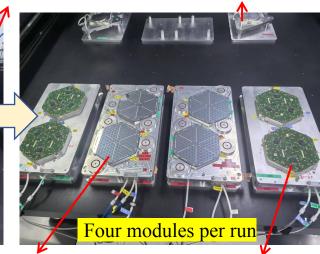
- 3. CuW Baseplates Production(Kapton, 3M tape)
- ~90% of the area CuW baseplates will be produced in China.
- 10k bps' K-Contract asigned, First 1200BPs delivered.

Ramping-up: Module Assembly

Module Assembly: Module Production Process


- **1** Hybrid assembly
 - Traditional expoxy only method needs much time for expoxy curing
 - Transfer tape and epoxy are using in sensor and hexaboard assembly
 - Tape is use for thickness control and epoxy for irradiation
 - Improve the production speed Waiting time before next step: ~3 hours to 20 minutes
- Optimize the automated dispensing program based on the updated dispensing patten.
 - The dispensing path is designed to prevent glue leakage into the bonding holes caused by glue stringing.
- A custom fixture is used to ensure the precise alignment of the transfer tape and prevent the bonding holes covered with tape.

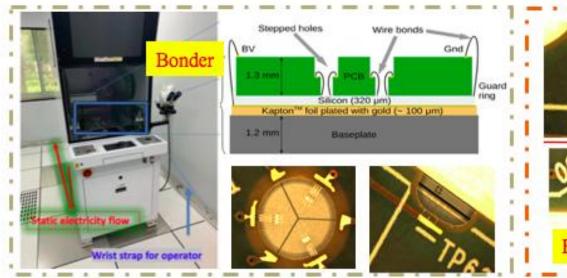

Ramping-up: Module Assembly


Module Assembly: Gantry Ramping-up

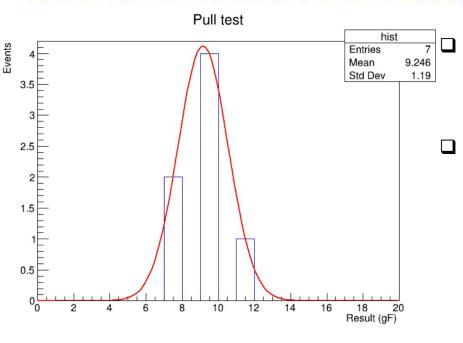
Vaccum Pipe (Fix components)

Pick up tool (Catch components)

Photographer (measure positions)

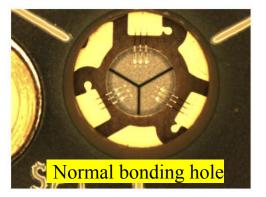

Gantry Head (Catch and Place)

Protomodules (sensor + baseplate)


Hexaboard (Front-end Electronics)

- ☐ Ramp up of module assembly on the gantry
 - ☐ Using vacumm absorbtion to fix every components.
 - ☐ Automatic assembly with gantry control system and assemble program.
 - ☐ Before 2025, the gantry system was capable of assembling a single module per run.
 - ☐ The capability for two module assembly per run on the gantry was implemented in March 2025.
 - □ Currently, the gantry can assemble four modules at once. This enhanced capability enabled the successful production of 28 V3C modules in September 2025.
 - ☐ In November, IHEP MAC will continue ramping-up from 8 modules per day to reaching the final production rate of 16 modules per day.

Ramping-up: Bonding & Encapsulation

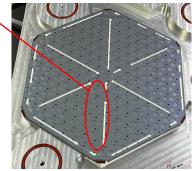


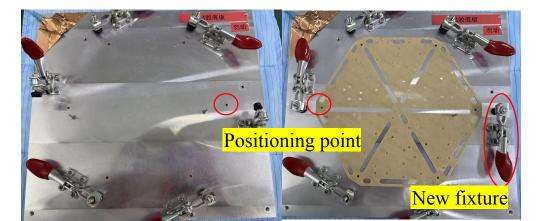
Programmatic bonding

- ☐ 30 mins per module
- ☐ 5 modules bonded at most per day so far
- ☐ Pull test of bonding wire meet the requirements (9g)
- Programmatic encapsulation
- ☐ 15 mins per module once setup

Ramping-up: Bonding & Encapsulation

Bonding ramping-up





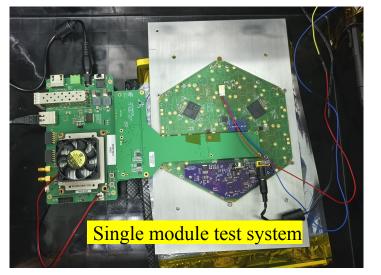
- The main reasons affecting bonding speed:
 - ☐ Allignment accuracy too bad (Solved by gantry caliberation)
 - ☐ Bonding hole is covered with expoxy or transfer tape
- Adjust the gantry dispense routine to solve the expoxy issue
- ☐ Improve the hexaboard adhesive tool to solve the coverage problem
 - ☐ Improve the tape fixture to avoid tape movement
 - ☐ Add red positioning point to double-check the tape allignment

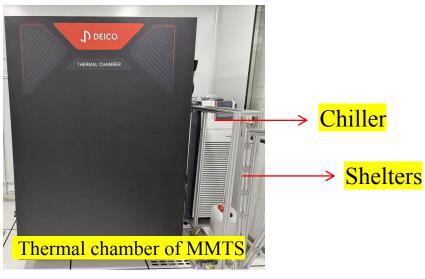
In the recent production of 28 modules (4 modules/day), all module bonding went quite smoothly!

Ramping-up: Bonding & Encapsulation

Encapsulation ramping-up

- ☐ We had solved the encapsulation expoxy "tail" problem
 - ☐ Viscosity of the encapsulated epoxy resin causes "tail"
 - □ Solved by adjust the dispense time and the waiting time (the time before stopping dispensing and moving to the next hole)
- Using a constant temperature chamber to reduce curing time (48h to 4h)
 - ☐ Change to bigger chanmber to meet the requirement of 16 modules/day



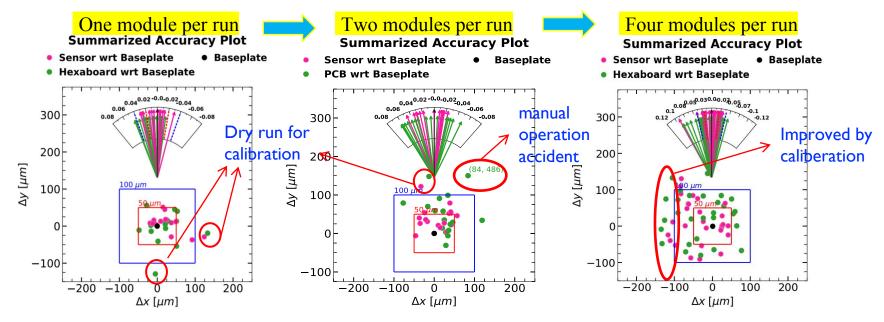


Ramping-up: Electronics Test

Electronics Test ramping-up

- ☐ IHEP MAC is changing the test system from single test system to MMTS (Multi Module Test System)
 - □ 30 mins per module using single test system.
 - ☐ Most of the components of MMTS received
 - ☐ Relevant personnel have completed the power supply technology training
- \Box MMTS
 - ☐ Electronics test: 3 modules per run
 - ☐ Temperature cycling test: 24 modules per run
- ☐ MMTS setup is about to begin in November

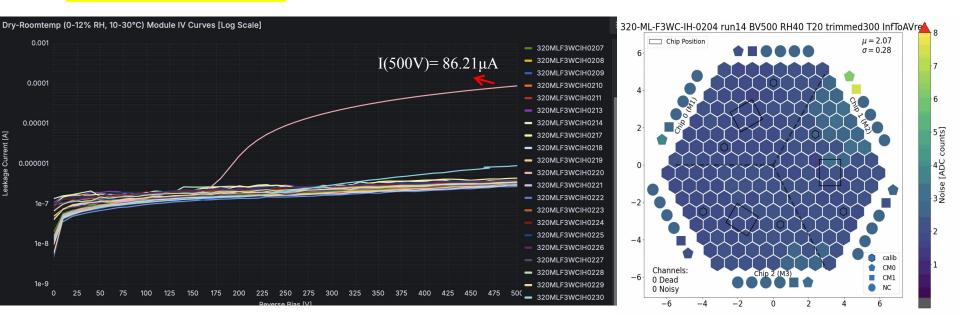
HV power supply


LV power supply

HV switch

Quality Control

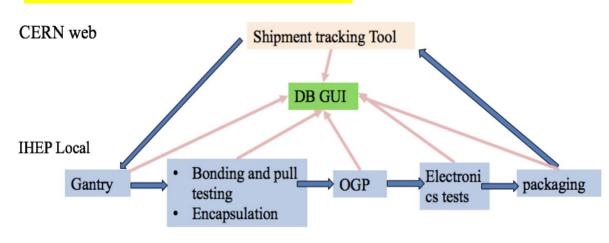
Alignment Accuracy

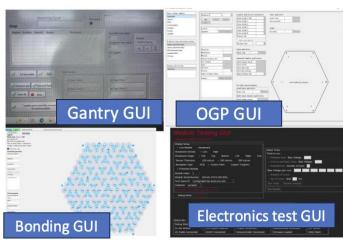


- Using OGP (Optical Gaging Product) to measure the alignment accuracy of XY
 - \square No-touch measurement with resolution of $\sim 1 \mu m$.
- Most modules have an XY alignment accuracy within 150 μm (Grade B), with many even within 100 μm (Grade A).
- The allignment accuracy will be relaxed in future.
- All the modules (Grade A & Grade B) can be used normally on detector.
- Subsequent efforts will focus on refinements to the automated process and hardware setup, aimed at improving the consistency of assembly precision.

Quality Control

Electronics Test

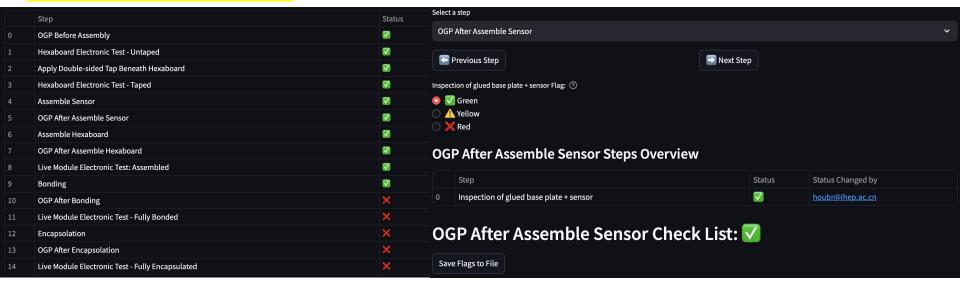

Temperature ~ 20°C, Humidity ~ 1%



- ☐ Electronics test contains two parts: IV test and pedestal test.
 - □ Grade A requirements for IV: $I(500 \text{ V}) < 100 \mu\text{A}$
 - □ Grade A requirements for pedestal: channel(dead + noisy + unbonded) \leq 4
- All noise test results are consistent with the example illustrated in the plots on the right.
- All of the 28 modules produced in September perfromed good (Grade A) in electronics test.

Database/GUI & Garafana Web

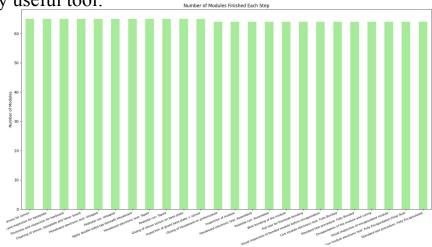
Database&Grafana Web



- DataBase(DB) is to record informations and classifications of every components and modules.
 - ☐ Graphical User Interface (GUI) set up for every production steps
 - ☐ GUIs can automatically upload production information to the database during the production process
 - ☐ Can track key parameters, components, modules, operators, and other related information
 - ☐ IHEP MAC had completed coordinating the DB and various GUIs
 - ☐ We have used and helped improve the DB system
 - ☐ DB information can be visualized through the Grafana website
- ☐ All of the modules produced by IHEP are in DB.

Production Web UI

Production Web UI


- Production Web UI is developed by IHEP MAC, a very useful tool:
 - ☐ Standardizing our production steps
 - ☐ Visualizing current production status
 - ☐ Can auto-email next-step operators
- Double-check with DB of all the key parameters

Dear Bonding and OGP Teams,

Please be informed that the status of the step: Bonding has changed.

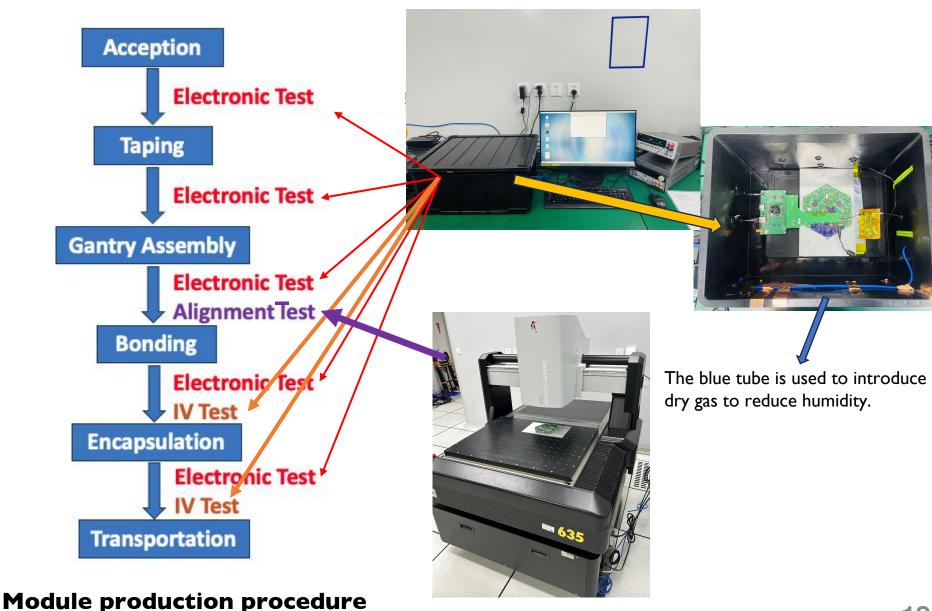
Status: Changed by: tycao@ihep.ac.cn
Module Number: MLF2WZIH0061
Sensor ID: 200132
Hexboard Number: 320BAFLWKA00150
Baseplate Number: 320BAFLWKA00150
Remeasurement Number: 0
Comment:

Best regards,
IHEP MAC Checklist Website

X-axis represents production steps, Y-axis represents the number of modules in this step

Future Plan

Production plan


- We have increased the production rate from 1 module per day to the current 4 modules per day for the last year.
- The main limitation is the shortage of components (Hexaboards).
- Next step is producing 8 modules per day, then 12 modules per day, 16 modules per day finally.
- \bullet The target for this year is \sim 200 modules (82 modules finished).

Summary

- ☐HGCal modules assembly @IHEP
 - ◆ IHEP MAC have produced ~80 HGCal modules from last November.
 - The newest 28 pre-production V3C modules perform good in electronics test.
 - All the modules were sent to CERN, some used in beam test, 28 preproduction modules are used on Cassettes (real detector).
 - Continue ramping-up module production rate to 16 modules per day.
 - The shortage of components is solved temporarily.
 - IHEP MAC had made great efforts optimizing production workflow.
- ☐ DB & Web UI
 - Had implemented DB,GUI and production Web UI in production successfully
 - All these useful tools can help standardizing production.

Thanks!

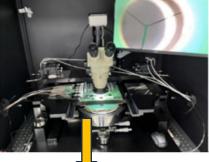
Module Production Workflow

Optical Gaging Product (OGP)

18

Production Facilities at IHEP

Electronics Testing System:


Electronic/IV test

Bonder:

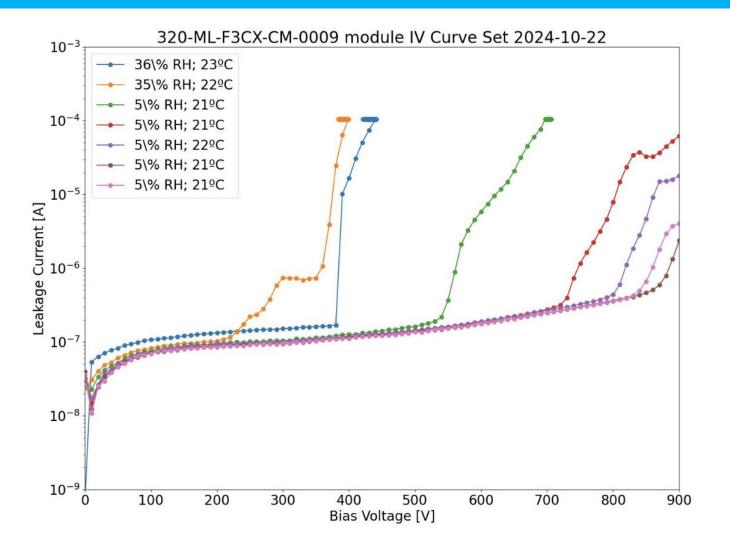
Bonding

Gantry:

Module assembly

Sensor Testing System:

Sensor quality control


Optical Gaging Product (OGP):

Alignment test

Dispensing Machine: Encapsulation

19

IV Test as Humidity

Humidity can have a noticeable impact on IV curve