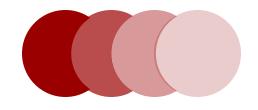


CMS Barrel Timing Detector Assembly

Jin Wang on behalf of MTD China BTL group

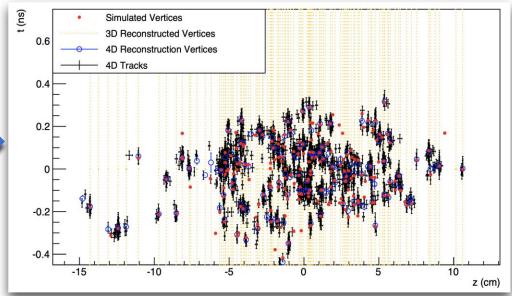

CLHCP 2025, Xinxiang, Henan 2025/10/30

01 CMS MTD BTL Detector for HL-LHC

Physics motivation of MTD

High luminosity → **High pileup**

- The MTD is a new CMS Phase-II detector for the HL-LHC
- It will be added to CMS to help meet the challenge of high luminosity.

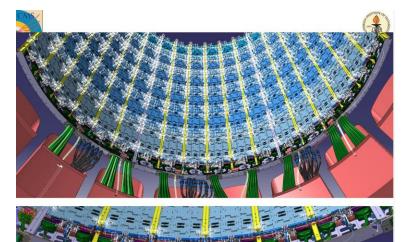


MTD can effectively suppress pileup, improving the overall accuracy of physical measurements

- ➤ It improves the precision of single Higgs measurements by 20-30%
- ➤ It increases the acceptance of Di-Higgs signals by 20%

MTD provides TOF information

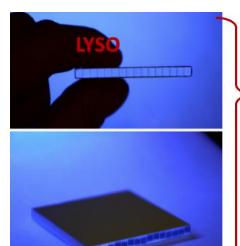
- ➤ It reduces reducible background by 40% in the search for SUSY particles
- ➤ It significantly enhances sensitivity to long-lived particles

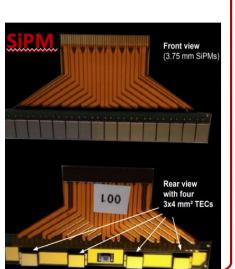

What is MTD BTL?

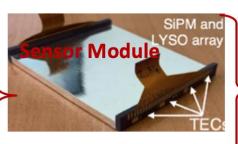
BTL (Barrel Timing Layer) provides high-precision timing in the barrel region, which is a single-layer MIP detector located in-between the outer tracker (OT) and the inner wall of the BTL-Tracker Support Tube (BTST).

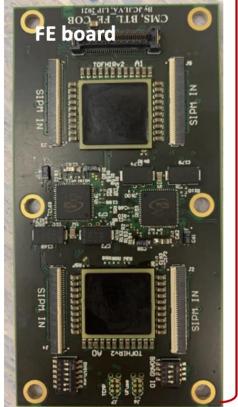
- Thin (< 4 cm), large area (38 m²) detector covering $|\eta|$ < 1.5
- > ~10k Sensor Modules, each containing 16 LYSO crystal bars and two 16-channel SiPM arrays
- ➤ Read out with custom TOFHIR2 ASIC
- ➤ Mounted on CO2 cooled trays and installed on inner surface of BTL Tracker Support Tube (BTST)

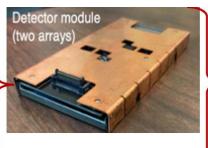
It will measure time with \sim 30-60ps resolution!

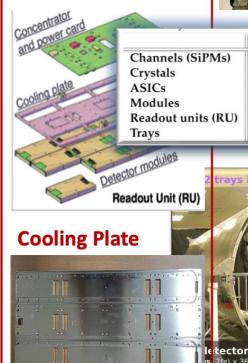







BTL Assembly Workflow Overview





RU

768

384

24

24

Tray

4608

2304

144

144

Module

16

Total

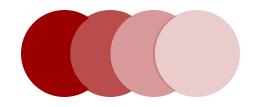
331776

165888

10368

10368

432


Cooling plate assembly and QC is ongoing at CERN

All components are assembled and validated at 4 global BTL Assembly Centers (BACs)

- > Virginia
- > Caltech
- > Milan
- Beijing

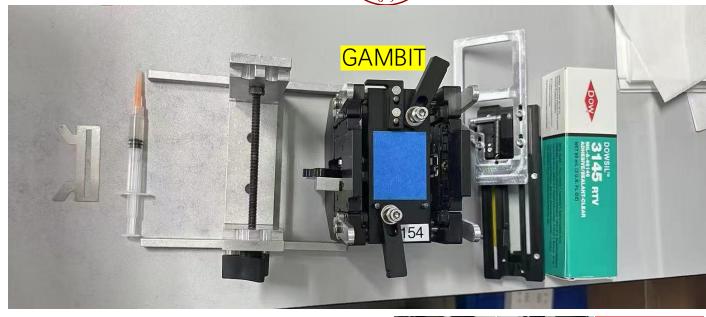
Trays will be shipped to CERN, integrated into the BTST

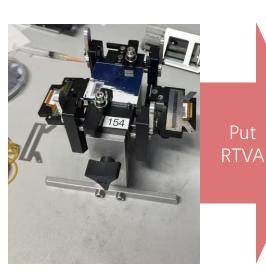
02 MTD BTL Module Assembly and QA/QC

Assembly and QA/QC of Sensor Module

Assembly materials

• RTV with a high refractive index close to that of LYSO

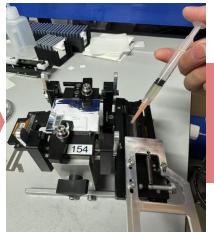

Assembly tool: GAMBIT


➤ Control RTV thickness, SiPM/LYSO alignment, and others

Standardization of Assembly flow

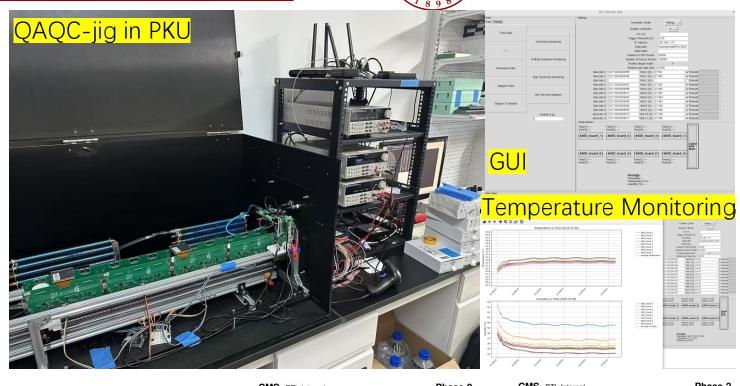
Put

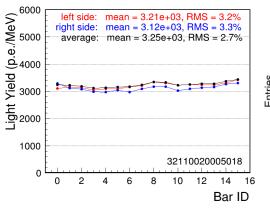
The humidity, time, and other ranges for placing the module

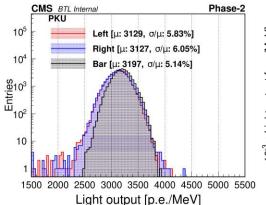


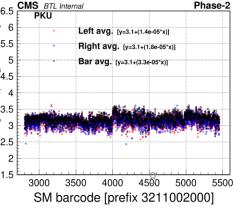
RTVA to brush

Lift cup and add rubber ring




Keep it in the box humidity 40%-60% for 24h

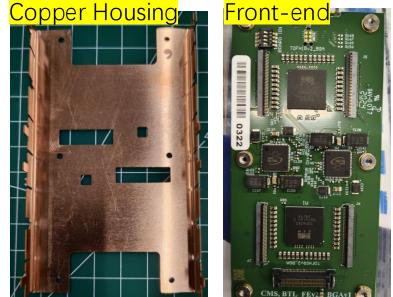

Assembly and QA/QC of Sensor Module


QA/QC of Sensor Module

- Using Na22 as the source and the 511 keV photon from the annihilation of electron and positron as the signal
- Components: Electronic module, constant temperature dark box, data collection system, and source movement system
- Measure the light yield of each channel to show the assembly quality
- ✓ Students from Peking University, Tsinghua University, and Beihang University have participated in the assembly work together.
- ✓ As of July, the assembly and QA/QC of all SMs have been completed
- ✓ The SM good product rate is above 95%

北京大学

Assembly and QA/QC of Detector Module

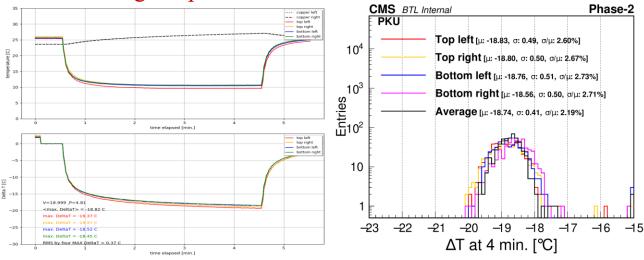

Detector Module: Sensor module, FE front-end electronic board, and copper shell for heat exchange

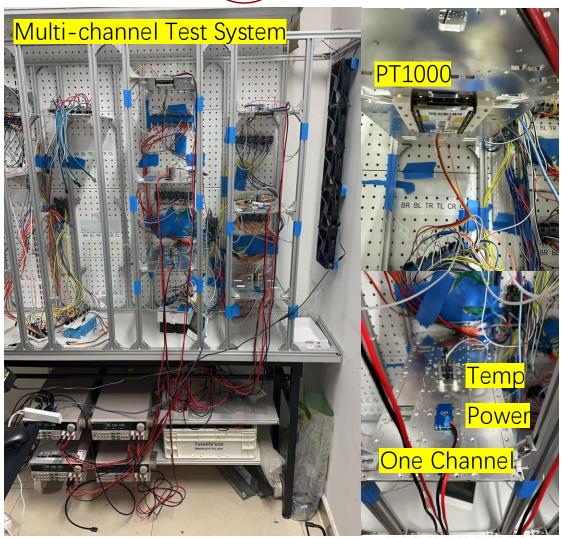
Assembly process of DM: Thermal contact

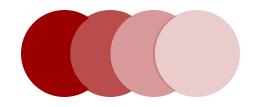
Good contact between the outer end of TEC on SiPM and the copper

Coverage of thermal pads on important chip surfaces on FE board

➤ Avoid contact between LYSO crystals and other components



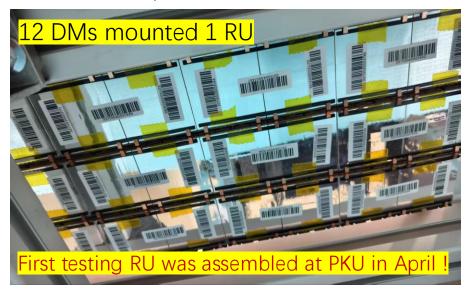

Assembly and QA/QC of Detector Module

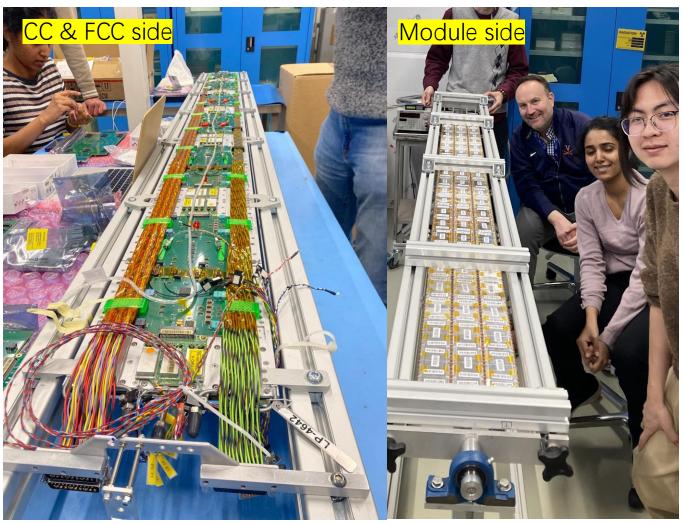

DM QAQC

- ➤ About 600 DMs are assembled, and 500 have been tested
- ➤ Using multi-channel test system
- > Test resistence of each DM
- ➤ Test delta T between cold plate and SiPM 4 minutes after applying the high voltage
- ✓ Students from Peking University, and Beihang University have participated in the assembly work together.
- ✓ The DM good product rate is above 98%

03 MTD BTL Tray Integration and QA/QC

BTL Tray Mounting and Integration

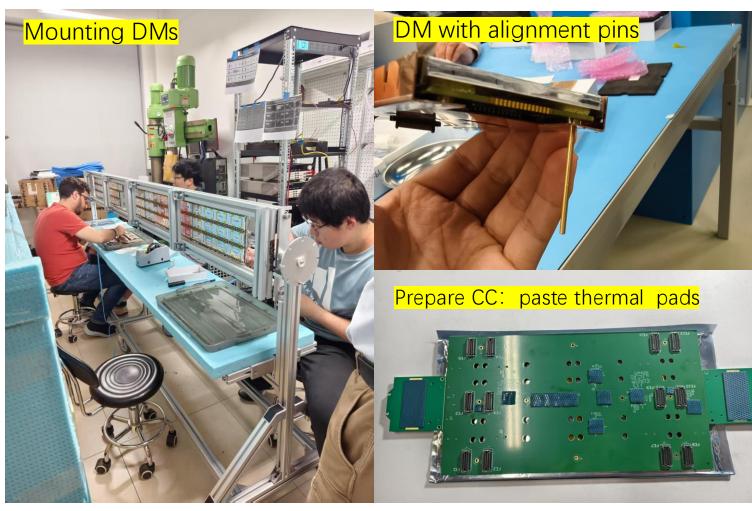



MTD BTL Tray

- A BTL Tray will cover a detector range of 10 degrees and 2.5 meters at η
- ➤ A total of 72 Trays cover the entire barrel of the MTD time detector

Assembly of BTL Tray

➤ 6 RUs, each includes a cooling plate, CC board, PCC boards, and 12 DMs



Assembly of BTL Tray

Main Steps

- ➤ Preparation & Mounting
 - > Prepare tools and components
 - ➤ Use screws to fix CC boards, PCC boards, and detector modules
 - ✓ Prepare the cold plate, DM, CC, and PCC
 - ✓ Clean all assembly surfaces to prevent foreign objects from affecting precision
 - ✓ Use alignment pins for module positioning
 - ✓ Use screws to fix and connect the CC, PCC, and DM
 - ✓ Check the connection strength and stability

In May, we completed the first Tray at Peking University!!!JIAMU 13 ESIGN

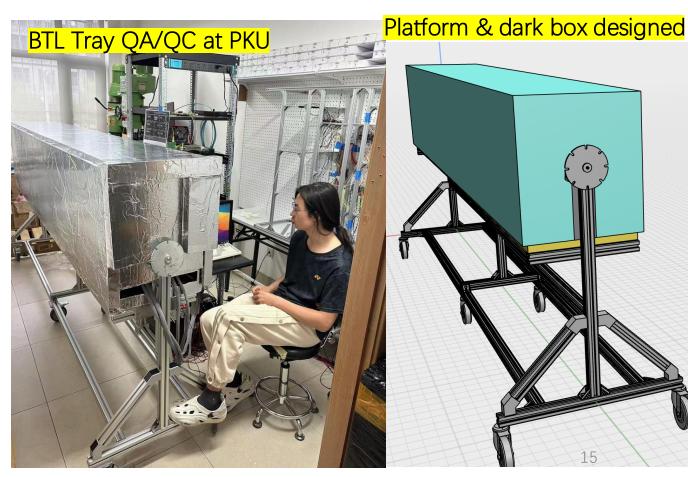
BTL Tray Integration

Main Steps

- > Preparation & Mounting
 - > Gather tools and components
 - ➤ Use screws to fix CC boards, PCC boards, and detector modules
- Optical Fiber Connection
 - > Install and secure fibers with holders
 - > Ensure fibers are clean and routed smoothly
- ► Electrical Cable Connection
 - > Connect and secure power

Key Points

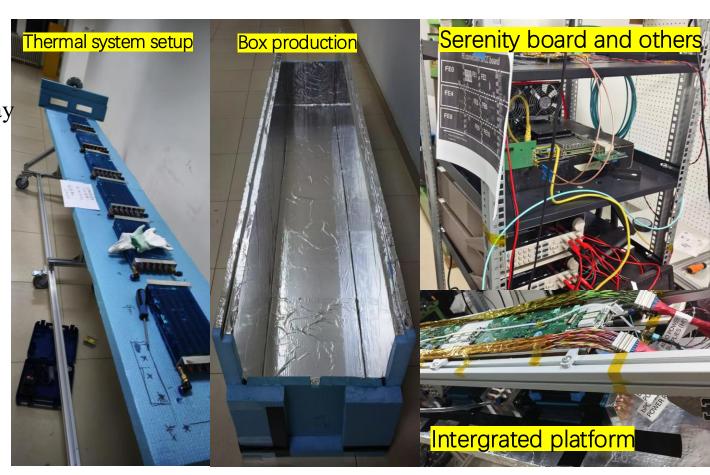
- Work is done in pairs for safety and accuracy
- Cleanliness and anti-static measures are important
- > Proper routing and securing of fibers and cables ensure reliability


BTL Tray QA/QC and Local Lab Setup

- > QA/QC is essential for ensuring the assembly quality and long-term reliability of BTL trays
- ➤ All assembly centers have started tray Assembly and QA/QC

Local Lab Setup

- ✓ Designed and built an integrated assembly and test platform with a movable plane, enabling tray assembly and testing on the same frame.
- ✓ Developed a thermal dark box for testing, ensuring light-tightness and stable temperature.
- ✓ Installed water cooling and temperature monitoring systems to maintain a stable test environment.
- ✓ Developed the Serenity board test system and integrated power/control systems.


BTL Tray QA/QC and Local Lab Setup

- > QA/QC is essential for ensuring the assembly quality and long-term reliability of BTL trays
- ➤ All assembly centers have started tray Assembly and QA/QC

Local Lab Setup

- ✓ Designed and built an integrated assembly and test platform with a movable plane, enabling tray assembly and testing on the same frame.
- ✓ Developed a thermal dark box for testing, ensuring light-tightness and stable temperature.
- ✓ Installed water cooling and temperature monitoring systems to maintain a stable test environment.
- ✓ Developed the Serenity board test system and integrated power/control systems.

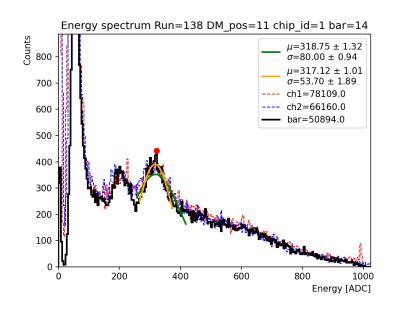
Key QA/QC Items for BTL Tray

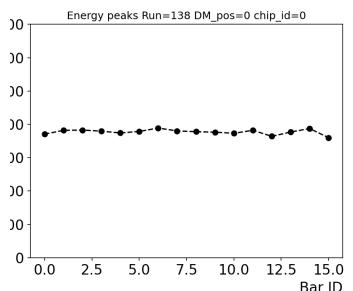
建筑 社主大学

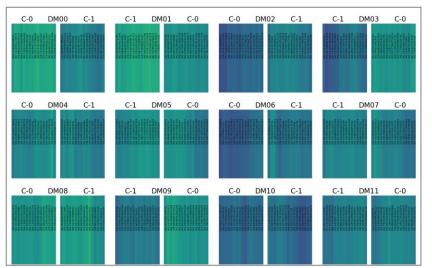
60000

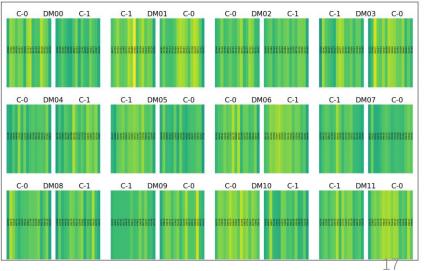
50000

40000

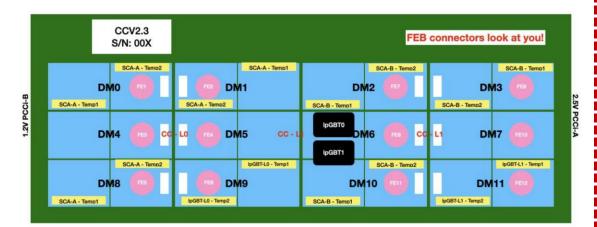

20000

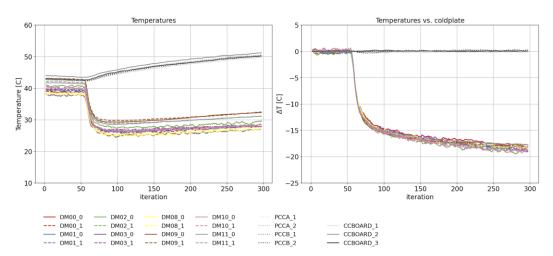

10000


- Currently, PKU has completed the assembly of 4 BTL trays and is testing the fourth one.
- These are the measurement results for one Readout Unit (RU) from a Tray assembled at Peking University.


Use LYSO's intrinsic radioactivity to measure energy peak of the 307 keV gamma peak

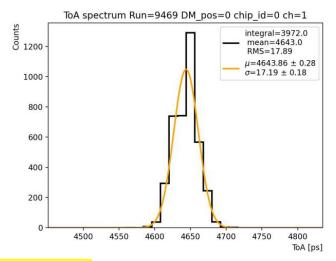
- ✓ Ensure continuity and confirm that all channels are alive
- ✓ Measure the response and confirm that the light output is preserved

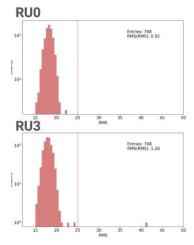


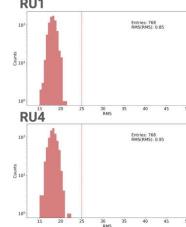

Key QA/QC Items for BTL Tray

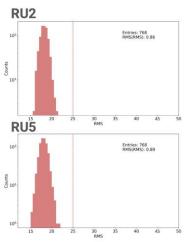
设计计算

TEC Functionality Check:

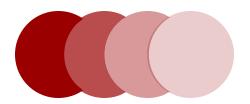

✓ Monitor temperature to ensure the TEC is operating properly.




Trigger on digital test pulses and measure the time of arrival

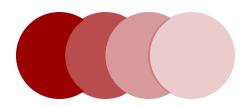

- ✓ Ensure continuity and confirm that all channels are alive
- ✓ measure TDC resolution

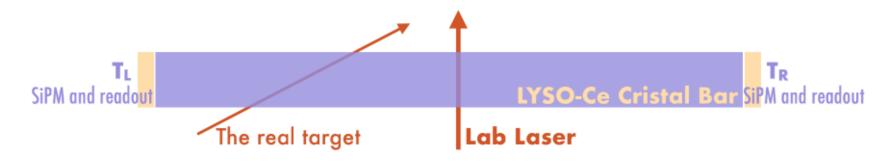
Summary plot for Tray1 at PKU



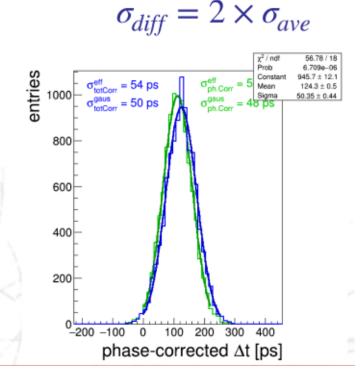
JIAMU 18 ESIGN

Summary


Summary


- ➤ MTD, a new CMS Phase-II detector for the HL-LHC will be added to CMS to help meet the challenge of high luminosity
 - ✓ BTL is a single-layer MIP detector which will measure time with ~30-60 ps resolution
- At PKU, we are deeply involved in the integration and assembly of BTL trays, taking responsibility for one quarter of the total tray production as an official assembly center
 - ✓ This year, our focus has shifted from sensor R&D to the large-scale Assembly of BTL modules and trays
 - ✓ Peking BAC has completed the assembly of all SMs, ~600 DMs and 4 BTL Trays
 - ✓ Students from **Peking University, Tsinghua University and Beihang University** have participated in the assembly work together.
 - ✓ At the same time, PKU has transported the first tray to CERN and is conducting further tests
 - The first assembly center to achieve this goal!
- Tray integration at CERN in 2025/2026, CMS commissioning with BTL in 2027

Thanks for your attention!


Back up

$$T_{ave} = 1/2(T_L + T_R)$$
 $\sigma_{ave} = 1/2\sqrt{\sigma_L^2 + \sigma_R^2}$

$$T_{diff} = T_L - T_R$$

$$\sigma_{diff} = \sqrt{\sigma_L^2 + \sigma_R^2}$$

Experiment	r	σ_{T}	$r/\sigma_{\rm T}~(\times 100)$
1000	(m)	(ps)	$(m \times ps^{-1})$
STAR-TOF	2.2	80	2.75
ALICE-TOF	3.7	56	6.6
CMS-MTD	1.16	30	3.87

Table 1.3: Nominal radiation doses and fluences at various locations of the timing layers after $3000\,\mathrm{fb}^{-1}$. The last two columns show the radiation levels providing a safety margin of a factor 1.5. The fluence is normalized to 1 MeV neutron equivalent in silicon.

				3000 fb^{-1}		$1.5 \times 3000 \text{ fb}^{-1}$	
Region	$ \eta $	<i>r</i> (cm)	z (cm)	n _{eq} /cm ²	Dose (kGy)	n _{eq} /cm ²	Dose (kGy)
Barrel	0.0	116	0	1.65×10^{14}	18	2.48×10^{14}	27
Barrel	1.15	116	170	1.80×10^{14}	25	2.70×10^{14}	38
Barrel	1.45	116	240	1.90×10^{14}	32	2.85×10^{14}	48
Endcap	1.6	127	303	1.5×10^{14}	19	2.3×10^{14}	29
Endcap	2.0	84	303	3.0×10^{14}	50	4.5×10^{14}	75
Endcap	2.5	50	303	7.5×10^{14}	170	1.1×10^{15}	255
Endcap	3.0	31.5	303	1.6×10^{15}	450	2.4×10^{15}	675

Table 1.1: Expected scientific impact of the MIP Timing Detector, taken from Ref. [8].

Signal	Physics measurement	MTD impact	
$ ext{H} ightarrow \gamma \gamma$ and	+15–25% (statistical) precision on the cross section	Isolation and	
H→4 leptons	→ Improve coupling measurements	Vertex identification	
$VBF \rightarrow H \rightarrow \tau \tau$	+30% (statistical) precision on cross section	Isolation	
	\rightarrow Improve coupling measurements	VBF tagging, $p_{\rm T}^{\rm miss}$	
HH	+20% gain in signal yield	Isolation	
	\rightarrow Consolidate searches	b-tagging	
EWK SUSY	+40% background reduction	MET	
	ightarrow 150 GeV increase in mass reach	b-tagging	
Long-lived	Peaking mass reconstruction	$\beta_{\rm LLP}$ from timing of	
particles (LLP)	\rightarrow Unique discovery potential	displaced vertices	