

Beam Testing of ATLAS ITk Strip Module

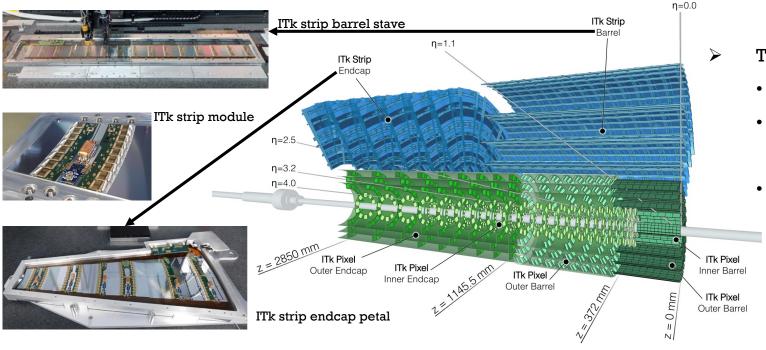
ATLAS ITk Strip Detector, DESY Test Beam, Corryvreckan, Operating Window

Lin Yang, Kun Liu
On Behalf of China ATLAS ITk Group

Contents

01. ITk Strip Detector

02. Test Beam


03. Data Analysis

04. Summary

ATLAS All-Silicon Inner Tracker

ATLAS ITk System

- HL-LHC: instantaneous $\mathcal{L} \to \mathbf{5}$ to 7.5 larger (than nominal).
- Such high-radiation condition calls for new ITk.
- 1400M (59.9M) channels of Si pixel (strip) detectors over 12.7
 (165) m².

ITk Strip Detector

- > Central barrel sector
 - 4 layers of staves (10976 rectangular modules);
 - 24 **Short Strip** (48 **Long Strip**) mm in the inner (outer) two;
 - 75.5 μm strip pitch and a **26 mrad** stereo angle.
 - Two end-cap sectors
 - each with 6 disks composed of petals:
 - 6912 trapezodial-shaped modules of 6 different geometric flavours (R0-R5);
 - Strips, have a built-in stereo angle of **20 mrad**.

ITk Strip-Module Test-Beam Workflow

Online (Data Taking)

Test-Beam Facility & Beam

- DESY II: 1-6 GeV e^{\pm} , TB21, TB22 and TB24
- CERN SPS North Area: 400 GeV p⁺, H2/H4/H6/H8

Assemble Experimental Line

- ADENIUM-type Tracking Telescope
- DUT: ITk Strip Module (sensor + ABCStar/HCCStar)
- Mechanics: cold box, rotation stage, cooling

Trigger & Timing

- Scintillators/PMTs
- AIDA-2020 Trigger Logic Unit (TLU)

DAQ & Run Control

- EUDAQ2 linking telescope, TLU, DUT
- DUT readout (ITSDAQ / Star chipset; FELIX in system tests)
- Clock/trigger distribution & event building

Run Plan & Scans

- Charge collection threshold, timing-delay
- HV/temperature, angle scans
- Online monitoring: hit maps, rates, sync, noise

Data Quality & Bookkeeping

- Run numbers, geometry, voltages, temps, humidity
- Telescope, DUT and beam positions

Offline (Data Analysis)

Event Loading

• EUDAQ2: Convert telescope/DUT/TLU outputs to Corry format

Event Building

Match by TLU trigger ID / timestamps

Geometry & Telescope Alignment

- Define telescope/DUT geometry
- Iterative/GBL-based alignment

DUT Aignment

- Project tracks to DUT
- Clustering & track finding according to spatial residuals

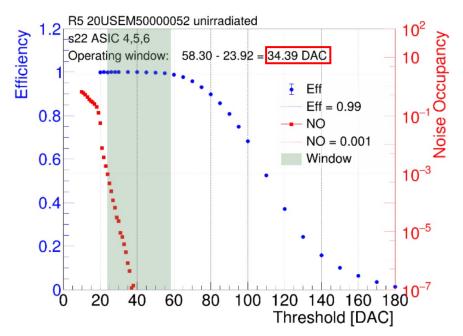
Performance Extraction

- Hit detection efficiency vs threshold
- Noise occupancy from pedestal scans
- Cluster size/charge sharing; intrinsic resolution

Hunt For Detector Operating Window

• Find a (threshold, HV, charge) region with efficiency > 99% and noise occupancy < 0.001 – primary goal of test beam campaigns

Reporting & Cross-Checks


- Report module performance both before- and after- irradiation
- Optimization of data-taking settings

Beam Testing Studies

Motivation

- Demonstrating module performance in close-to-real conditions with beams of different particle types.
- Measurements were performed for
 - charge collection
 - hit detection efficiency
 - noise occupancy and
 - tracking performance

in various sensor regions.

Calculating Detection Efficiency

- Reconstruction is done in a four-step process:
 - 1. Re-synchronising DUT and telescope.
 - 2. Masking of noisy channels.
 - 3. Alignment of the beam telescope and construction of tracks.
 - 4. Alignment of DUT and search for associable hits to the telescope
 - 5. Track fit which is based on a simple distance-tonearest-cluster cut.
- Hit detection efficiency is then calculated as:

$$\epsilon = \frac{tracks_{with\ DUT\ cluster}}{tracks_{telescope+timing\ plane}}$$

Hunt For An Operational Window

- Primary goal of test beam campaigns.
- Hit detection efficiency > 99% to maintain tracking performance of ITk modules.
- Noise occupancy < 0.1% to manifest pile-up events.

DESY-II Test Beam Location

Hamburg Bahrenfeld Campus

Collimator & Shutter
Dipole Magnet
Converter Target

Fiber
Target

DESY II

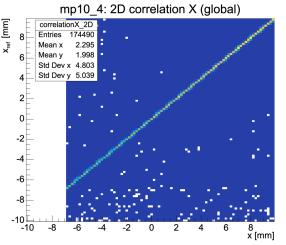
Synchrotron

- > Experimental Hall 2 (building 27)
 - three beam lines: TB21, TB22 and TB24.
 - γ beams in e^-/e^+ synchrotron DESY II
 - hitting carbon fibre targets (thickness of 7 μm)
 - converted into **bremsstrahlung** e^-/e^+ beams
 - with up to 1000 particles per cm² and
 - energies from 1 to 6 GeV
 - an energy spread of $\sim 5\%$ and a divergence of $\sim 1 \text{mrad}$.

ADENIUM-Type Telescope & DUT Cold Box

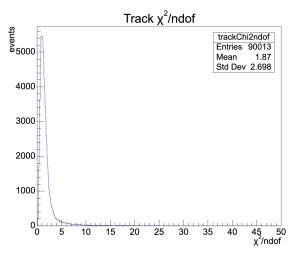
> ADENIUM Telescope:

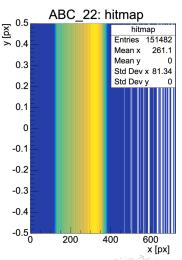
- Serve as spatial reference plane
- 6 ALPIDE Si sensor pixel plane with 1*2 cm²
 active area
- Intrinsic patial resolution <3 μm
- 1 TelePix2 timing plane with <4 ns time resolution.
- Device Under Test (DUT)
 - Placed in the center of the telescope
 - Placed in a -40 °C cooling box
 - High bias voltage
 - Temperature and humidity sensors

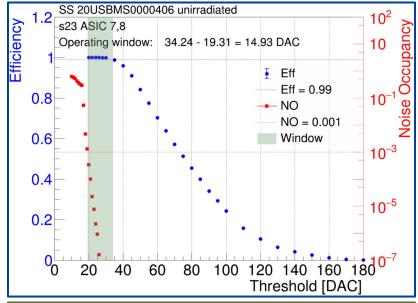


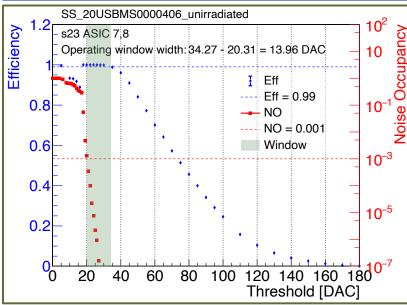
Test Beam Data Analysis Framework

Corryvreckan

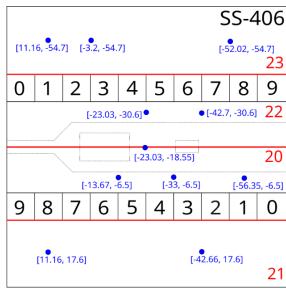

- The **main** test beam data analysis framework:
 - Modular concept of the reconstruction chain;
 - Combining detectors with very different readout architectures.
 - Centrally provided functionality: coordinate transformations, input and output, parsing of user input, and configuration of the analysis.
- **Both online and offline** core functionalities include:
 - track association and clustering algorithm,
 - telescope and DUT alignment with spatial correlation and residuals,
 - visualization of hit and calculation of hit detection efficiency.


Correlation Plots



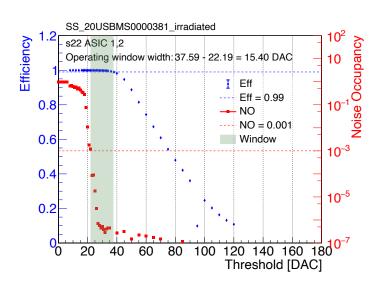

Spatial Residuals & Hit Map

Test Beam Data Analysis – Cross-Check Results

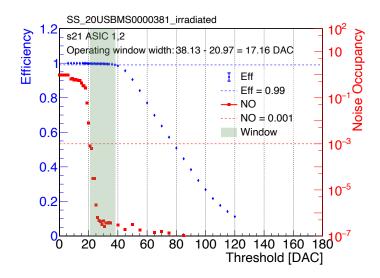


SS 406 Module

- Motivation
 - Gain familiarity with Corryvreckan
 - Confirm the "half-window" issue
- Module information
 - Canonical ID: SS 20USBMS0000406
 - Manufacture ID: SCIPP-OTHER SS-0003
 - Unirradiated module
 - With interposed layer
 - Assembly: true blue.
- **Upper-Left Plot**
 - Reported analysis result
- Lower-Left Plot
 - Cross-check analysis: consistent result

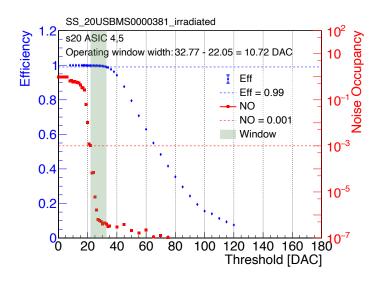

A Photograph of SS 406 Module in DUT Cold Box

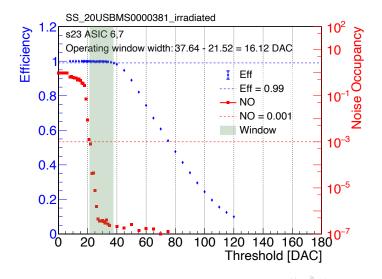
Beam Test Coordinate Map



Test Beam Data Analysis – Our Contributions

SS_381 Module

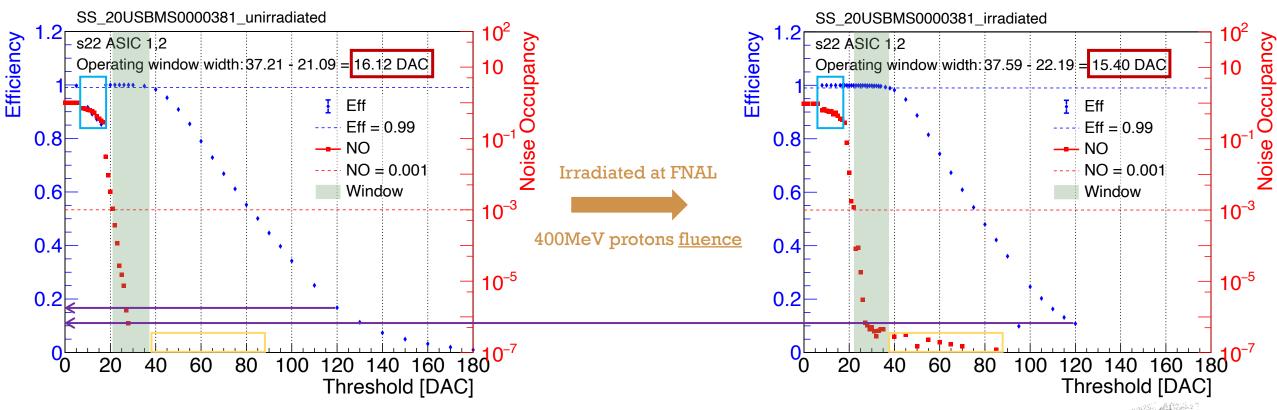

- Single-stream window width
 - S20 (top-right): **10.72**
 - S21 (bottom-right): 17.16
 - S22 (bottom-left): **15.40**
 - S23 (top-left): **16.12**



Expected features

- Smooth "S-curve" profile.
- High efficiency at low thresholds.
- Steep decline above a particular threshold value.
- Pedestal runs drop faster.

CLHCP2025



Module Performance Before & After Irradiation

> Four interesting features after irradiation:

- 1. Red box: 50% reduction in operating window width compared to the expected before-irradiation value.
- 2. Blue box: The "localized dip" below 20 DAC disappeared.
- 3. Purple arrows: Hit detection efficiency shows a **steeper decline** with increasing threshold.
- 4. Yellow box: Noise occupancy exhibits a new haviour a **long-tailed decay** to zero above 40 DAC.

Summary

Contributions from China ITk Group:

- √ Validation of existing results via ITk strip module
 SS 20USBMS0000406.
- ✓ Complete and independent analysis of ITk strip module SS_20USBMS0000381, both <u>before</u> and after irradiation.
- ✓ Automated Corryvreckan data analysis program.
- ✓ Person power in the July 2025 test beam campaign.

 Special Thanks to **Yajun He** from DESY for consistent

guidance and support.

Online (Data Taking)

Test-Beam Facility & Beam

- DESY II: 1-6 GeV e[±], TB21, TB22 and TB24
- CERN SPS North Area: 400 GeV p⁺, H2/H4/H6/H8

Assemble Experimental Line

- ADENIUM-type Tracking Telescope
- DUT: ITk Strip Module (sensor + ABCStar/HCCStar)
- Mechanics: cold box, rotation stage, cooling

Trigger & Timing

- Scintillators/PMTs
- AIDA-2020 Trigger Logic Unit (TLU)

DAQ & Run Control

- EUDAQ2 linking telescope, TLU, DUT
- DUT readout (ITSDAQ / Star chipset; FELIX in system tests)
- · Clock/trigger distribution & event building

Run Plan & Scans

- Charge collection threshold, timing-delay
- HV/temperature, angle scans
- · Online monitoring: hit maps, rates, sync, noise

Data Quality & Bookkeeping

Beam

- · Run numbers, geometry, voltages, temps, humidity
- Telescope, DUT and beam positions

Offline (Data Analysis)

Event Loading

EUDAQ2: Convert telescope/DUT/TLU outputs to Corry format

Event Building

Match by TLU trigger ID / timestamps

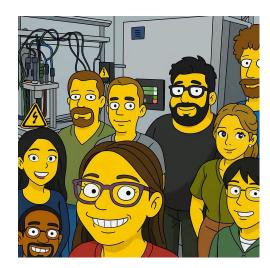
Geometry & Telescope Alignment

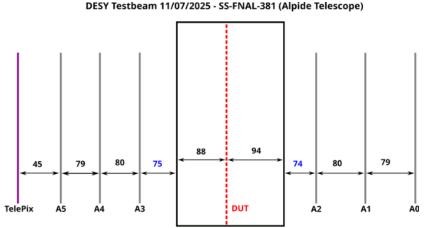
- Define telescope/DUT geometry
- Iterative/GBL-based alignment

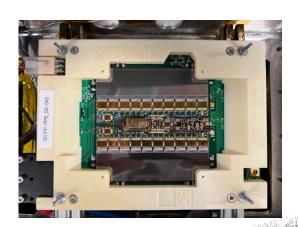
DUT Aignment

- Project tracks to DUT
- Clustering & track finding according to spatial residuals

Performance Extraction

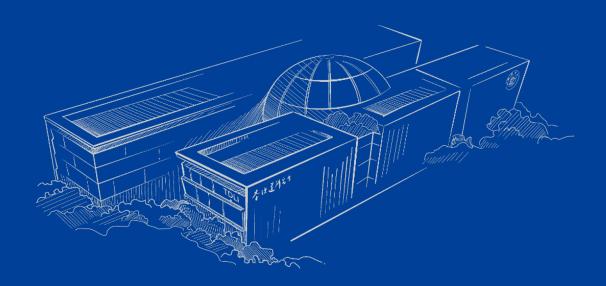

- Hit detection efficiency vs threshold
- · Noise occupancy from pedestal scans
- Cluster size/charge sharing; intrinsic resolution


Hunt For Detector Operating Window


 Find a (threshold, HV, charge) region with efficiency > 99% and noise occupancy < 0.001 – primary goal of test beam campaigns

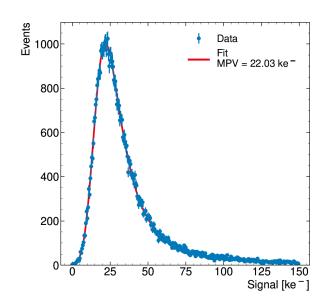
Reporting & Cross-Checks

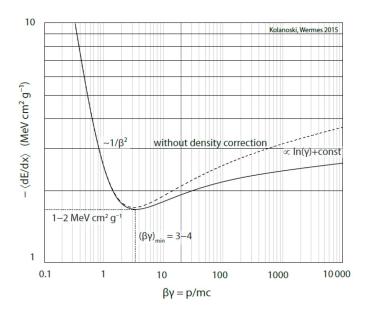
- Report module performance both before- and after- irradiation
- Optimization of data-taking settings



< 12 >

Thank You



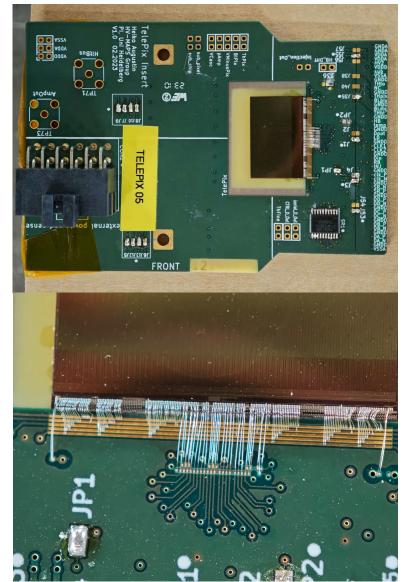


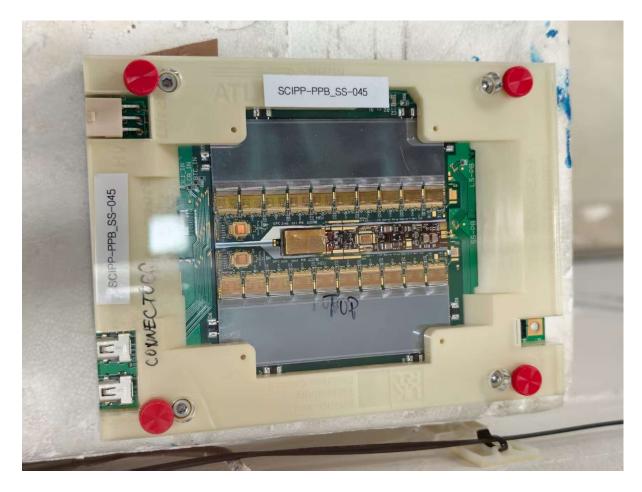
$$L(\lambda) = \frac{1}{\pi} \int_0^\infty e^{-t \ln t - \lambda t} \sin(\pi t) dt$$

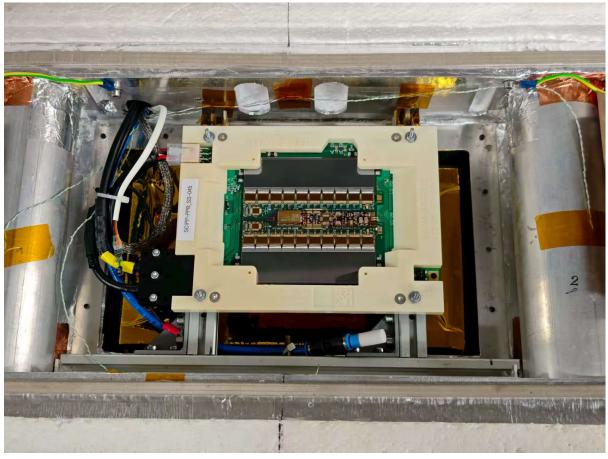
$$\lambda = \frac{\Delta E - (\Delta E)_{\text{m.p.v.}}}{\xi} \quad \text{with} \quad \xi = \frac{1}{2} K \frac{Z}{A} \frac{z^2}{\beta^2} \cdot d$$

$$\epsilon = \frac{\epsilon_{max}}{2} \cdot erfc \left\{ \frac{q_{thr} - \mu}{\sqrt{2}\sigma} \left[1 - 0.6 \cdot \tanh\left(\xi \frac{q_{thr} - q_M}{\sqrt{2}\sigma}\right) \right] \right\}$$




With DUT In Place


Close-Range Shot of TelePix2 Chipboard


With Power Filtering

ITk SS_20USBMS0000381 Module

