

Performances of the hybrid of LGAD and LATIC

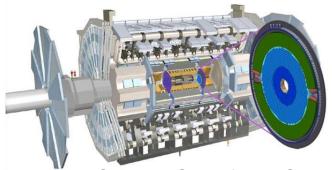
Li Zhuang 2025.10.28

Outline

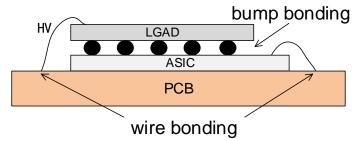
- Background
- ▶ LATIC Structure and Electronic Performance
- Flip Chip Bonding of LGAD and LATIC
- Hybrid Test
- Summary

Background: LGAD and The Electronic Readout

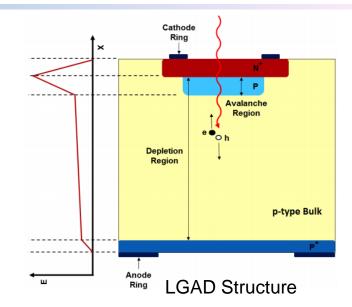
LGAD: Low Gain Avalanche Detector

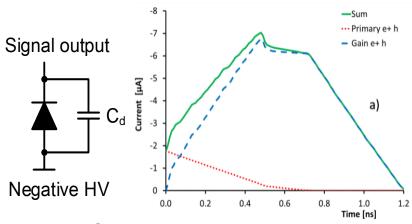

- Structure: n-in-p silicon detectors containing an extra highly-doped p-layer.
- Used for dealing with pill-up through its high time resolution and high spatial granularity.

Electronic characteristics:


- Signal duration: ~1 ns
- Charge: 10fC
- Detector capacitance: ~ 4 pF

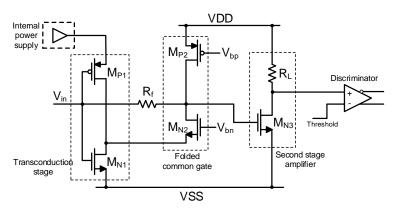
Readout requirements:

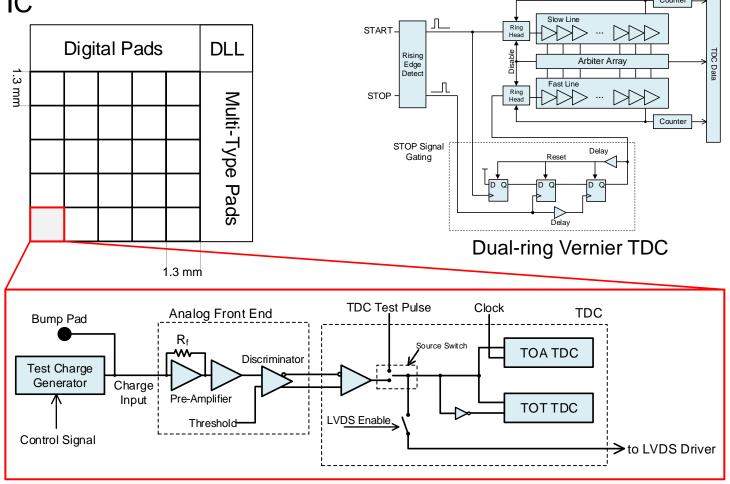

- Flip-chip bonding the sensor with the front-end readout chip.
- High speed and low-noise preamplifier and discriminator.
- High precision TDC.



LGAD in HGTD of ATLAS

Hybrid of LGAD and the front-end readout ASIC




LGAD electronic model and signal

LATIC: LGAD Readout Prototype ASIC Designed at USTC

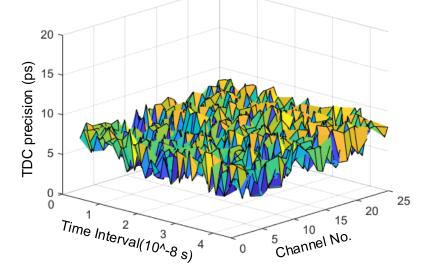
- LATIC: LGAD Amplification and Timing IC
- ▶ 25 channels, 1.3 mm pitch
- Pre-Amplifier:
 - OCMOS cascode pre-amplifier.
 - for lower noise and better time performance.
- TDC:
 - Dual-ring vernier TDC
 - for fine binsize and large measurement range.

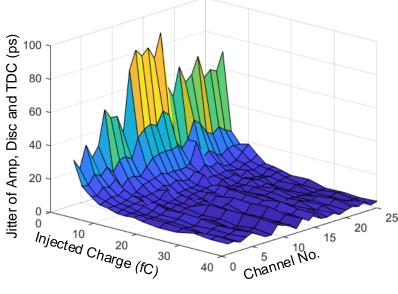
CMOS Cascode Pre-Amplifier

[1] Chen H, Li Z, Cai Y, et al. Design of high-precision time measurement prototype ASIC for the LGAD readout[J]. Nuclear Instruments and Methods in Physics Research, Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 2024:1064. DOI:10.1016/j.nima.2024.169302.

LATIC electronic performance

TDC test:

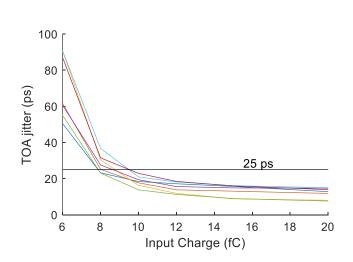

Inject external TDC test signal of the same origin as the system clock.

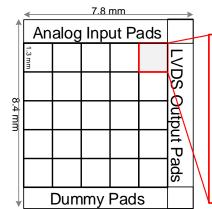

♦ TDC precision: <10 ps</p>

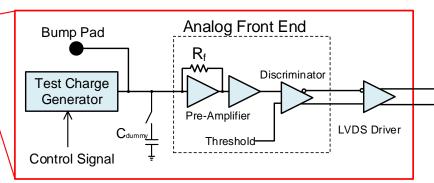
♦ Non-Linearity: INL<1 DNL<2</p>

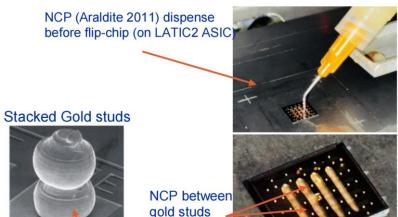
Full-chip test:

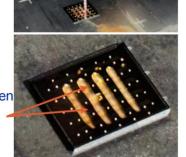
- Generate test signals within the chip.
- 4 pF dummy capacitor.
- Jitter: <20 ps at 10 fC input charge</p>

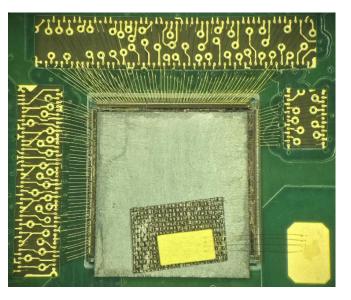


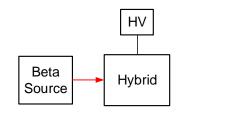

key design parameters of LGAD readout ASICs.

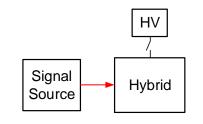

ASIC	ALTIROC0	ALTIROC1	ETROC0	ETROC1	LATIC0	LATIC1
Technology LGAD pad size Channel number	130 nm $1.3 \times 1.3 \text{ mm}^2$ 8	130 nm $1.3 \times 1.3 \text{ mm}^2$ 5×5	$\begin{array}{c} 65~\text{nm} \\ 1.3\times1.3~\text{mm}^2 \\ 1 \end{array}$	65 nm $1.3 \times 1.3 \text{ mm}^2$ $5 \times 5 \text{ (4} \times 4 \text{ with full chain)}$	180 nm $1.3 \times 1.3 \text{ mm}^2$ 8 / 5 × 5	130 nm $1.3 \times 1.3 \text{ mm}^2$ 5×5
Integrated TDC	no	yes	no	yes	no	yes
σ_{TOA} @	27 ps	<25 ps	<16 ps	~42 ps beam test with sensor	<20 ps	<20 ps
Charge	10 fC	10 fC	15 fC sensor cap.		10 fC	10 fC
Capacitance	3.3 pF	4 pF			6 pF	4 pF

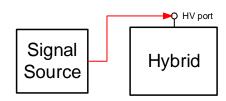

Flip-Chip Bonding of LGAD and LATIC


- LGAD sensor: USTC IME sensor
- ASIC: LATICv2
 - Mid version, discriminator LVDS out, no TDC.
 - jitter < 25 ps @10 fC
- 5x5 pixels, 1.3mm square pitch
- Flip-Chip processing:
 - Deposition of double gold studs on LATIC2 ASICs
 - Argon plasma cleaning for both ASICs and sensors
 - Applying Araldite 2011 glue on ASIC in 4 lines between gold studs
 - Align ASIC and sensor, thermo-compression bonding

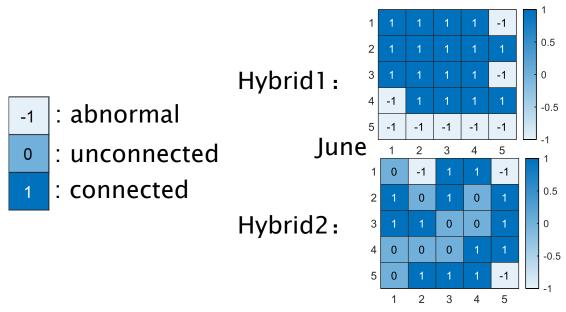


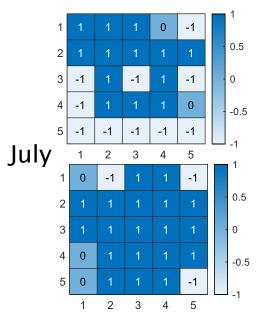


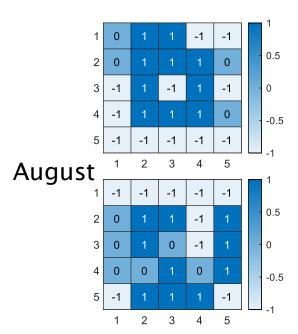

35 µm gap between ASIC and sensor avoid sparks at the edges of the chips.


•Thanks to CERN (Dominik Dannheim) and Geneva U. (Mateus Vicente) and their teams for helping with flip chip bonding.

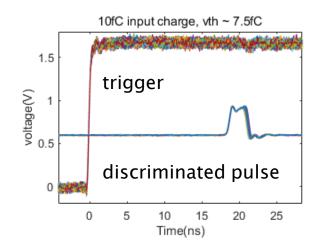
Hybrid Test: Connectivity

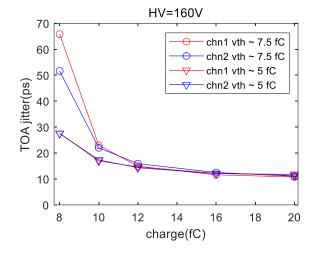

Test method: the connectivity was tested using the different methods, and the results were consistent.

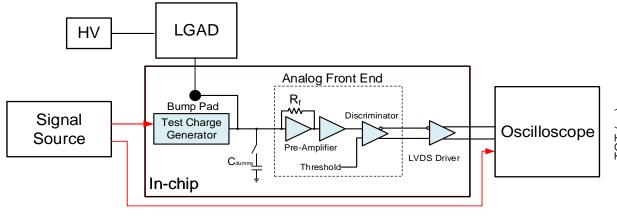


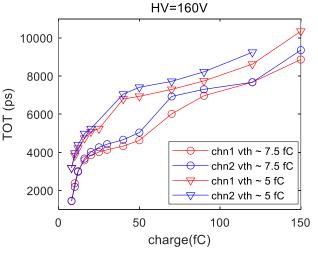


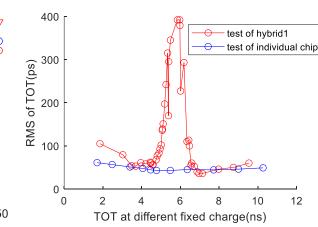
- Result:
 - Partial channels are connected.
 - Paths and circuits under the solder pads should be avoided.
 - Some channels have abnormal functions. (Possible short circuit caused by bump bonding)
 - The connectivity changes over time. (Temperature and humidity changes)








Hybrid Test: Electronic Test

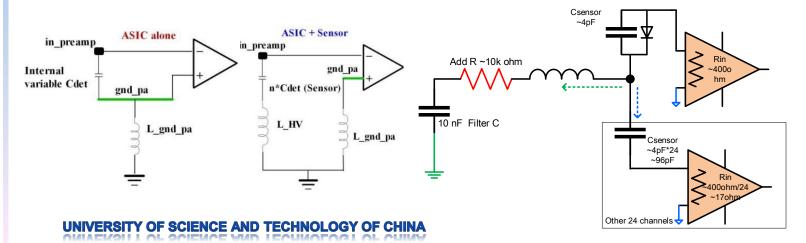

- Test conditions: HV 160 V; Room temperature.
- TOA jitter < 25 ps at 10 fC input charge.</p>
- The linearity of TOT with charge is not good, TOT jitter increases in the 5ns ~ 7ns interval.
 - Due to layout design error, failure to isolate digital ground and analog ground.

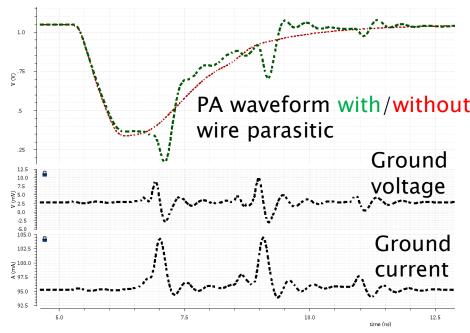
Hybrid Test: Electronic Test

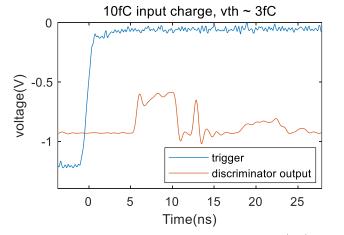
Why bad TOT jitter?

 The voltage fluctuation of in-chip ground caused by transmission buffer and bonding parasitic(mainly inductance).

Simulation verification:

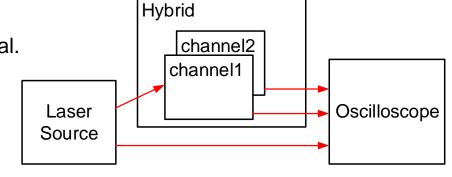

> Simulate with the wire bonding parasitic using 0.1 nH and 30m ohm.

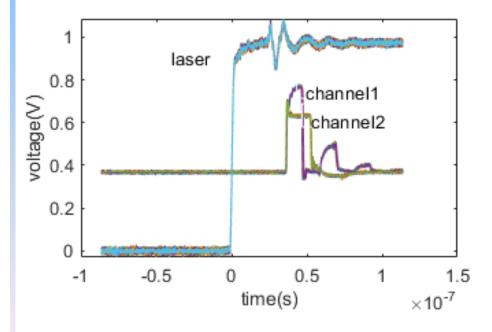

Test verification :

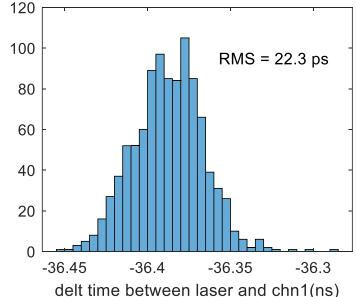

 Turn down the threshold and multiple pulses occurrence at the trailing edge of the waveform. (Not seen in ASIC individual test)

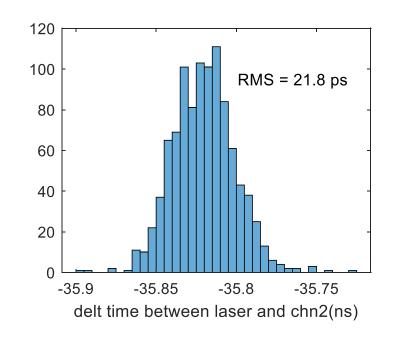
Possible solutions:

- In testing: Add a high-voltage decouple resistor to achieve better consistency between the high voltage and the in-chip ground. (not good effect for small channel number)
- In ASIC design: Isolate the ground between the pre-amplifier and other circuits.



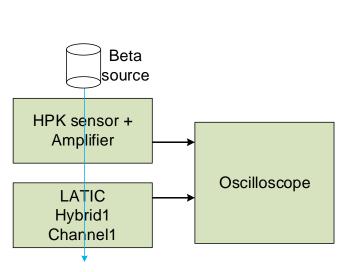

Hybrid Test: Laser Test

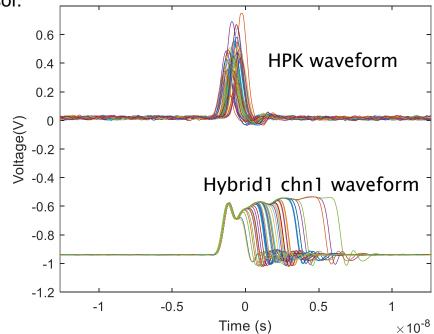

Test method:

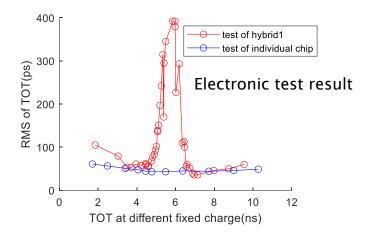

- Irradiate the sensor with laser on both channel 1 and channel 2.
- Measure the discriminated pulse and the laser synchronous electrical signal.
- Test result:

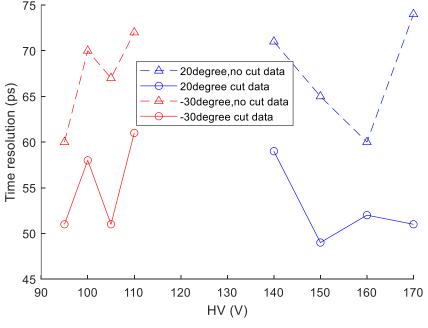
 - The time difference jitter between laser and channel2: 21.8 ps.

Beta source test using oscilloscope

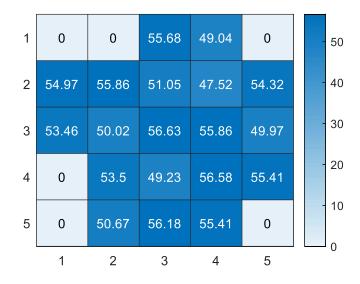

Test setup:

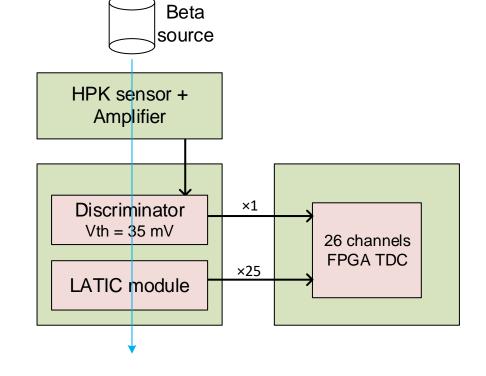

- Use a calibrated single channel HPK sensor as the time reference.
- Use a ⁹⁰Sr beta source to irradiate the HPK sensor and the hybrid.
- Measure the amplified HPK sensor and the hybrid waveform with an oscilloscope.


Data process:


- Using TOT to correct time walk of TOA.
- Cut the data with TOT larger than 5ns (~20%).

Subtract the time jitter of HPK sensor.

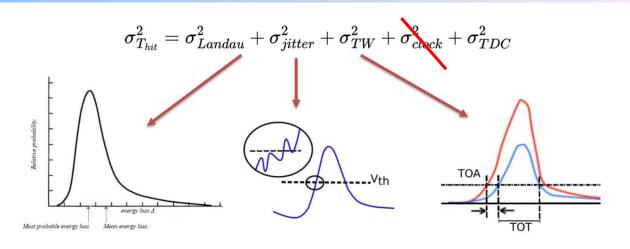




Beta source test using FPGA TDC

- Test setup:
 - HPK sensor + amplifier + discriminator
 - ♦ LATIC module
 - ♦ FPGA TDC
- Time resolution test results:
 - Data with TOT larger than 5ns were cut.

1	54.03	53.93	54.98	0	0	50
2	54.16	55.92	50.86	55.66	0	40
3	0	55.71	54.84	52.04	0	30
4	0	56.88	52.06	51.93	0	20
5	0	0	0	0	0	10
1	1	2	3	4	5	 10



Hybrid1, HV=150V, $T=20^{\circ}C$

Hybrid2, HV=150V, T=20 $^{\circ}$ C

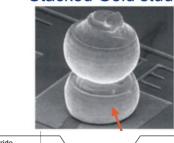
Summary of time resolution test

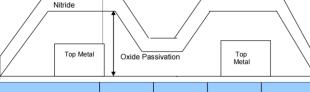
Factors affecting time resolution in LGAD readout:

Test	Contribution items	σ	
Electronic test	Jitter	25 ps	Q=10fC
Laser test	Jitter, jitter of laser synchronization signal	22 ps	Q>10fC
Beta source test (Oscilloscope readout)	Jitter, landau, time-walk	~ 51 ps	Contribution of Landau and TW ~ 43 ps
Beta source test (FPGA TDC readout)	Jitter, landau, time-walk TDC	~ 53 ps_	Contribution of TDC ~15 ps

Summary

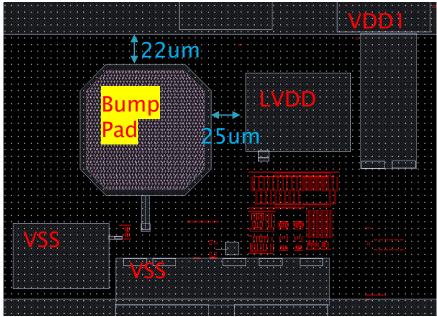
- The LGAD team at USTC has designed a prototype chip for LGAD readout.
- ▶ The flip-chip bonding of USTC IME sensor and LATICv2 has been completed.
- Testing for two hybrid have been conducted.
 - Hybrid testing provides reference for ASIC design.
 - Hybrids show good time performance in laser and beta source testing.
- Based on the test result, the revision of the ASIC and the exploration of flip-chip process are ongoing.

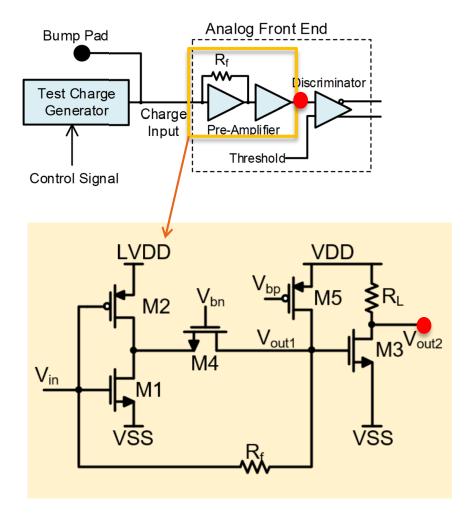

Backup


What happened with the abnormal channels?

Abnormal phenomenon:

- The output baseline of pre-amplifier is equal to analog power voltage.
- This phenomenon did not occur during individual chip testing.
- Possible reason:
 - The input of pre-amplifier is connected to a high voltage.


Stacked Gold studs



		for Typical	for Best (Thickness (um) for Worst	Dielectric	
	Layer	Capacitance	Capacitance	Capacitance	Constant	
	dpasv_nit	0.3	0.27	0.33	7	
	dnasy oyd/QKA TMI)	1.00	1.70	2.10	2.0	

Passivation layer parameters

Window opening of passivation layer and top metal.