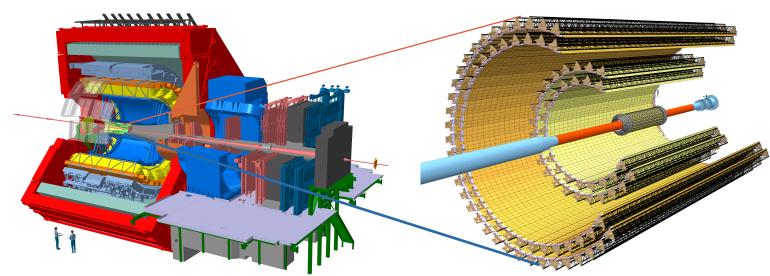


罗嘉琪(复旦大学) Jiaqi Luo (Fudan University)

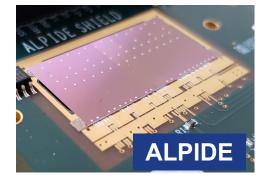
E-mail: jiaqi.luo@cern.ch, chunzheng.wang@cern.ch



CLHCP2025 Xinxiang ,Henan

ALICE Inner Tracking System in run 3 (ITS2)

7 Layers:

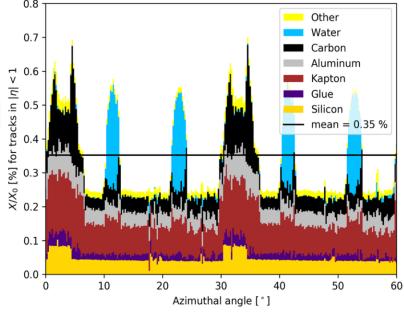

→ 3 inner barrel (IB) and 4 outer barrel (OB)

Large active area and granularity

→ 10m² active silicon area, 12.5 x 10⁹ pixels

Built with ALPIDE chips

→ 180nm CMOS MAPS, 15 x 30 mm², 512 x 1024 pixels


^{*} M. Mager, for ALICE Collab, NIM-A 824, 434 (2016) * F. Reidt, for ALICE Collab, NIM-A 1005, 121793 (2021)

LHC LS2			LHC RUN3				LHC LS3				LHC RUN4			
2019	2020	2021	2022	2023	2024	2025	2026							

How to improve ITS2?

Non-sensitive material

→ Silicon has 1/7 of total material budget

Non-uniformly distributed material

→ Stave overlapping, support and water cooling structure

Unable to be closer to the interaction point

→ Mechanical constraints

Remove water cooling

New process chip (with lower power consumption) required to introduce air cooling

Remove the circuit board

New technology required to integrate data, control and power distribution on a single chip

Remove of mechanical support

New mechanical structure design required

ITS3: replacement of ITS2 inner barrel

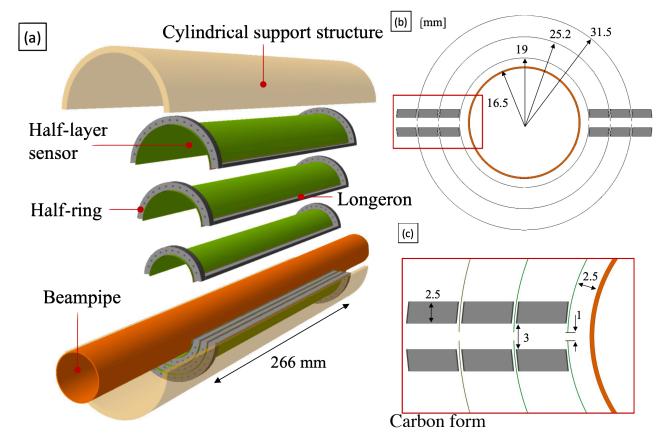
Bent wafer-scale sensor ASIC

- → 65 nm CMOS MAPS
- → Power density < 40 mW/cm²
- → Fabricated with stitching

3 layers with 6 sensors(1 chip / half layer) Air cooling between layers

Key benefit

Lower material budget


 \rightarrow 0.35% X₀ \rightarrow 0.09% X₀ per layer

Uniformly distributed material Closer to interaction point

⇒ Beampipe: 18.2 mm → 16.0 mm

⇒ Layer 0 position: ~24 mm → 19.0 mm

Schematic of ITS3:

ITS3 TDR: CERN-LHCC-2024-003

LHC LS2			LHC RUN3					LHC LS3				LHC RUN4		
					2024			2027	2028	2029	2030	2031	2032	

ITS3: replacement of ITS2 inner barrel

Bent wafer-scale sensor ASIC

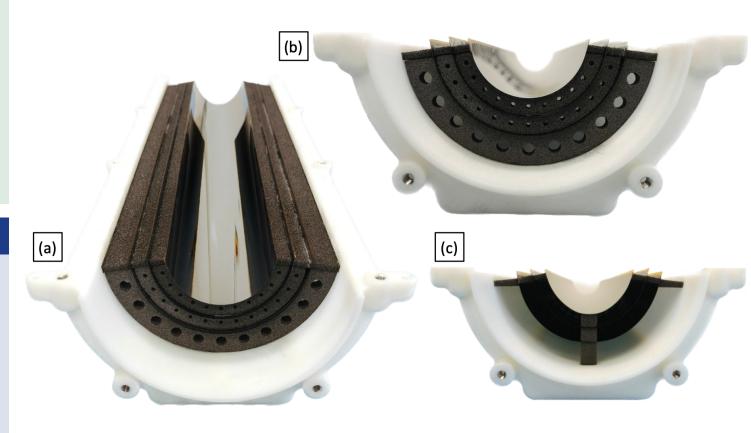
- → 65 nm CMOS MAPS
- → Power density < 40 mW/cm²
- → Fabricated with stitching

3 layers with 6 sensors

Air cooling between layers

Key benefit

Lower material budget

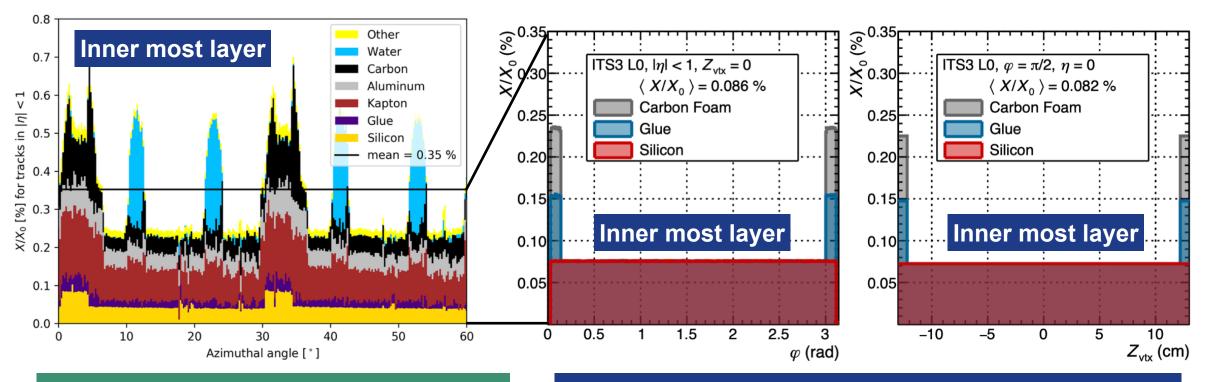

 \rightarrow 0.35% X₀ \rightarrow 0.09% X₀ per layer

Uniformly distributed material Closer to interaction point

⇒ Beampipe: 18.2 mm → 16.0 mm

→ Layer 0 position: ~24 mm → 19.0 mm

Actual image of engineering model:



ITS3 TDR: CERN-LHCC-2024-003

			LHC RUN3					LHC LS3				LHC RUN4		
					2024			2027	2028	2029	2030	2031	2032	

Material budget comparison between ITS2 IB and ITS3

ITS2 IB

Various non-sensitive material

Silicon has 1/7 of total material budget.

Non-uniformly distributed material

Stave overlapping, support and water cooling structure.

ITS3

Few of non-sensitive material

Sillicon dominates.

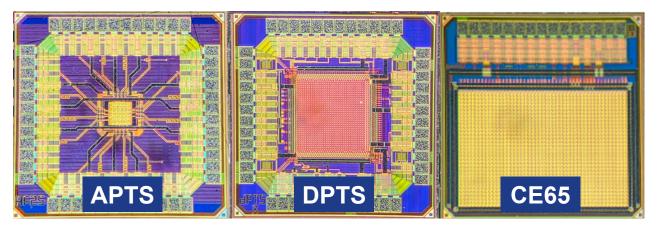
Uniformly distributed material

Only some lightweight carbon foam and glue distributed on the edge of the sensitive area.

Chip development roadmap

MLR1 (Multi-reticle Layer Run 1)

- First 65nm process MAPS
- APTS, DPTS, CE65
- Successfully confirmed the feasibility of the 65nm process for ITS3


ER1 (Engineering Run 1)

- First stitched MAPS
- MOSS, MOST
- Successfully qualified the large scale sensor design

ER2 (Engineering Run 2)

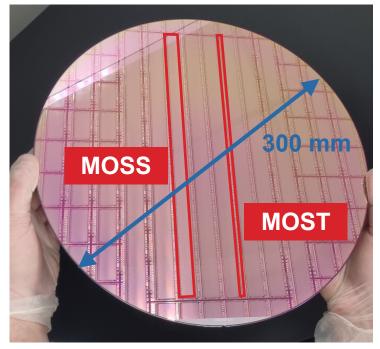
- ITS3 sensor prototype
- Specifications frozen
- Design ongoing

ER3 ITS3 sensor production

APTS

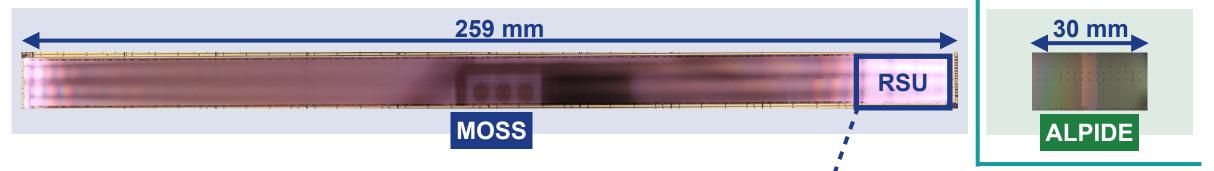
Analogue Pixel Test Structure **DPTS**

Digital Pixel Test Structure **CE65**

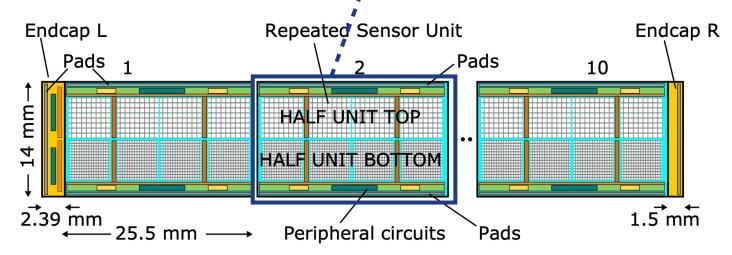

Circuit Exploratoire 65 nm

MOSS

Monolithic Stitched Sensor

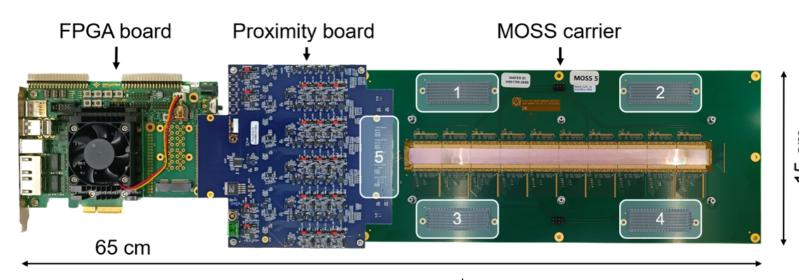

MOST

Monolithic Stitched Sensor Timing



MOSS

- First stitched chips for HEP!
 - Full module on a single chip
 - **Wafer-scale** (14 x 259 mm)
 - 65 nm process
- MOSS is segmented into 10 RSU (repeated sensor units)
 - RSUs are divided into top and bottom half units with different pitches



	Pixel matrix	Pixel size
Matrices on the top	256 × 256	22.5 µm
Matrices on the bottom	320 × 320	18 µm

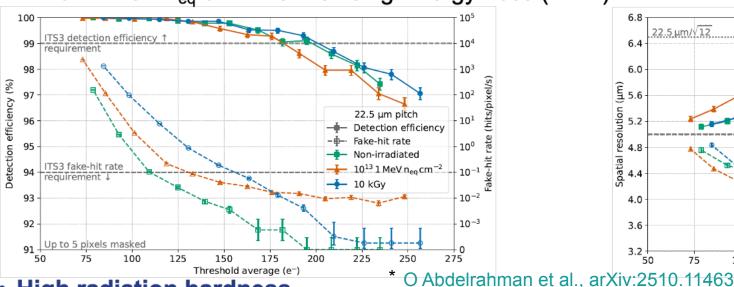
Functional Test System of MOSS Chip

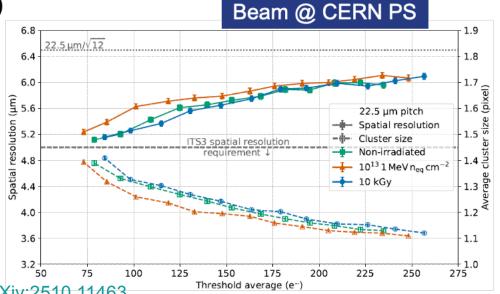
A dedicated test system was developed to functionally characterize the MOSS chip.

- The chip and carrier board are interfaced via five connectors:
- 1 Connector: Exclusively for the Laser Engine Controller (LEC)
- 4 Connectors: Each handling five half-units
- O Abdelrahman et al., arXiv:2510.11463

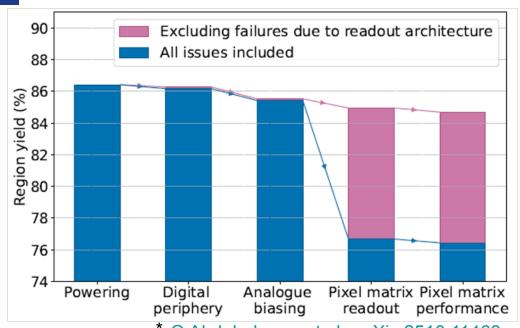
FPGA and Proximity board:

- The FPGA and Proximity board are connected to the LEC board connector
- The additional four numbered connectors connect to FPGA and Proximity boards for powering and characterization from the long edge of the chip.


Testing results (selected)


- Target performance for ITS3 sensors
 - Detection efficiency higher than 99%
 - Fake-hit rate lower than 10⁻¹ pixel⁻¹s⁻¹
- Expected radiation doses during ITS3 operation
 - 10 kGy Total Ionising Dose (TID)
 - 10¹³ 1MeV n_{eq} cm⁻² Non-Ionising Energy Loss (NIEL)

High radiation hardness

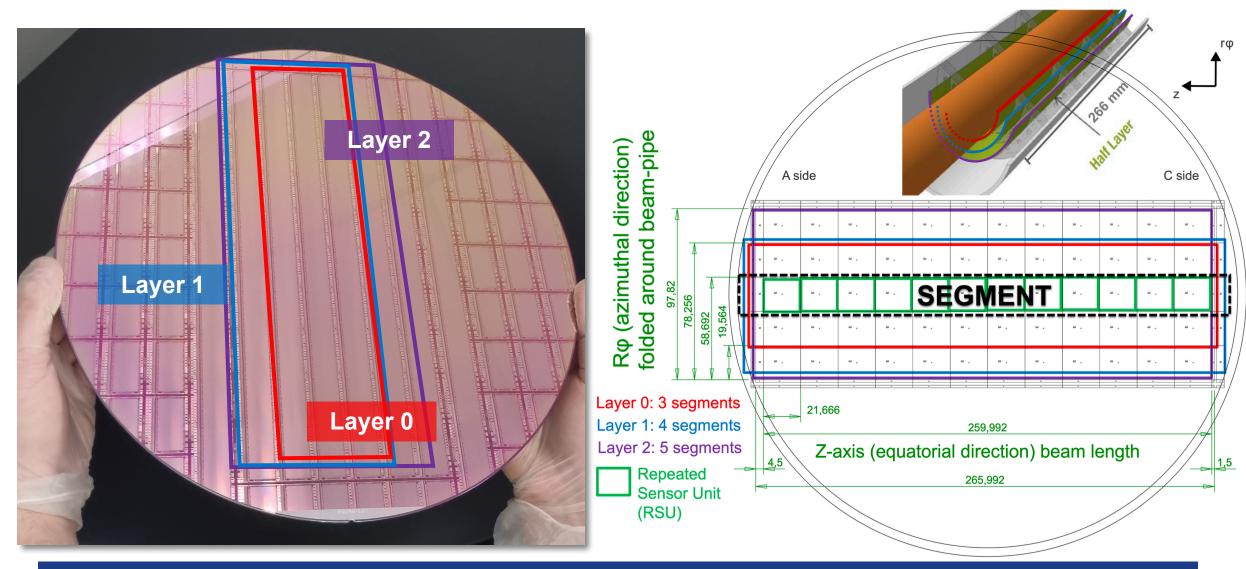

See details in Zijun's talk: Performance study of the MOSS chip for the ITS detector (11/1 3:00PM)

- Efficiency performance of irradiated chip under ITS3 requirement fully compatible with non-irradiated one
- Same story for the resolution and cluster size as a function of charge collection threshold

Yield

- The yield losses across the different chip block verifications
 - The largest yield loss occurs during the powering test
 - Due to shorts in the power network from the new metal stack
 - Will be mitigated in the next chip submission

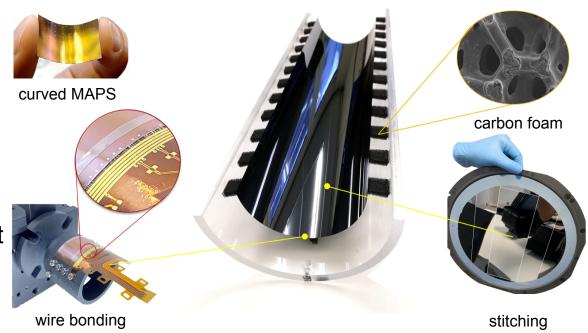
O Abdelrahman et al., arXiv:2510.11463


The functional yield of half-units

- No specific patterns are apparent
- No top-bottom asymmetry within MOSS chips is observed

MOSS 1	98	92	92	91	82	100	83	98	93	71	100	
MOSS-1	93	100	85	100	92	92	100	83	93	86		
MOSS 2	100	65	92	100	92	88	73	100	98	77	-90	
MOSS-2	100	100	90	83	77	90	98	92	98	90		
	80	92	88	100	100	98	83	100	85	82	-80	(%)
MOSS-3	100	88	90	89	88	77	77	85	100	100		
	89	85	83	100	50	100	88	100	78	100		Yield
MOSS-4	81	91	89	100	98	81	100	80	89	88	70	Ξ̈́
MOSSE	91	78	92	90	90	75	92	90	91	83		
MOSS-5	100	91	100	100	82	100	100	85	92	90	-60	
MOSS 6	100	91	75	92	73	80	83	82	92	93		
MOSS-6	84	93	98	92	98	100	92	100	92	91	E0	
	RSU1	RSU2	RSU3	RSU4	RSU5	RSU6	RSU7	RSU8	RSU9	RSU10	<u>50</u>	
	* O Abdolrahman at al., arViv:2510.11463											

Final chip design — MOSAIX



Summary and outlook

- ITS3 a bent wafer-scale monolithic pixel detector
- ITS3 project is on track for installation in LS3
- A twofold improvement in spatial resolution wrt. ITS2
- The following analysis significantly benefit from ITS3
 - → heavy flavor collectivity, thermal dielectron measurement
 - → and many more analyses...

