Probing HHH production via 4τ2b channel at a 100 TeV hadron collider

Zhenyu Dong

(a) CLHCP 2025

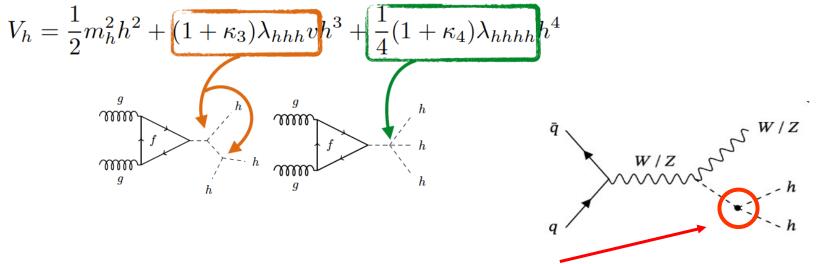
Peking University

Outline

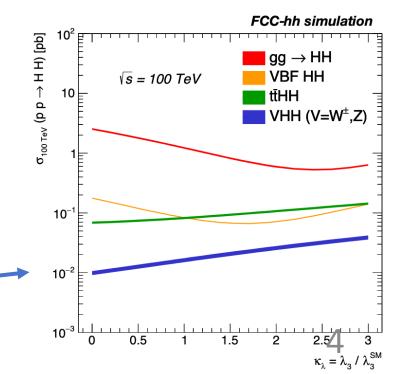
- **■** Motivation
- **□** Samples
- Analysis strategy
- Event selections
- **□** Results
- **□** Summary

Motivation

Triple Higgs production at future colliders -- a growing interest


- Pioneering works in the early 2000s:
 - → SM prospects very limited rates
 - → BSM rates more appealing
- SM rates between 100 ab @ 13 TeV to a few fb @ 100 TeV

CEPC/FCC working group studies shows:


- Large rates can be reached in many BSM models
 - → Extra resonant contributions
 - → Coupling modifiers
- Multiple Higgs production measurements are available at CEPC/FCC given its high luminosity and high energy

Motivation

• HHH production: direct probe of quartic Higgs self-coupling λ_{hhh} and trilinear Higgs self-coupling λ_{hhh}

- VHH can also contribute to the trilinear coupling λ_{hhh}
 - Hard to distinguish from HHH in our final states
 - Treated as part of signal in our study
 - Provide extra constraints on the positive side of κ_{λ}

Motivation

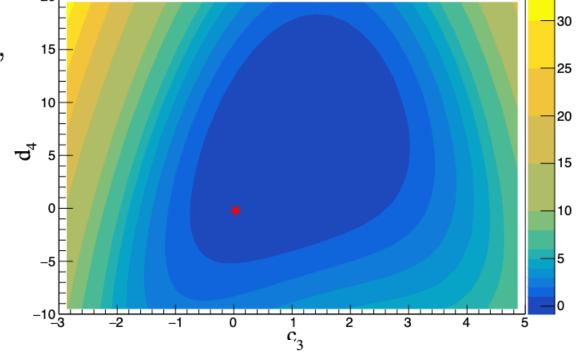
19.21 7.204 6.312	1110.338 416.41	$\frac{N_{30 \mathrm{ab}^{-1}}}{33310}$
	416.41	10400
6 212		12492
0.312	364.853	10945
1.578	91.22	2736
0.976	56.417	1692
0.901	52.055	1561
0.691	39.963	1198
0.331	19.131	573
0.244	14.105	423
0.228	13.162	394
0.214	12.359	370
0.099	5.702	171
0.086	4.996	149
0.083	4.783	143
0.073	4.191	125
	0.976 0.901 0.691 0.331 0.244 0.228 0.214 0.099 0.086 0.083	0.976 56.417 0.901 52.055 0.691 39.963 0.331 19.131 0.244 14.105 0.228 13.162 0.214 12.359 0.099 5.702 0.086 4.996 0.083 4.783

Our $4\tau 2b$ channel

- Though suffer from lower signal yield
- Clean backgrounds relative to b-riched channel

HHH decay table main channels:

- At least 100 events with 30 ab^{-1} @ 100 TeV
- The golden $4b2\gamma$ mode [Papaefstathiou & Sakurai (JHEP'16)
 - Clean signature and excellent photon resolution
 - 2σ reachable in the SM case
- The 2b2\lambda4j + MET mode [Kilian, Sun, Yan, Zhao & Zhao (JHEP`17)]
 - High-level variables (like MT2)
 - Challenging for the SM, potentially powerful for BSM
- The 6b & 4b2 τ mode [Papaefstathiou, Robens & Tetlalmatzi-Xolocotzi (JHEP'21)], [BF, Kim & Lee (PLB'17)]
 - Require good b-tagging
 - High-level variables
 - 2σ reachable in SM case


Theoretical framework

Theoretical framework for HHH signal

Modified Higgs potential

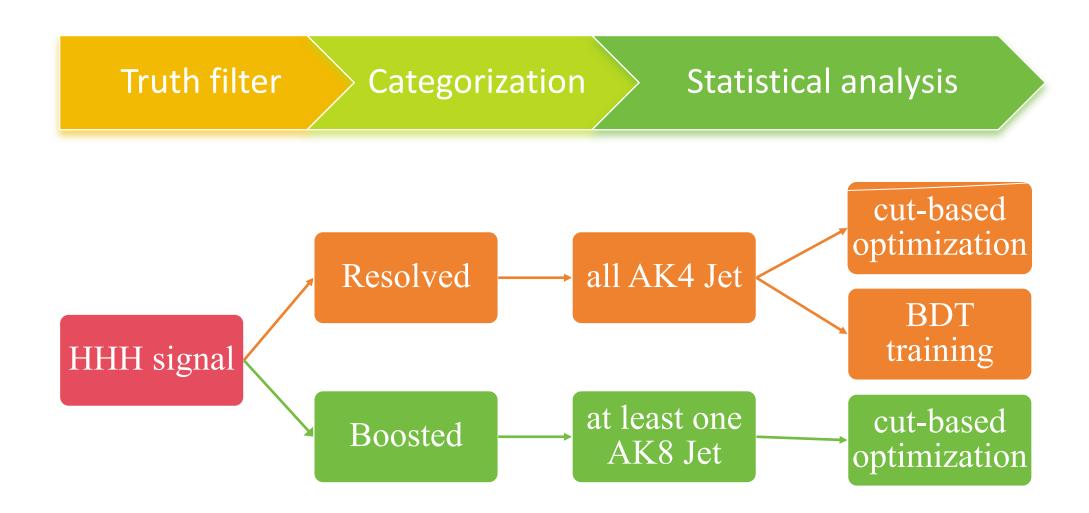
$$V(h) = \frac{1}{2}m_H^2 h^2 + \lambda_{\text{SM}}(1+c_3)v_0 h^3 + \frac{1}{4}\lambda_{\text{SM}}(1+d_4)h^4,$$

- c_3 and d_4 provide a parametric framework to investigate deviations from the SM predictions
- Cross section of HHH production in the (c3, d4) plane
- Fitting result:

(2.2)

 $\sigma (c_3, d_4) / \sigma_{SM} -1$

$$\frac{\sigma_{\text{HHH}(c_3,d_4)}}{\sigma_{\text{HHH(SM)}}} - 1 = 0.0297 \times c_3^4 - 0.2017 \times c_3^3 + 0.0395 \times c_3^2 d_4 + 0.7236 \times c_3^2 + 0.0154 \times d_4^2 - 0.1409 \times c_3 d_4 - 0.6658 \times c_3 - 0.1119 \times d_4,$$


Samples

- Signal
 - HHH: scan (c3, d4) plane
 - Consider VHH as part of signal which is sensitive to c3
- Two groups of background
 - t/W related samples
 - $X_{bb}Y_{\tau\tau}Y_{\tau\tau}$ (including H_{bb} , Z_{bb} , $H_{\tau\tau}$, $Z_{\tau\tau}$, DY ...)

Class	Process	$\sigma \times BR.$ (ab)
	$HHH \to (b\bar{b})(\tau_h \tau_h)(\tau_h \tau_h), c_3 = 0.0, d_4 = 0.0 \text{ (SM)}$	3.0
	$HHH o (b\bar{b})(au_h au_h)(au_h au_h), \ c_3 = 1.0, \ d_4 = 0.0$	2.6
	$HHH \to (b\bar{b})(\tau_h \tau_h)(\tau_h \tau_h), c_3 = 1.0, d_4 = 9.0$	0.67
HHH signal	$HHH \to (b\bar{b})(\tau_h\tau_h)(\tau_h\tau_h), c_3 = 2.0, d_4 = 19.0$	7.6
	$HHH o (b\bar{b})(au_h au_h)(au_h au_h), \ c_3 = -1.0, \ d_4 = 0.0$	7.9
	$HHH \to (b\bar{b})(\tau_h \tau_h)(\tau_h \tau_h), c_3 = -1.0, d_4 = -6.0$	8.3
	$HHH \to (b\bar{b})(\tau_h\tau_h)(\tau_h\tau_h), c_3 = -2.0, d_4 = -11.0$	16.7
	$HHZ \to (b\bar{b})(\tau_h \tau_h)(\tau_h \tau_h), \ c_3 = 0.0 \ ({ m SM})$	2.7
	$HHZ o (b\bar{b})(au_h au_h)(au_h au_h), \ c_3 = 1.0$	4.2
VHH signal	$HHZ ightarrow (bar{b})(au_h au_h)(au_h au_h), \ c_3=2.0$	6.1
	$HHZ o (b\bar{b})(au_h au_h)(au_h au_h), \ c_3 = -1.0$	1.8
	$HHZ ightarrow (bar{b})(au_h au_h)(au_h au_h), c_3 = -2.0$	1.3
	$t\bar{t} au au+ ext{ jets (LO)}$	7.609×10^4
+/W complex	$tar{t}H$ (LO)	1.598×10^4
t/W samples	$t\bar{t}\tau\tau\nu\nu + \mathrm{jets}\;(\mathrm{LO})$	5.381×10^2
	$t\bar{t}t\bar{t}$ (NLO)	3.869×10^2
V-V V gamentas	$Z au au au au (Z o b ar{b}) \text{ (NLO)}$	1.140×10^{2}
$X_{b\bar{b}}Y_{\tau\tau}Y_{\tau\tau}$ samples	HZZ (NLO)	0.518×10^{2}

Table 1: Cross sections for gluon fusion triple Higgs production, VHH production (only ZHH is considered in the $4\tau 2b$ final state) and SM background processes in the $4\tau 2b$ final state at a 100 TeV proton-proton collider. Signal processes with different Higgs self-coupling parameters are considered.

Analysis Strategy

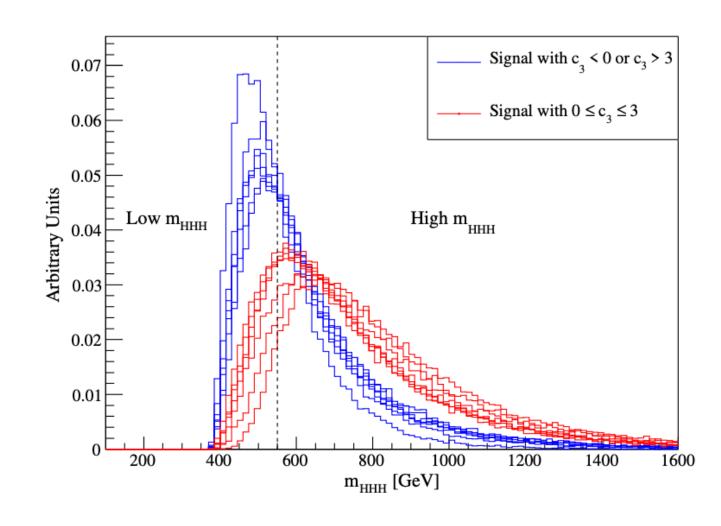
Jet selections

Resolved AK4 Jet		Boosted AK8 Jet		
Variables	Selections	Variables	Selections	
$p_{T,\gamma}$	> 20 GeV	$p_{T,\gamma}$	> 300 GeV	
$\Delta R_{\gamma,j}$	> 0.4	$\Delta R_{\gamma,j}$	> 0.8	
$ \eta $	< 2.5	$ \eta $	< 2.5	

- B tagging efficiency: 70%
- Tau tagging efficiency: 80%

Hadronic Tau selections

- Electron veto:
 - pT > 12 GeV and $|\eta|$ < 2.5
- Muon veto:
 - pT > 8 GeV and $|\eta|$ < 2.4


Tau pairing selections

• These 4 tau jets are paired by a minimization of d_{HH}

$$d_{HH} = \frac{|m_{H1} - km_{H1}|}{\sqrt{1 + k^2}}$$
, $k = 1.08$

Truth level m_{HHH} spectrum

- Varies with trilinear coupling c3
- Signal of $0 \le c_3 \le 3$
 - Tend to a higher mass region
- Signal of $c_3 < 0$ or $c_3 > 3$
 - Tend to a lower mass region
- Define two categories according to m_{HHH}

Overall categorization method

- Resolved category:
 - Apply subcategorization by m_{HHH}
- Boosted category:
 - Apply subcategorization by number of AK8 Jet

Group	Category
Resolved	$m_{\rm HHH} \le 550~{ m GeV}$ $m_{\rm HHH} > 550~{ m GeV}$
1 Boosted Higgs	1 boosted H_{bb} 1 boosted $H_{\tau\tau}$ (leading $\tau\tau$ pair)
2 Boosted Higgs	1 boosted H_{bb} + 1 boosted $H_{\tau\tau}$ (leading $\tau\tau$ pair) 2 boosted $H_{\tau\tau}$
3 Boosted Higgs	2 boosted $H_{\tau\tau}$ + 1 boosted H_{bb}

- Due to the indistinct m_{HHH} distribution in boosted events
- No m_{HHH} based categorization is applied in boosted categoies

Cut based optimization

- Use a modified $\frac{s}{\sqrt{b}}$: $Z_A = \sqrt{2\left[(s+b)\ln\left(1+\frac{s}{b}\right)-s\right]}$,
- Variables: m_{bb} , $m_{\tau\tau 1}$, $m_{\tau\tau 2}$ and m_{T2}

$$M_{T2}(m_s, \vec{s}, m_t, \vec{t}, \vec{p}; \chi_1, \chi_2) = \min_{\substack{\vec{p}, \vec{q} \text{ s.t.} \\ \vec{p} + \vec{q} = \vec{p}}} \left\{ \max \left[M_T(m_s, \vec{s}, \chi_1, \vec{p}), M_T(m_t, \vec{t}, \chi_2, \vec{q}) \right] \right\}$$
(1.1)

where the *transverse mass* is given by

$$M_T(m, \vec{v}, \chi, \vec{p}) = \sqrt{m^2 + \chi^2 + 2\sqrt{m^2 + |\vec{v}|^2}\sqrt{\chi^2 + |\vec{p}|^2} - 2\vec{v} \cdot \vec{p}},$$

• mT2 can significantly reject the t/W related background

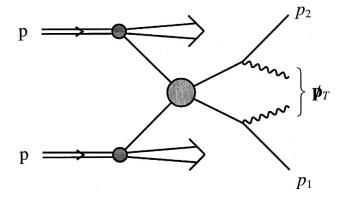
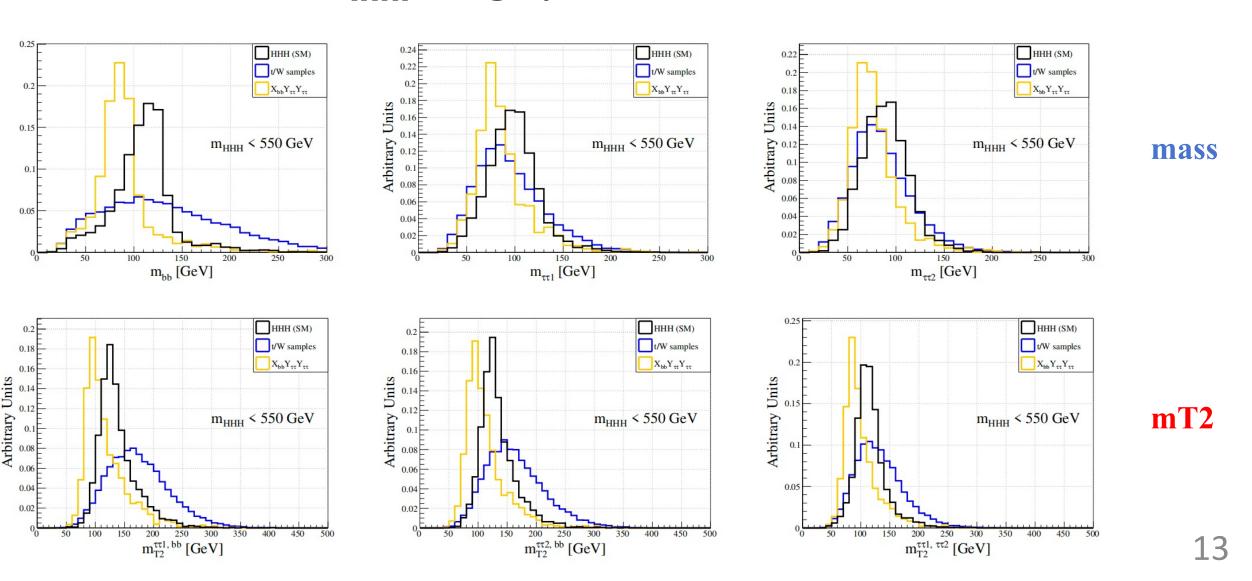
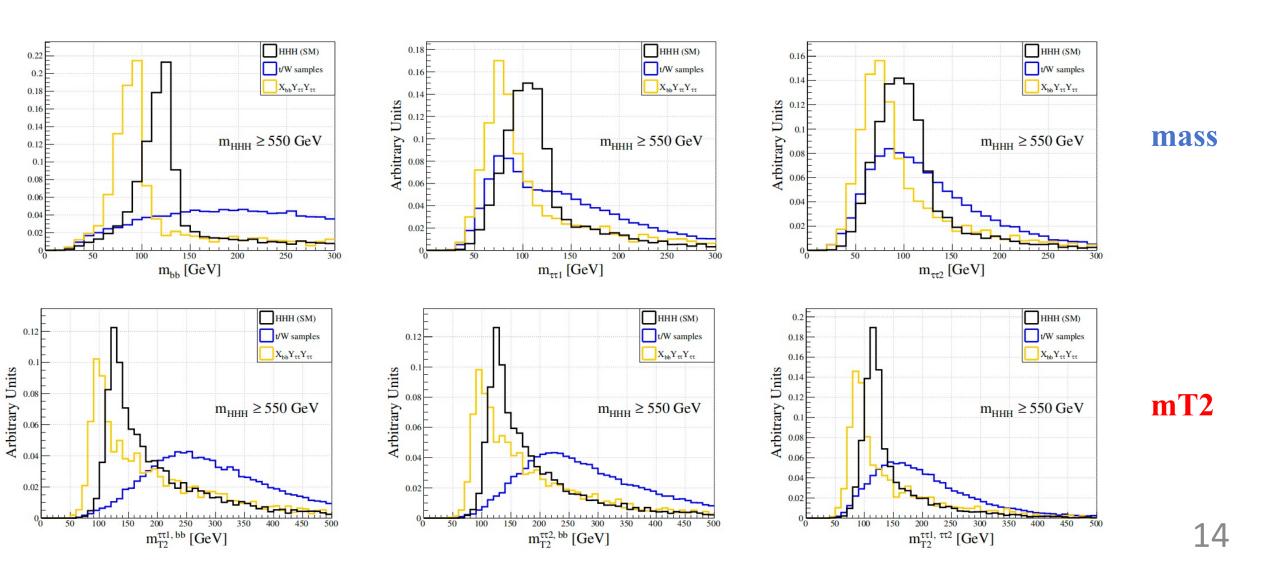
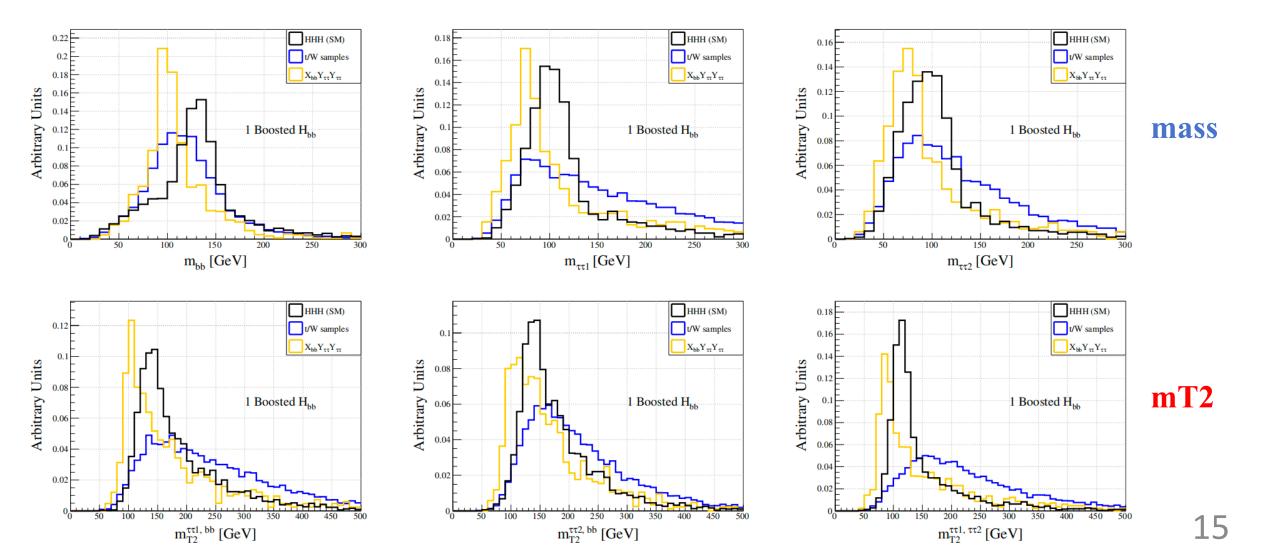
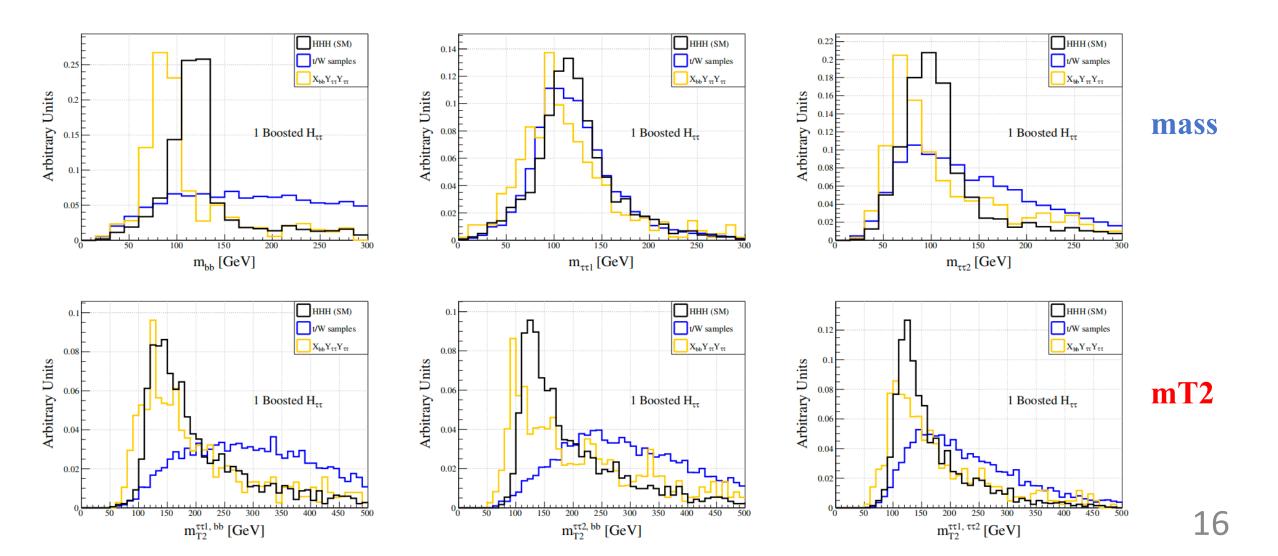
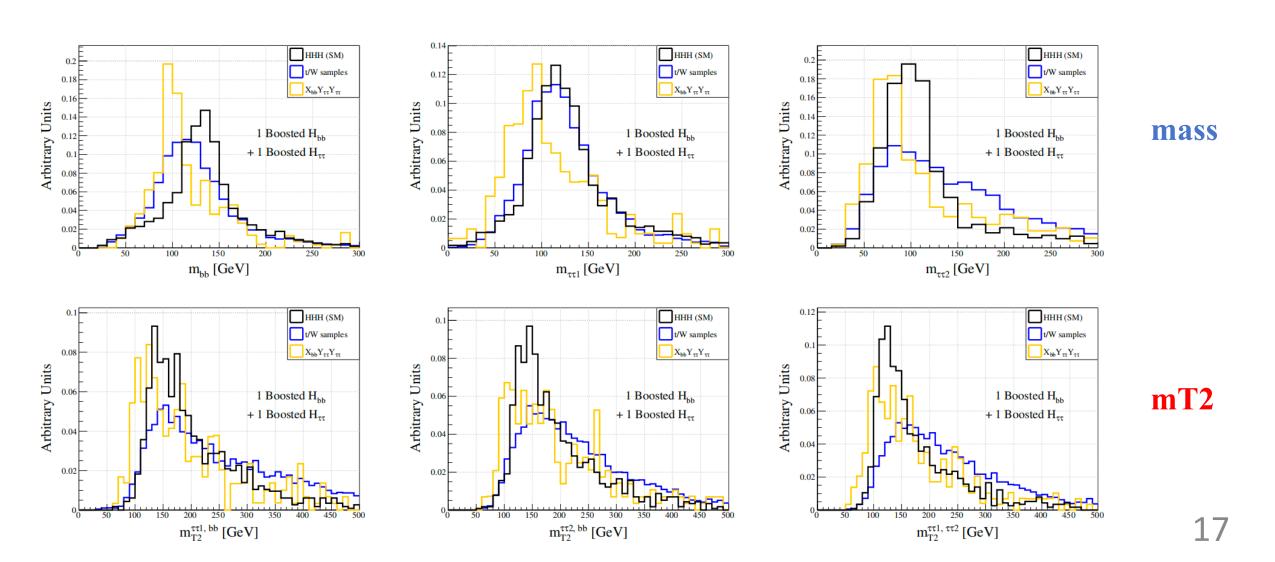
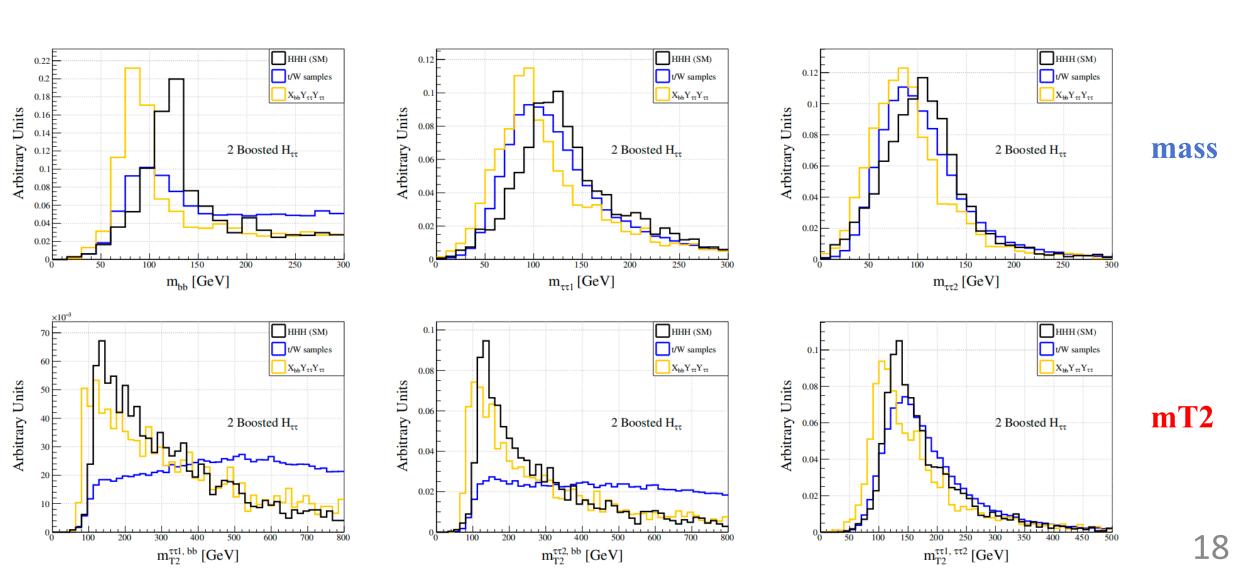




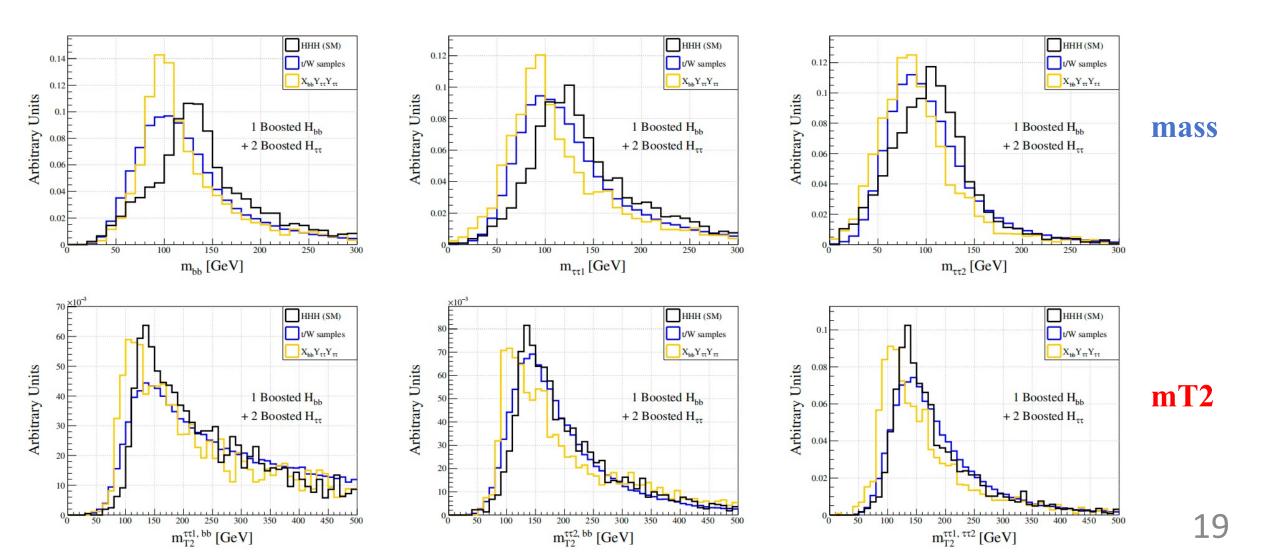
Fig. 1. Diagram of the generic process that we consider. A hadronic collision that leads to a pair of particles being produced, which each decay into one particle that is observed with momenta p_1 and p_2 respectively; and one particle (shown as a wavy lines) that is not directly detected, and whose presence can only be inferred from the missing transverse momentum, p_T .


1. Resolved Low m_{HHH} category: mass and mT2


2. Resolved High m_{HHH} category: most powerful category!


3. One Boosted H_{bb} category: mass and mT2


4. One Boosted $H_{\tau\tau}$ category: mass and mT2


5. Two Boosted $H_{\tau\tau}$ & H_{bb} category: mass and mT2

6. Two Boosted $H_{\tau\tau}$ category: mass and mT2

7. Three Boosted category: mass and mT2

Final selections applied in the resolved categories

Observable	Low $m_{\rm HHH}$ category	High $m_{\rm HHH}$ category
$p_T^{b, au}$	> 20 GeV	> 20 GeV
$ \eta $	< 2.5	< 2.5
$m_{bar{b}}$	$\in [80, 135]~\mathrm{GeV}$	$\in [90, 135] \text{ GeV}$
$m_{ au au 1}$	$\in [80, 135]~\mathrm{GeV}$	$\in [90, 135] \text{ GeV}$
$m_{ au au 2}$	$\in [70, 145] \text{ GeV}$	$\in [70, 200] \text{ GeV}$
$m_{T2}^{ au au1, au a2}$	< 130 GeV	$< 130 \mathrm{GeV}$
$m_{T2}^{ au au1,bar{b}}$	$< 150 \mathrm{GeV}$	$< 300 \mathrm{GeV}$
$m_{T2}^{ au au2,bar{b}}$	$< 180 \mathrm{GeV}$	$< 300 \mathrm{GeV}$

Final selections applied in the boosted categories

Observable	1 Boosted H_{bb}	1 Boosted $H_{\tau\tau}^1$	2 Boosted $H_{\tau\tau}H_{bb}$	2 Boosted $H_{\tau\tau}^{1,2}$	3 Boosted $H_{\tau\tau}^{1,2}H_{bb}$
$p_T^{b, au}$			$> 20~{ m GeV}$		
$p_T^{\overline{H}_i}$			$> 300 {\rm ~GeV}$		
$ \eta $			< 2.5		
$m_{bar{b}}$	$\in [110,200]~\mathrm{GeV}$	$\in [110, 130]~\mathrm{GeV}$	$\in [110, 300]~\mathrm{GeV}$	$\in [100, 150]~\mathrm{GeV}$	$\in [110,300]~\mathrm{GeV}$
$m_{ au au 1}$	$\in [85, 135]~\mathrm{GeV}$	$\in [100, 300]~\mathrm{GeV}$	$\in [50, 300] \text{ GeV}$	$\in [50, 300] \text{ GeV}$	$\in [50, 300] \text{ GeV}$
$m_{ au au 2}$	$\in [60,200]~\mathrm{GeV}$	$\in [70, 130]~\mathrm{GeV}$	$\in [50, 130] \text{ GeV}$	$\in [50, 300]~\mathrm{GeV}$	$\in [50, 300] \text{ GeV}$
$m_{T2}^{ au au1, au au2}$	$< 130 \mathrm{GeV}$	< 180 GeV	$< 300 \mathrm{GeV}$	$< 300 \mathrm{GeV}$	$< 300 \mathrm{GeV}$
$m_{T2}^{ au au1,bb}$	$< 300~{\rm GeV}$	$< 150 \mathrm{GeV}$	$< 300 {\rm ~GeV}$	$< 300 \mathrm{GeV}$	$< 300 \mathrm{GeV}$
$m_{T2}^{ au au au 2, bar{b}}$	$< 300 \mathrm{GeV}$	$< 300 \mathrm{GeV}$	$< 300 \; \mathrm{GeV}$	$< 300~{ m GeV}$	$< 300 \mathrm{GeV}$

Event yields and significance after sequential cuts

Category	Cut flow	HHH (SM)	HHH+VHH (SM)	t/W samples	$X_{b\bar{b}}Y_{\tau\tau}Y_{\tau\tau}$	$Z_A(S_1)$	$Z_A(S_2)$)
	Baseline	1.72	2.86	6437.39	5.86	0.02	0.03	_
Resolved low $m_{\rm HHH}$	Mass window	0.72	1.13	741.15	1.01	0.03	0.04	
Resorved low m _{HHH}	m_{T2}	0.51	0.82	228.40	0.80	0.04	0.06	
	Baseline	3.53	5.14	13560.52	8.37	0.03	0.04	
Resolved high $m_{\rm HHH}$	Mass window	0.99	1.23	222.69	0.40	0.08	0.09	
Resorved high m _{HHH}	m_{T2}	0.72	0.90	37.74	0.24	0.22	0.23	
	Baseline	1.48	2.13	3740.43	3.23	0.03	0.03	_
1 Deceted H	Mass window	0.54	0.67	438.26	0.30	0.03	0.03	
1 Boosted $H_{b\bar{b}}$	m_{T2}	0.37	0.46	70.45	0.17	0.04	0.05	
1.D	Baseline	0.95	1.43	2954.61	0.04	0.03	0.03	_
	Mass window	0.16	0.17	33.23	0.02	0.03	0.03	
1 Boosted $H_{\tau\tau}$	m_{T2}	0.06	0.06	2.26	< 0.01	0.04	0.04	
	Baseline	0.53	0.80	1823.57	0.02	0.02	0.02	_
2 Boosted $H_{b\bar{b}}H_{\tau\tau}$	Mass window	0.28	0.37	483.37	0.02	0.02	0.02	
	m_{T2}	0.25	0.32	264.86	0.18	0.02	0.02	
	Baseline	1.36	3.78	30653.17	10.22	< 0.01	0.02	_
2 Boosted $H_{\tau\tau}^{1,2}$	Mass window	0.36	0.69	1680.29	1.00	< 0.01	0.02	
	m_{T2}	0.27	0.49	1021.44	0.68	< 0.01	0.02	
	Baseline	1.12	3.38	33788.98	8.22	< 0.01	0.02	_
2 December H $H^{1,2}$	Mass window	0.68	1.85	15968.47	3.02	< 0.01	0.01	
3 Boosted $H_{b\bar{b}}H_{\tau\tau}^{1,2}$	m_{T2}	0.41	0.89	6110.52	0.04	< 0.01	0.01	

- The resolved high m_{HHH}
- category provide the strongest sensitivity
- The mT2 variable shows great performance
- Events with one boosted Higgs provide complementary sensitivity
- Multiple boosted Higgs events
 shows negligible contribution to the overall sensitivity

22

BDT analysis

- In the Resolved category, the statistic is sufficient to employ a BDT training
- Summary of input variables for the XGBoost BDT training

Input variables	Description
$p_T^{b_{1,2}}, p_T^{\tau_{1,2,3,4}}, p_T^{bb}, p_T^{\tau\tau_{1}}, p_T^{\tau\tau_{2}}, p_T^{4\tau}, p_T^{4\tau_{2b}}$	Transverse momentum (p_T) of the b-jets, four τ , di-b-jets, two τ pairs $4\tau 2b$ system.
$\eta_{b_{1,2}}, \eta_{\tau_{1,2,3,4}}, \eta_{bb}, \eta_{\tau\tau 1}, \eta_{\tau\tau 2}$	Pseudorapidity (η) of the two b-jets di-b-jets, two τ pairs.
$m_{bb}, m_{\tau\tau 1}, m_{\tau\tau 2}, m_{4\tau}, m_{4\tau 2b}$	Invariant mass of the di-b-jets, two 4τ and $4\tau 2b$ system.
$ \Delta R_{bb}, \Delta R_{\tau\tau 1}, \Delta R_{\tau\tau 2}, \Delta R_{bb,\tau\tau 1}, \Delta R_{bb,\tau\tau 2}, \\ \Delta R_{\tau\tau 1,\tau\tau 2} $	Angular distance ($\Delta R = \sqrt{\Delta \eta^2}$ between the constituents of the ditwo τ pairs. ΔR between the di-b-j
$\Delta \eta_{bb}, \Delta \eta_{\tau\tau 1}, \Delta \eta_{\tau\tau 2}, \Delta \eta_{bb,\tau\tau 1}, \Delta \eta_{bb,\tau\tau 2}, \\ \Delta \eta_{\tau\tau 1,\tau\tau 2}$	pairs $(\tau\tau 1, \tau\tau 2)$, ΔR between the two Difference in pseudorapidity $(\Delta \eta)$ di-b-jets, two τ pairs. $\Delta \eta$ between bb-system and each τ pairs , $\Delta \eta$ let
$\Delta\phi_{bb}, \ \Delta\phi_{\tau\tau 1}, \ \Delta\phi_{\tau\tau 2}, \ \Delta\phi_{bb,\tau\tau 1}, \ \Delta\phi_{bb,\tau\tau 2}, \\ \Delta\phi_{\tau\tau 1,\tau\tau 2}$	two τ pairs Difference in azimuthal angle ($\Delta \phi$ di-b-jets, two τ pairs. $\Delta \phi$ betwee bb-system and τ pairs, $\Delta \phi$ betwee

$$\frac{p_{T}^{\tau_{1,2}}}{m_{\tau\tau 1}},\,\frac{p_{T}^{\tau_{3,4}}}{m_{\tau\tau 2}},\,\frac{p_{T}^{b_{1,2}}}{m_{bb}},\,\frac{p_{T}^{bb}}{m_{bb}}$$

$$\frac{p_T^{\tau\tau_{1,2}}}{m_{4\tau}},\,\frac{p_T^{\tau\tau_{1,2}}}{m_{4\tau 2b}},\,\frac{p_T^{4\tau}}{m_{4\tau 2b}},\,\frac{p_T^{2b}}{m_{4\tau 2b}}$$

$$m_T^{\tau_{1,2,3,4}}, m_T^{\tau\tau_{1,2}}, m_T^{bb}, m_T^{total}$$

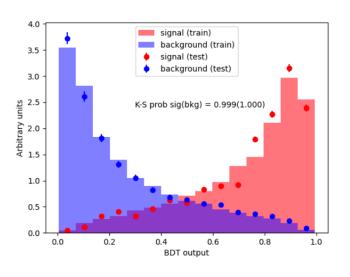
$$m_{T2}^{\tau\tau 1}, m_{T2}^{\tau\tau_2}, m_{T2}^{bb}, m_{T2}^{\tau\tau 1, bb}, m_{T2}^{\tau\tau_2, bb}, m_{T2}^{\tau\tau_1, \tau\tau_2}$$

rs, 4τ and

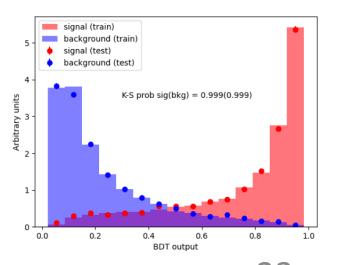
ts, four τ ,

 $\sigma \tau$ pairs,

 $+\Delta\phi^2$ di-b-jets, jets and τ wo τ pairs for the een the between


 ϕ) for the een the en two τ pairs

Ratios of the p_T of single τ /b-jet/di-b-jets to the invariant mass of τ pairs /di-b-jets


Ratios of the p_T of τ pairs/ 4τ system/ 4τ 2b system to the invariant mass of 4τ $system/4\tau 2b$ system

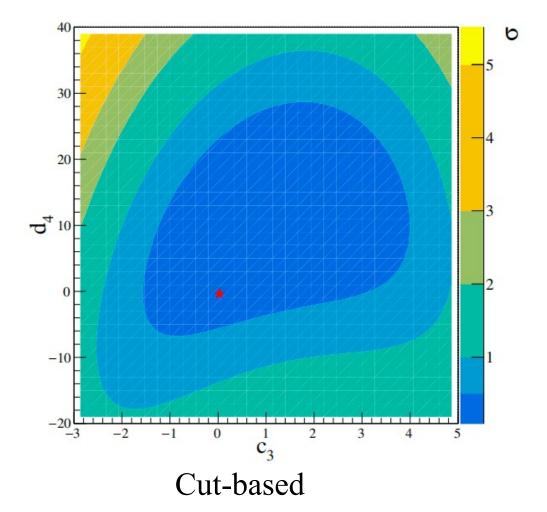
Transverse mass (m_T) of the single τ , τ pairs, di-b-jets and total $4\tau 2b$ system Stransverse mass (m_{T2}) of τ pairs, di-b-jets, m_{T2} between the τ pairs and di-b-jets, and between the two τ pairs

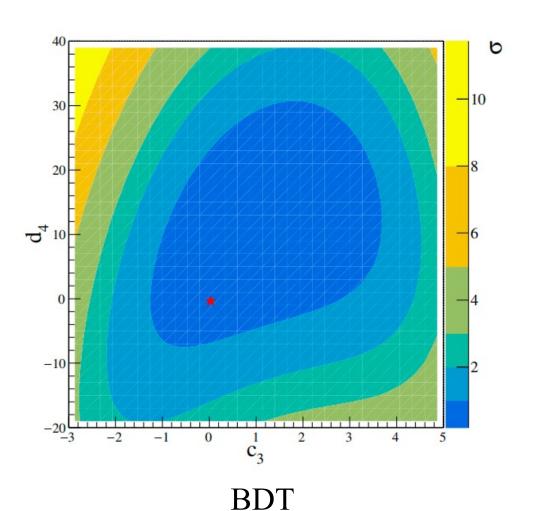
- Train two models separately for low and high mHHH categories
- Good performance without overfitting

(b) High $m_{\rm HHH}$ category 5

Results

Significance of cut-based and BDT-based analyses

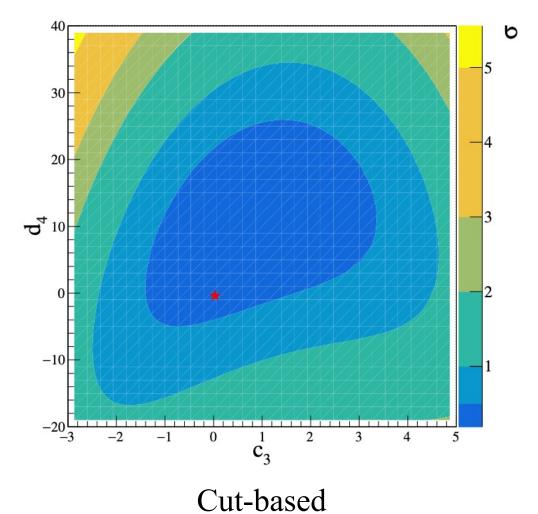

- BDT method consistently outperforms the cut-based approach
 - Improvements ranging from 60% to 150%
- SM case: 0.39 σ
- BSM case: can reach 5σ in $c3 \le -1$ and $d4 \ge 10$ region


HHH signal	σ (cut-based)	σ (BDT)	Improvement
SM $c_3 = 0, d_4 = 0$	0.239	0.385	61.44%
BSM $c_3 = 4, d_4 = 9$	0.478	1.237	158.82%
BSM $c_3 = -2, d_4 = -11$	0.806	1.825	126.42%
BSM $c_3 = 3, d_4 = -21$	2.140	4.095	91.34%
BSM $c_3 = 0, d_4 = -21$	1.714	3.139	83.21%
BSM $c_3 = -2, d_4 = 19$	1.548	3.622	134.1%
BSM $c_3 = -3, d_4 = 9$	2.171	5.504	153.4%
BSM $c_3 = -3, d_4 = 14$	2.578	6.327	145.4%

Results

Scenario1 Pure HHH signal: Significance contour on (c3, d4) plane

• VHH is considered as background in this case



Results

Scenario 2 HHH+VHH signal: Significance contour on (c3, d4) plane

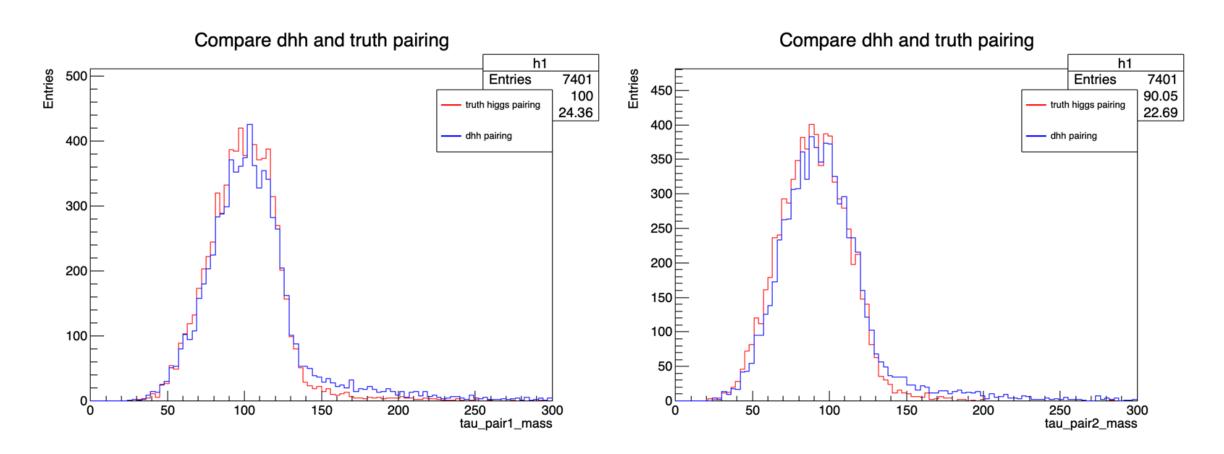
• VHH exhibits a non-linear dependence on c3, provide extra constraints on positive c_3 region

Summary

- First study of HHH production in the 4τ2b channel at a 100 TeV collider, with both resolved and boosted reconstruction techniques.
- The 4 τ 2b channel demonstrate the ability to achieve good sensitivity in this challenging final state, especially in c3 \lesssim -1 and d4 \gtrsim 10 BSM region where 5 σ in significance could be reached.
- The coupling-dependent categorization of the m_{HHH} phase space proved particularly effective.
- Employed two complementary approaches: a traditional cut-based optimization and an advanced BDT-based analysis. The BDT training shows significant improvements in sensitivity.
- This work has been published in JHEP. For more details, see:
- https://doi.org/10.1007/JHEP08(2025)040

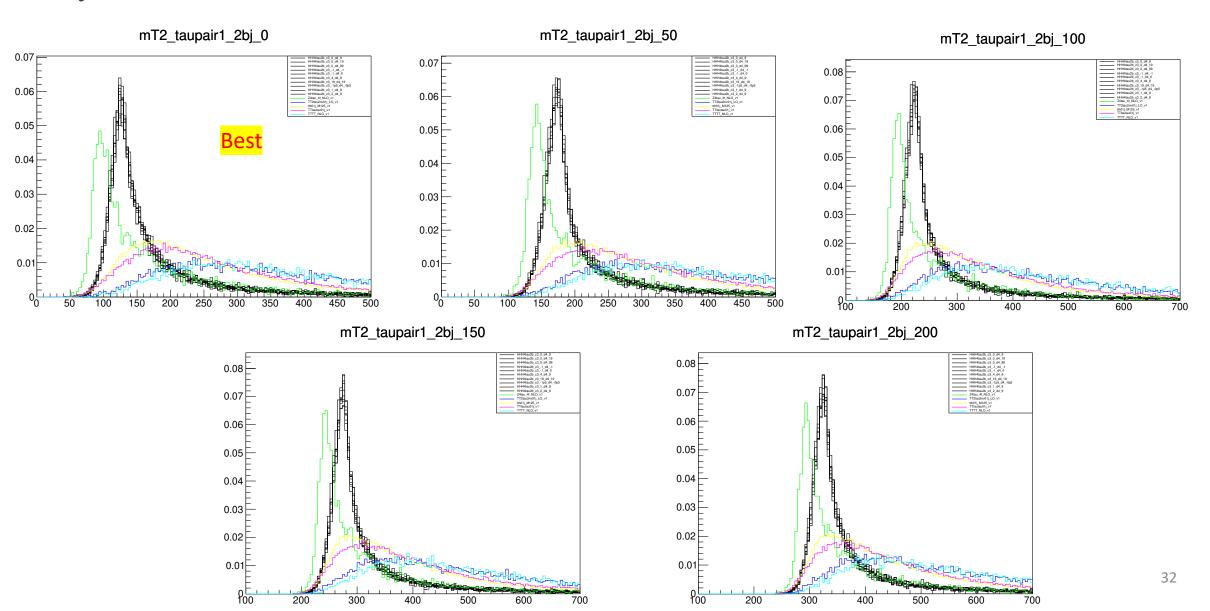
Thanks

Back up

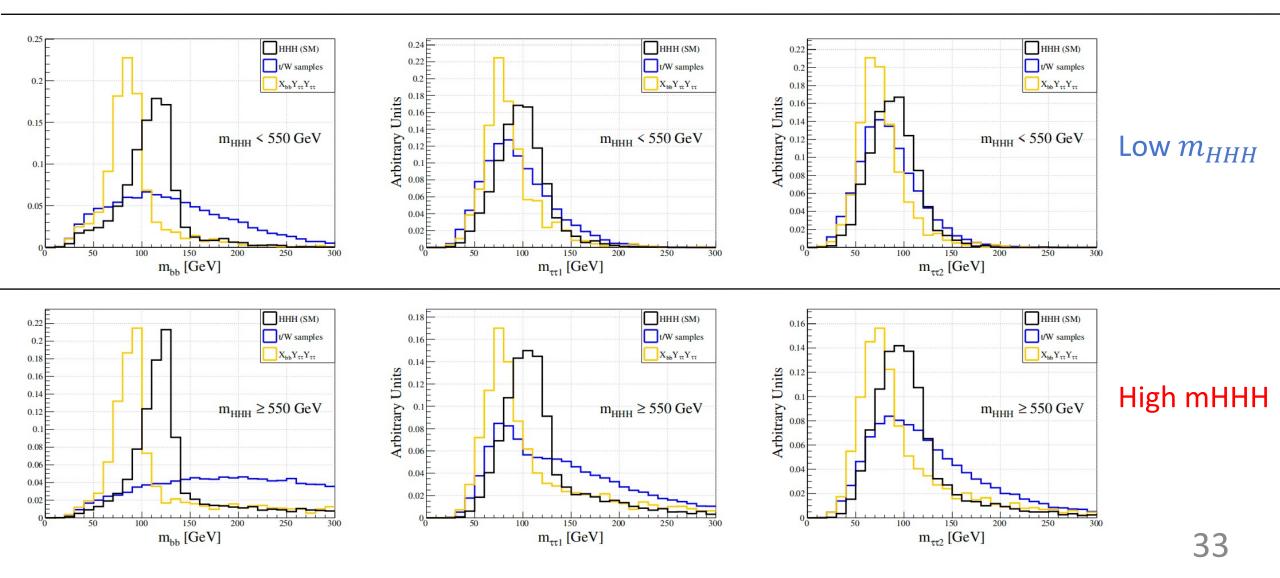

Progress of 472b channel

- HHH Truth filter
- 50000 events

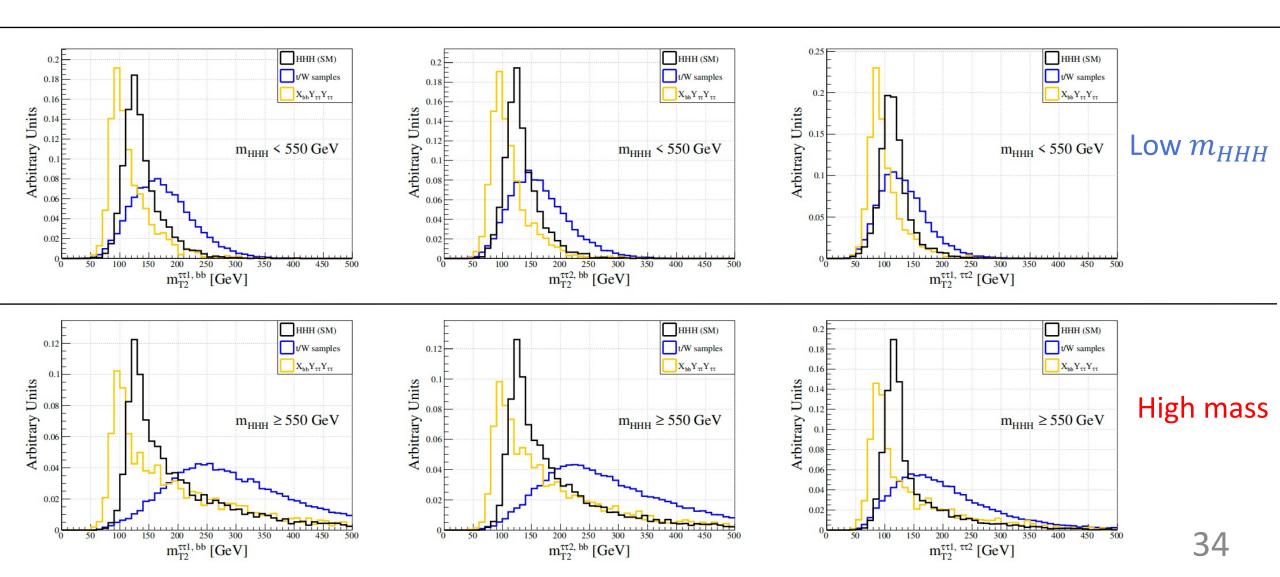
• 50000 events			test
• After truth filter (4tau 2b): 223	306 events 44.4%		
 4 Tau hadron decay filter: 	$(0.65)^4 = 17.8\%$	3955 events expected	3998
• 3 Tau hadron 1 tau lep : C ₄ ¹ (0.65	$5)^3(0.35)^1 = 38.4\%$	8533 events expected	8658
• 2 Tau hadron 2 tau lep : C ₄ ² (0.65	$5)^2(0.35)^2 = 31.1\%$	6911 events expected	6851
• 1 Tau hadron 3 tau lep : C ₄ ³ (0.65	$5)^{1}(0.35)^{3} = 11.1\%$	2466 events expected	2493
• 4 Tau lep decay filter.:	$(0.35)^4 = 1.5\%$	333 events expected	306


Progress of 4τ2b channel

- Truth tau visible pair from Higgs
- Compare to dhh (k=1.08) accuracy 77.9%



Progress of 4τ2b channel


• Asymmetric MT2:

Resolved categories: m_{bb} , $m_{\tau\tau 1}$, $m_{\tau\tau 2}$

Resolved categories: $m_{T2}^{bb,\tau\tau 1}$, $m_{T2}^{bb,\tau\tau 2}$, $m_{T2}^{\tau\tau 1,\tau\tau 2}$

Optimization

Estimate different variables, including:

- mass of bb, taupair, bbtautau, bbtautautautau
- mT, mT2, MET
- Pt_over_mass, deltaR

Use the most powerful: mass and mT2 to optimization

• Full cut scan For each category