Contribution ID: 273 Type: not specified

Probing triple Higgs production via $4\tau 2b$ decay channel at a 100 TeV hadron collider

Thursday, 30 October 2025 18:00 (20 minutes)

A comprehensive study of triple Higgs boson production in the $4\tau 2b$ decay final state is performed for the first time at a future 100 TeV hadron collider. The analysis incorporates modified Higgs self-couplings via trilinear Higgs self-coupling c_3 and quartic Higgs self-coupling d_4 , enabling for a model-independent investigation of potential new physics effects. Higgs bosons are reconstructed using both resolved and boosted techniques. To optimize sensitivity across different kinematic regions, we introduce a novel event categorization strategy based on the triple Higgs invariant mass spectrum and the multiplicity of boosted Higgs bosons. In addition to a traditional cut-based analysis, a Boosted Decision Tree (BDT) approach is employed to exploit multivariate correlations among kinematic observables, leading to a significant improvement in sensitivity. Our result demonstrates that the $4\tau 2b$ channel provides a viable pathway for probing the Higgs quartic coupling, complementing the existing multi-Higgs production studies, and could reach 5 σ in significance for $c_3 \leq -1$ and $d_4 \geq 10$ in the scanned range.

Primary author: 董, 振宇 (Peking University)

Co-author: SUN, Xiaohu (Peking University)

Presenter: 董, 振宇 (Peking University)

Session Classification: Parallel 4

Track Classification: Theory