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Higgs Physics Program
• After the Higgs boson discovery, an urgent physics program  

is to determine all the Higgs couplings precisely. 
➠ look for any significant deviations 
➠ hints of new physics


• This requires the ability to discriminate the two dominant  
production channels (others being even smaller). 
➠ pinpoint the sources of deviations (production or decay  
part or both) 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Figure 5: Reduced Higgs boson coupling strength modifiers and their uncertainties. They are defined as
^�<�/vev for fermions (� = C, 1, g, `) and

p
^+<+ /vev for vector bosons as a function of their masses <� and <+ .

Two fit scenarios with ^2 = ^C (coloured circle markers), or ^2 left free-floating in the fit (grey cross markers) are
shown. Loop-induced processes are assumed to have the SM structure, and Higgs boson decays to non-SM particles
are not allowed. The vertical bar on each point denotes the 68% confidence interval. The ?-values for compatibility
of the combined measurement and the SM prediction are 56% and 65% for the respective scenarios. The lower panel
shows the values of the coupling strength modifiers. The grey arrow points in the direction of the best-fit value and
the corresponding grey uncertainty bar extends beyond the lower panel range.

not substantially a�ect the kinematic properties of the Higgs boson decay products. The fit results for the
scenario in which invisible or undetected non-SM Higgs boson decays are assumed not to contribute to
the total Higgs decay width, i.e. ⌫inv. = ⌫u. = 0, are shown in Figure 6 together with the results for the
scenario allowing such decays. To avoid degenerate solutions, the latter constrains ⌫u. � 0 and imposes the
additional constraint ^+  1 that naturally arises in a variety of scenarios of physics beyond the SM [54,
55]. All measured coupling strength modifiers are compatible with their SM predictions. When allowing
invisible or undetected non-SM Higgs boson decays to contribute to the total Higgs boson decay width,
the previously measured coupling strength modifiers do not change significantly, while upper limits of
⌫u. < 0.12 (expected 0.21) and ⌫inv. < 0.13 (expected 0.08) are set at 95% CL on the corresponding
branching fraction. The latter improves on the current best limit of ⌫inv. < 0.145 (expected 0.103) from
direct ATLAS searches [42].

In all tested scenarios, the statistical and the systematic uncertainty contribute almost equally to the
total uncertainty in most of the ^ parameter measurements. The exceptions are the ^`, ^/W , ^2 and ⌫u.

measurements for which the statistical uncertainty still dominates.

Kinematic properties of Higgs boson production probing the internal structure of its couplings are studied in
the framework of simplified template cross sections [44, 56–58]. The framework partitions the phase space
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VBF vs GGF
• The VBF process or the  coupling is essential for  

studying the role of the Higgs boson in the EWSB.

• Questions: 


• For any detected Higgs event, how can we efficiently  
and correctly determine/label its production mechanism?  


• Can it be independent of how the Higgs boson decays?

ghVV
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the total Higgs decay width, i.e. ⌫inv. = ⌫u. = 0, are shown in Figure 6 together with the results for the
scenario allowing such decays. To avoid degenerate solutions, the latter constrains ⌫u. � 0 and imposes the
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⌫u. < 0.12 (expected 0.21) and ⌫inv. < 0.13 (expected 0.08) are set at 95% CL on the corresponding
branching fraction. The latter improves on the current best limit of ⌫inv. < 0.145 (expected 0.103) from
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Our Classifiers
• We construct a BDT trained on high-level features defined from  

the leading two jets and the Higgs decay products (the latter to  
be taken away eventually) as the baseline characterizing the  
prior art.


• Beyond it, we consider the following methods:


• Train a jet-level CNN to distinguish the leading two jets (quark vs gluon), and 
add the jet-CNN scores to the inputs of the BDT for improvement.


• Train an event-level CNN to distinguish full VBF vs GGF events, using full-
event images out of the energy deposits of all the reconstructed particles in the 
event.


• Train an event-level neural network based on the self-attention model, by 
converting the input event into a sequence that directly records the detector-
level information.

5

Lin, Feng, dos Santos, Yu, Xiang, Zhou and Bengio 2017
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Distributions of BDT Input Variables

6

ba
se

lin
e

sh
ap

es

all histograms normalized to 
have unit area under the curves

- Cut-based methods 
cannot reach high purity.
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Event-CNN
• Train a convolutional neural network (CNN) by full supervision to discriminate 

between the two production mechanisms by examining the final-state image.


• A successful training typically requires at least tens of thousands of samples.

7

FIG. 3: The isolated photon ET and Tower ET combined with Track pT of an event

without pre-processing (left) and after pre-processing (right). The color of each pixel

indicates the energy in units of GeV.

We employ a toy ResNet model [111] in our event-CNN. Two Convolution Layers form

a residual block in ResNet. There are shortcuts connecting the residual blocks, enabling us

to deepen our model without su↵ering from the degradation problem. The sizes of filters in

the Convolution Layers and pools in the Pooling Layers are all 3 ⇥ 3. The detailed model

structure of the event-CNN is shown in Fig. 11. The hyperparameters are the same as those

in Table IV.

In order to extract information from both the local jet-level and global event-level features,

Ref. [13] adopts a two-stream CNN architecture, where one stream processes an image of the

highest pT non-Higgs jet in the event, and the other stream processes the full-event image.

Motivated by this, we further study the performance of an extension of our full-event CNN in

Appendix B, using a similar structure containing three streams of CNN, dealing with event

images and leading two jet images respectively. However, we find no improvement from our

original single-stream event-CNN. This does not contradict the works of Ref. [13] since they

did not compare the performance of their two-stream CNN against a single-stream CNN

consisting of just the full-event classifier.

D. Self-attention

For comparison, we also consider another whole-event low-level-feature classifier based

on the technique of self-attention [19], which is used in the famous Transformer model [20]

dealing with sequence-to-sequence tasks. The original motivation of this model is to use the

11
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training validation testing
VBF events 105k 26k 33k
GGF events 83k 21k 26k



Comparison of Classifiers
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(Receiver Operating Characteristic curves)

CWC, Shih, Wei 2023
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Comparison of Classifiers

8

jet-CNN has learned the 
information contained in 
the human-engineered jet 
shape variables

most powerful classifier

(Receiver Operating Characteristic curves)

virtually no difference after 
removing photon information

noticeable difference 
in traditional methods

CWC, Shih, Wei 2023
with photon w/ vs w/o photon



Collider Simulations
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Collider Simulations
• Particle experimentalists deal with real data collected 

by detectors around colliders. 
➠ just like analyzing real images for CS people 
➠ even current multivariate approaches for 
classification rely on simulations and must be corrected 
later on using data-driven techniques 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• As particle theorists, we think we are simulating 
verisimilar data using various packages. 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MadGraph), model-dependent showering/hadronization 
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Can We Be More Realistic?
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Can We Be More Realistic?
• Use a generative adversarial network (so-called GAN). 
➠ can alleviate model dependence during training, but at the cost of algorithmic 
performance and computational resources 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Can We Be More Realistic?
• Use a generative adversarial network (so-called GAN). 
➠ can alleviate model dependence during training, but at the cost of algorithmic 
performance and computational resources 

• It would be nice to train directly using real data. 
➠ but real data are unlabeled… 

• Introduce classification without labels (CWoLa). 
➠ belonging to a broad framework called weak supervision, whose goal is to 
learn from partially and/or imperfectly labeled data 
➠ first weak supervision application in particle physics for quark vs gluon 
tagging using only class proportions during training; shown to match the 
performance of fully supervised algorithms

10

Louppe, Kagan, Cranmer 2016

Metodiev, Nachman, Thaler 2017

Herna ńdez-Gonz ález, Inza, Lozano 2016

Dery, Nachman, Rubbo, Schwartzman 2017



A Theorem for CWoLa
• Let  represent a list of observables or an image, used to  

distinguish signal  from background , and define:


• : probability distribution of  for the signal,


• : probability distribution of  for the background. 


• Given mixed samples  and  defined in terms of pure events of  and  
(both being identical in the two mixed samples) using 
 
 
 
with different signal fractions , an optimal classifier (most powerful test 
statistic) trained to distinguish samples in  and  is also optimal for 
distinguishing  from .

⃗x
S B

pS( ⃗x) ⃗x

pB( ⃗x) ⃗x

M1 M2 S B

f1 > f2
M1 M2

S B
11

<latexit sha1_base64="87jdRmC/2jtBpoIY67BvgDPEfrs="></latexit>

pM1(~x) = f1pS(~x) + (1� f1) pB(~x)

pM2(~x) = f2pS(~x) + (1� f2) pB(~x)

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ������ �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ������ �

0 1

���������

Metodiev, Nachman, Thaler 2017

this can be trained with full supervision



Sample Preparation
• SM Higgs boson events produced via VBF and GGF processes are simulated for 

a 14-TeV LHC.


• Parton-level event generation is performed using MadGraph 3.3.1 for both 
production modes, with Higgs decays into  and .


• The parton showering and hadronization are simulated by Pythia 8.306.


• The detector simulation is conducted by Delphes 3.4.2.


• Jet reconstruction is carried out using FastJet 3.3.2 with the anti-  
algorithm and a jet radius parameter of .


• Jets are required to have transverse momentum  GeV.

H → γγ H → ZZ → 4ℓ

kt
R = 0.4

pT > 25
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Signal Region and Background Region
• Here, VBF events are treated as the signal and GGF events as the background. 
 
 
 
 
 
 

• Distribution of jet flavor compositions at  fb .


• SR is the  category, while the BR includes both  and  events.


• Although jet flavor is available from the Monte Carlo truth, it is assumed that in a 
realistic experimental setting, such information could be obtained from an 
auxiliary jet-flavor tagging algorithm.

ℒ = 3000 −1

2q0g 1q1g 0q2g
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Data Augmentation by -shiftingϕ
• While there are numerous augmentation methods in the field of computer vision, 

we focus on a physics-inspired technique related to our study, based on 
azimuthal symmetry, referred to as -shifting.


• This property allows the generation of additional statistically independent 
samples without modifying the event kinematics or topology.


• The augmentation is applied before data representation, ensuring consistency 
between image-based (CNN) and set-based (Transformer) representations.

ϕ

14



CNN and Transformer
• Two types of models are considered in this work:


• For the image-based models (CNN), the event information is converted into a 
three-channel (calorimeter towers, tracks, and Higgs decay products) image 
defined on a  grid covering  and .


• For set-based architectures (Particle Transformer), each event is represented 
as a collection of reconstructed objects or particles.  Each object is described 
by a six-dimensional feature vector, with the first three components being the 
kinematic variables  and the remaining components being the one-
hot encoded type identifiers (tower, track, or decay product). 
➠ this representation allows the model to process heterogeneous object types 
within a unified feature space


• To mitigate the potential sculpting effect in CWoLa training,  normalization is 
applied to both image- and set-based data.
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(d) GGF with H → ZZ → 4ε

Figure 2: Comparison of pT distributions for VBF and GGF processes with di!erent decay

channels. Each image corresponds to H → ωω and H → ZZ → 4ε events, represented by

three channels: tower, track, and decay-product information.
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CNN and Transformer
• Employ two NN architectures: CNN and Transformer, both optimized using the 
Adam optimizer with binary cross-entropy as the loss function and a batch 
size of 512.  Early stopping is implemented by monitoring the validation AUC with 
a patience of 10 epochs.


• The CNN follows the design of Event-CNN proposed in [CWC, Shih, and Wei 2023], 
with a learning rate of .  It consists of several 2D convolutional layers with 
ReLU activations and residual connections, followed by fully connected layers, 
culminating in a sigmoid output layer for binary classification.  The total number 
of trainable parameters in this model is approximately 270K.


• We utilize the Particle Transformer (ParT) introduced in [Qu, Li, and Qian 2024], 
with a learning rate of .  Unlike the original ParT, we omit the interaction 
matrix, include one particle attention block and one class attention block, and 
use a simplified architecture with approximately 9.5K trainable parameters that 
avoids overfitting and offers stable performance across repeated trials.

10−4

4 × 10−4
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Objectives
• We perform two primary studies:


• model training on the  and  datasets with and without 
the inclusion of decay-product information, and


• evaluation of the transferability of models pretrained on  to 
 events, where decay-product information is removed.


• For each experimental setup, we consider multiple training luminosities:
.


• In all setups, -shifting augmentation is applied to enhance rotational 
invariance by randomly shifting the  coordinates of all constituents.


• The performance of the NNs is quantified using the area under the receiver 
operating characteristic curve (AUC).

H → γγ H → ZZ → 4ℓ

H → γγ
H → ZZ → 4ℓ

ℒ ∈ {100, 300, 900, 1800, 3000} fb−1

ϕ
ϕ

17



Performance on H → γγ

• CNN and ParT have comparable AUCs for .  ParT outperforms for 
higher luminosities, demonstrating its stronger capacity to exploit complex 
correlations when more events are available for training.

ℒ ≲ 900 fb−1

18

with photon without photon

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



Performance on H → γγ

• CNN and ParT have comparable AUCs for .  ParT outperforms for 
higher luminosities, demonstrating its stronger capacity to exploit complex 
correlations when more events are available for training.

ℒ ≲ 900 fb−1

18

SV: fully supervision

with photon without photon

mean and one standard 
deviation of AUC over 
10 training seeds

AUC improved and 
fluctuations reduced similar AUCs as LHS when 

photon info is removed

CNN slightly better than 
ParT with full supervision

better at low 
luminosities

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



With Data Augmentation
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with photon without photon

CNN

ParT

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



With Data Augmentation
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with photon without photon

CNN

ParT

-shifting augmentation 
improves AUCs at low lumi
ϕ

irrelevant at high lumi

+5 and +10 have similar effects

-shifting also beneficial when 
decay-product features are removed
ϕ

over-regularization effects resulted 
from excessive augmentation

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



Remarks
• In general, CNN performs better [worse] than ParT when the datasets are small 

[large]


• Interestingly, at lower luminosities, models trained without photon information 
generally achieve higher AUC values.


• This suggests that, when the available training data are more limited, the 
networks tend to overfit to the simpler photon features, which has little to do 
with the initial state, rather than learning the more complex hadronic structures.


• When photon information is removed, the models are forced to focus on 
hadronic activity patterns, thereby achieving better generalization and higher 
performance in the low-statistics regime.


• Overall, these results demonstrate that the primary discriminative power arises 
from the hadronic activities in the event, and that explicit inclusion of photon 
information is not essential for achieving optimal classification performance.

20



Performance on H → ZZ → 4ℓ

• Even at , the AUCs remain modest and the fluctuations are 
substantial, reflecting the severe data scarcity in this decay channel. 
➠ luminosities required for stable training are well beyond those achievable in 
realistic experiments

ℒ = 3 ab−1

21

with leptons without leptons

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



Performance on H → ZZ → 4ℓ

• Even at , the AUCs remain modest and the fluctuations are 
substantial, reflecting the severe data scarcity in this decay channel. 
➠ luminosities required for stable training are well beyond those achievable in 
realistic experiments

ℒ = 3 ab−1

21

with leptons without leptons

AUCs of both models are 
similar and improve gradually 
with the training luminosity

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



With Data Augmentation
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with leptons without leptons

CNN

ParT

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



With Data Augmentation

22

with leptons without leptons

CNN

ParT

though data augmentation provides 
a small improvement in AUC, the 
overall enhancement remains limited 
due to the extreme rarity of data

Preliminary

Chen, Chen, CWC, Hsieh, in preparation



Transfer Learning

• Explore a transfer learning strategy by applying models trained on the high-
statistics  dataset to the  events, both removing the 
decay-product information.

H → γγ H → ZZ → 4ℓ

23

CNN ParT

Chen, Chen, CWC, Hsieh, in preparation



Transfer Learning

• Explore a transfer learning strategy by applying models trained on the high-
statistics  dataset to the  events, both removing the 
decay-product information.

H → γγ H → ZZ → 4ℓ

23

CNN ParT

AUC only slightly 
degraded, within 0.05

corresponding to the level obtained 
at  for models 
trained directly on 

ℒ = 9 − 18 ab−1

H → ZZ → 4ℓ

Chen, Chen, CWC, Hsieh, in preparation



Summary
• To achieve a reliable determination of the Higgs production mechanism in hadron 

collider experiments, we employ weak supervision, CWoLa in particular, to train 
deep neural networks using real data of the diphoton events, in the hope of 
reducing biases resulting from Monte Carlo simulations.


• Models based on the convolutional neural network and the transformer are 
tested and compared.


• The classification performance gets slightly better when the photon information 
is removed from training in the low-luminosity region.


• We show that the performance can be improved when the training dataset is 
enlarged by data augmentation using physics-motivated methods.


• We further demonstrate that the trained model can be successfully applied to the 
 events, showing that such classifiers are agnostic to Higgs decay 

modes provided they do not involve strong QCD corrections.
H → ZZ
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Data Preprocessing
• Each event goes through the following preprocessing steps:


• Compute the variance of  of all event constituents.  If this variance exceeds 
0.5, all  values are shifted by  to center the  distribution.  This procedure 
prevents a significant fraction of event constituents from crossing the  
boundary.


• The  coordinates of all event constituents are centered with respect to the 
-weighted mean: 

 
 
 
ensuring that the event is rotationally aligned around its -weighted centroid.

ϕ
ϕ π ϕ

±π

ϕ
pT

pT
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Data Preprocessing
• Each event goes through the following preprocessing steps:


• Divide the event into four quadrants based on the signs of  and  : 
, , , and .  The 

quadrant with the highest total transverse momentum is identified and reflected 
into the first quadrant, i.e., the  region, by mirroring along the 

 and  axes.


• To remove decay-product information, all particles within a region of 
 and  around each decay product are excluded. 

These thresholds are chosen to match the corresponding  and  grid divisions 
of the image representation, ensuring consistency between the image-based 
and set-based removal procedures.

ϕ η
(ϕ > 0, η > 0) (ϕ > 0, η < 0) (ϕ < 0, η > 0) (ϕ < 0, η < 0)

(ϕ > 0, η > 0)
ϕ = 0 η = 0

|Δϕ | < π/40 |Δη | < 5/40
ϕ η
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Comparison of  DistributionspT

• Comparison of  distributions for VBF (left triplet) and GGF (right triplet) 
processes with  (upper rows) and  (lower row) events.


• Each has three channels: tower, track, and decay-product information.

pT
H → γγ H → ZZ → 4ℓ
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(a) VBF with H → ωω
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(b) VBF with H → ZZ → 4ε
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(c) GGF with H → ωω
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(d) GGF with H → ZZ → 4ε

Figure 2: Comparison of pT distributions for VBF and GGF processes with di!erent decay

channels. Each image corresponds to H → ωω and H → ZZ → 4ε events, represented by

three channels: tower, track, and decay-product information.
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(b) VBF with H → ZZ → 4ε
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(d) GGF with H → ZZ → 4ε

Figure 2: Comparison of pT distributions for VBF and GGF processes with di!erent decay

channels. Each image corresponds to H → ωω and H → ZZ → 4ε events, represented by

three channels: tower, track, and decay-product information.
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Simplified Particle Transformer
• Unlike the original ParT, we omit the interaction matrix for two reasons.


• First, our dataset does not provide full four-momentum information for all 
inputs, reducing the utility of pairwise interaction modeling.


• Second, the inputs consist of heterogeneous objects (calorimeter towers, 
tracks, and decay products) rather than fully reconstructed particles, making it 
difficult to define a consistent and physically meaningful interaction 
representation.


• Our implementation includes one particle attention block and one class 
attention block.  The original ParT configuration was found to overfit on our 
dataset; the current, simplified architecture offers stable performance across 
repeated trials.  The model has approximately 9.5K trainable parameters.  A 
detailed description of the hyperparameters used in this setup is provided in 
Appendix A of our paper.
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Hyperparameters of Particle Transformer
• We omit the interaction embedding used in the original implementation.  The 

final configuration used in this study is outlined below:


• Particle Embedding: Input particle features are embedded into a latent space 
of dimension  using a three-layer multilayer perceptron with hidden 
dimensions of 16, 64, and 16.  Each layer uses GeLU activation functions, and 
layer normalization is applied between layers to ensure stable training.


• Particle Attention Block: One particle attention block with a dropout rate of 
0.1 is used, with 4 attention heads.  The feedforward network consists of two 
linear layers with 64 and 16 hidden units, respectively.


• Class Attention Block: One class attention block with no dropout is included, 
also using 4 attention heads.  Its feedforward layers mirror those of the particle 
attention block (64 and 16 hidden units).


• All remaining components and architectural details follow the original one.

d = 16
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