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Higgs Physics Program

e [Tamasans
 After the Higgs boson discovery, an urgent physics program «g o o / E
s to determine all the Higgs couplings precisely. CE Y e
w |ooK for any significant deviations e, - o [a6r :
w Nints of new physics e I - - NI
» This requires the ability to discriminate the two dominant 3 | ;
production channels (others being even smaller). A
m pinpoint the sources of deviations (production or decay T e mass eV
part or both) ATLAS 2019
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VBF vs GGF
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» The VBF process or the g, coupling is essential for \ o
studying the role of the Higgs boson in the EWSB.
e Questions:
» For any detected Higgs event, how can we efficiently  : .,
and correctly determine/label its production mechanism? ) )

* Can it be independent of how the Higgs boson decays?
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Our Classifiers

 We construct a BDT trained on high-level features defined from
the leading two jets and the Higgs decay products (the latter to
be taken away eventually) as the baseline characterizing the
prior art.

 Beyond it, we consider the following methods:

* Train a jet-level CNN to distinguish the leading two jets (quark vs gluon), and
add the jet-CNN scores to the inputs of the BDT for improvement.

* Train an event-level CNN to distinguish full VBF vs GGF events, using full-
event images out of the energy deposits of all the reconstructed particles in the
event.

* [rain an event-level neural network based on the self-attention model, by

converting the input event into a sequence that directly records the detector-
level information Lin, Feng, dos Santos, Yu, Xiang, Zhou and Bengio 2017/

Vaswanl, Shazeer; Parmar, Uszkorelt, Jones, Gomez, Kaiser, and Polosukhin 2017/
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Distributions of BDT Input Variables
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Event-CNN

* Train a convolutional neural network (CNN) by full supervision to discriminate
between the two production mechanisms by examining the final-state image.

* A successful training typically requires at least tens of thousands of samples.

training validation testing

VBEF events 105k 20k 33k
GGF events 3k 21k 20k

original image preprocessed image




Comparison of Classifiers

ROC curves (Receiver Operating Characteristic curves) ROC curves
3 3
10 L E— 0 \H
\I\\ \\ \ l\k\\\
\\ \ \ N\ \"\\
R \ \ o
W \ \ \
\ \ \
\ NN \ N
\\ \ \\\ \\
NN\ . N\
10?1 NN N N 1021 N
NN ~\ S ™~ SN
NN N\ N . NS
NN AN ~ ~ AN
o ™~ ~ \S - N - \\\ nd \\ %\\
Q. NN\ RN N Q. ~ N
- NN . N = ~ .
™~ N ~ N ~~ .
D N N N\ ~
10% NN N N 10% 3
SN N ~
—— BDT: baseline (AUC=0.820) ] N
BDT: baseline + shape (AUC=0.850) S ODNONO\ —— BDT: all variables without photons (AUC=0.893)
- BDT: baseline + jet-CNN (AUC=0.870) IO BDT: all variables with photons (AUC=0.905)
—— Self-attention (AUC=0.900) SN —— Event-CNN without photons (AUC=0.941)
Event-CNN (AUC=0.940) N\ —— Event-CNN with photons (AUC=0.940)
102 , - - - \ 102 , - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6
TPR TPR
with photon w/ vs w/o photon

CWC, Shih,Wei 2023




Comparison of Classifiers
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Collider Simulations



Collider Simulations

e Particle experimentalists deal with real data collected
by detectors around colliders.
w just like analyzing real images for CS people
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by detectors around colliders.
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* As particle theorists, we think we are simulating
verisimilar data using various packages.
w |n fact, we have been generating fake data all along
w problems: fixed-order in perturbation (e.g., CalcHEP,
MadGraph), model-dependent showering/hadronization

(e.g., Pythia, Herwig), crude detector simulations (e.g.,
Delphes, GEANT)
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 Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources
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Can We Be More Realistic?

 Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources

* |t would be nice to train directly using real data.
w put real data are unlabeled...

* Introduce classification without labels (CWoLa) Metodiev, Nachman, Thaler 2017/
w pbelonging to a broad framework called weak supervision, whose goal is to
learn from partially and/or imperfectly labeled data Herma'ndez-Conzalez, Inza, Lozano 2016
w first weak supervision application in particle physics for quark vs gluon
tagging using only class proportions during training; shown to match the
performance of fU”y supervised algorithms Dery, Nachman, Rubbo, Schwartzman 2017
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A Theorem for CWolLa

» Let X represent a list of observables or an image, used to
distinguish signal S from background B, and define:

+ p«(X): probability distribution of X for the signal,

» pp(X): probability distribution of X for the background.

Mixed Sample 1
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Classifier

Metodiev, Nachman, Thaler 201/

» Given mixed samples M, and M, defined in terms of pure events of $ and B

(both being identical in the two mixed samples) using

pum, (T) = fips(Z) + (1 — f1) pB(T)
P, (T) = faps(Z) + (1 — f2) pB(T)

with different signal fractions f; > f,, an optimal classifier (most powerful test

statistic) trained to distinguish samples in M, and M, is also optimal for

distinguishing S from B.

11

this can be trained with full supervision




Sample Preparation

« SM Higgs boson events produced via VBF and GGF processes are simulated for
a 14-TeV LHC.

» Parton-level event generation is performed using MadGraph 3.3.1 for both
production modes, with Higgs decays into H — yyand H - ZZ — 4¢.

e [he parton showering and hadronization are simulated by Pythia 8.306.

e [he detector simulation is conducted by Delphes 3.4.2.

» Jet reconstruction is carried out using FastJet 3. 3.2 with the anti-k,
algorithm and a jet radius parameter of R = 0.4.

» Jets are required to have transverse momentum pr > 25 GeV.

12



Signal Region and Background Region

 Here, VBF events are treated as the signal and GGF events as the background.
H — yy H— 77— 4¢

s VBF s VBF
GGF 600 GGF

15000

= 10000
=)

o
O

5000

] 0

2q0g 1qlg 092g 290g 1qlg 092g
Jet Flavor Jet Flavor

. Distribution of jet flavor compositions at & = 3000 fb~!.

0

* SR is the 290g category, while the BR includes both 1g1g and 0g2g events.

* Although jet flavor is available from the Monte Carlo truth, it is assumed that in a
realistic experimental setting, such information could be obtained from an
auxiliary jet-flavor tagging algorithm.
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Data Augmentation by ¢-shifting

 While there are numerous augmentation methods in the field of computer vision,
we focus on a physics-inspired technigue related to our study, based on

azimuthal symmetry, referred to as @-shifting.

* This property allows the generation of additional statistically independent
samples without modifying the event kinematics or topology.

* The augmentation is applied before data representation, ensuring consistency
between image-based (CNN) and set-based (Transformer) representations.

14



TOWER 3 TRACK . PHOTON

CNN and Transformer | i

< 0

—_

e Two types of models are considered in this work:

(a) VBF with H — ~v

* For the image-based models (CNN), the event information is converted into a
three-channel (calorimeter towers, tracks, and Higgs decay products) image

defined on a 40 X 40 grid covering ¢ € [—x, 7] andn € [—5,5].

* For set-based architectures (Particle Transformer), each event is represented
as a collection of reconstructed objects or particles. Each object is described
by a six-dimensional feature vector, with the first three components being the

kinematic variables (p, 77, ¢») and the remaining components being the one-
hot encoded type identifiers (tower, track, or decay product).

w this representation allows the model to process heterogeneous object types
within a unified feature space

» To mitigate the potential sculpting effect in CWola training, p+ normalization is
applied to both image- and set-based data.

15



CNN and Transformer

 Employ two NN architectures: CNN and Transformer, both optimized using the
Adam optimizer with binary cross—-entropy as the loss function and a batch

size of 512. Early stopping is implemented by monitoring the validation AUC with
a patience of 10 epochs.

 The CNN follows the design of Event-CNN proposed in [C\WC, Shih, and Wel 20231,

with a learning rate of 10™*. It consists of several 2D convolutional layers with
ReLU activations and residual connections, followed by fully connected layers,
culminating in a sigmoid output layer for binary classification. The total number
of trainable parameters in this model is approximately 270K.

» We utilize the Particle Transformer (ParT) introduced in [Ou, Li, and Qian 20241,

with a learning rate of 4 X 10™*. Unlike the original ParT, we omit the interaction

matrix, include one particle attention block and one class attention block, and
use a simplified architecture with approximately 9.5K trainable parameters that
avoids overfitting and offers stable performance across repeated trials.



Objectives

* We perform two primary studies:

» model training on the H — yy and H — ZZ — 4¢ datasets with and without
the inclusion of decay-product information, and

e evaluation of the transferability of models pretrained on H — yy to
H — ZZ — 4¢ events, where decay-product information is removed.

* For each experimental setup, we consider multiple training luminosities:
< € {100, 300, 900, 1800, 3000} fb~!.

* In all setups, @-shifting augmentation is applied to enhance rotational
invariance by randomly shifting the @ coordinates of all constituents.

* The performance of the NNs is quantified using the area under the receiver
operating characteristic curve (AUC).

17



Chen, Chen, CWC, Hsieh, in preparation

Performance on H — yy
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« CNN and ParT have comparable AUCs for & < 900 fb~!. ParT outperforms for

higher luminosities, demonstrating its stronger capacity to exploit complex
correlations when more events are available for training.
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Chen, Chen, CWC, Hsieh, in preparation

With Data Augmentation
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¢-shifting also beneficial when
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Remarks

* In general, CNN performs better [worse] than ParT when the datasets are small
[large]

* Interestingly, at lower luminosities, models trained without photon information
generally achieve higher AUC values.

* This suggests that, when the available training data are more limited, the
networks tend to overfit to the simpler photon features, which has little to do
with the initial state, rather than learning the more complex hadronic structures.

 When photon information is removed, the models are forced to focus on
hadronic activity patterns, thereby achieving better generalization and higher
performance in the low-statistics regime.

e Overall, these results demonstrate that the primary discriminative power arises
from the hadronic activities in the event, and that explicit inclusion of photon
iInformation is not essential for achieving optimal classification performance.
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Performance on H — 77 — 4f Chen, Chen, CWC, Hsieh, in preparation
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e Evenat &£ =3 ab_l, the AUCs remain modest and the fluctuations are

substantial, reflecting the severe data scarcity in this decay channel.
w [uminosities required for stable training are well beyond those achievable in
realistic experiments
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With Data Augmentation
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With Data Augmentation
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Transfer Learning
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* Explore a transfer learning strategy by applying models trained on the high-

statistics H — yy dataset to the H — ZZ — 4¢ events, both removing the
decay-product information.
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Transfer Learning
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Summary

* To achieve a reliable determination of the Higgs production mechanism in hadron
collider experiments, we employ weak supervision, CWolLa in particular, to train
deep neural networks using real data of the diphoton events, in the hope of
reducing biases resulting from Monte Carlo simulations.

e Models based on the convolutional neural network and the transformer are
tested and compared.

* The classification performance gets slightly better when the photon information
Is removed from training in the low-luminosity region.

* We show that the performance can be improved when the training dataset is
enlarged by data augmentation using physics-motivated methods.

* We further demonstrate that the trained model can be successfully applied to the

H — Z/ events, showing that such classifiers are agnostic to Higgs decay
modes provided they do not involve strong QCD corrections.
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Data Preprocessing

 Each event goes through the following preprocessing steps:

« Compute the variance of ¢ of all event constituents. If this variance exceeds
0.5, all ¢ values are shifted by x to center the ¢ distribution. This procedure

prevents a significant fraction of event constituents from crossing the
boundary.

 The @ coordinates of all event constituents are centered with respect to the

PT'Weithed MeaNn. ( insverse momentum of the i-th constituent

1 | .
¢ — @ psum ZPT,i?ia pr = ZPT,@
i i

()
azimuthal angle of the 1 th constituent

ensuring that the event Is rotationally aligned around its p-weighted centroid.
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Data Preprocessing

 Each event goes through the following preprocessing steps:

» Divide the event into four quadrants based on the signs of ¢ and 7 :

(@>0,n>0),(@>0,n<0),(@<0,n>0),and (¢ <0, n <0). The

quadrant with the highest total transverse momentum is identified and reflected
into the first quadrant, i.e., the (¢ > 0, n > 0) region, by mirroring along the
@ = 0 and n = 0 axes.

* To remove decay-product information, all particles within a region of
| A¢gp| < n/40 and | Ay | < 5/40 around each decay product are excluded.

These thresholds are chosen to match the corresponding @ and # grid divisions
of the Image representation, ensuring consistency between the image-based
and set-based removal procedures.
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Comparison of p. Distributions
» Comparison of pr distributions for VBF (left triplet) and GGF (right triplet)

processes with H — yy (upper rows) and H — ZZ — 4¢ (lower row) events.

 Fach has three channels: tower, track, and decay-product information.
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Simplified Particle Transformer

* Unlike the original ParT, we omit the interaction matrix for two reasons.

e First, our dataset does not provide full four-momentum information for all
inputs, reducing the utility of pairwise interaction modeling.

 Second, the inputs consist of heterogeneous objects (calorimeter towers,
tracks, and decay products) rather than fully reconstructed particles, making it
difficult to define a consistent and physically meaningful interaction
representation.

 Our implementation includes one particle attention block and one class
attention block. The original ParT configuration was found to overfit on our
dataset; the current, simplified architecture offers stable performance across
repeated trials. The model has approximately 9.5K trainable parameters. A
detailed description of the hyperparameters used in this setup is provided in
Appendix A of our paper.
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Hyperparameters of Particle Transformer

* We omit the interaction embedding used in the original implementation. The
final configuration used in this study is outlined below:

* Particle Embedding: Input particle features are embedded into a latent space

of dimension d = 16 using a three-layer multilayer perceptron with hidden
dimensions of 16, 64, and 16. Each layer uses GeLU activation functions, and

layer normalization is applied between layers to ensure stable training.

* Particle Attention Block: One particle attention block with a dropout rate of
0.1 Is used, with 4 attention heads. The feedforward network consists of two
linear layers with 64 and 16 hidden units, respectively.

* Class Attention Block: One class attention block with no dropout is included,
also using 4 attention heads. Its feedforward layers mirror those of the particle
attention block (64 and 16 hidden units).

* All remaining components and architectural details follow the original one.
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