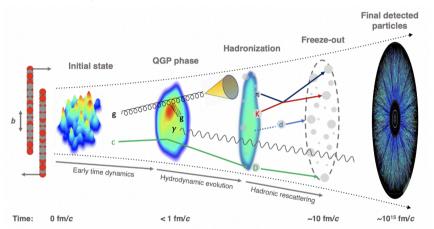


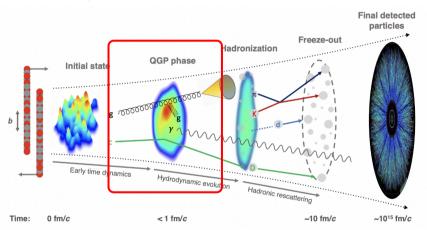
Flow measurements at LHCb experiment

Jianqiao Wang on behalf of the LHCb collaboration


October 31, 2025

The 11th China LHC Physics Conference

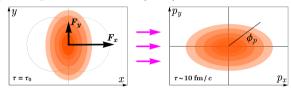
- Physics background
- 2 Flow in 5.02 TeV PbPb
- 3 Flow in small systems
- 4 Flow in fixed-target PbNe and PbAr
- 5 Light-ion data taking
- 6 Summary and Prospects


Standard Model for heavy-ion collisions

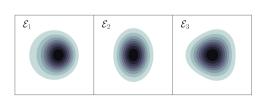
• Time evolution of heavy-ion collisions

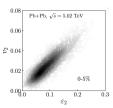
Standard Model for heavy-ion collisions

• Time evolution of heavy-ion collisions

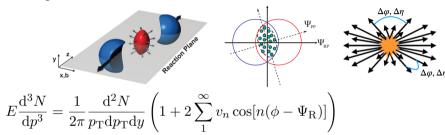


- Strongly coupled QGP created in PbPb collisions
- Hot, dense and nearly perfect fluid




Collective flow

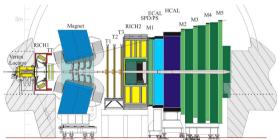
- Hydrodynamic expansion of QGP medium originates from the pressure gradients
- Controlled by the QCD equation of state (EoS)


• Collectivity of final-state particles reflects both initial geometry and medium's hydro response

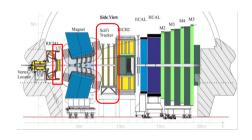
Flow coefficients

• Anisotropic flow quantified by Fourier coefficients v_n of azimuthal distribution in transverse plane:

- \triangleright v_1 : direct flow
- \triangleright v_2 : elliptic flow
- \triangleright v_3 : triangular flow

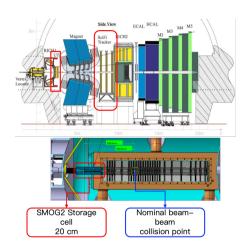


5/18

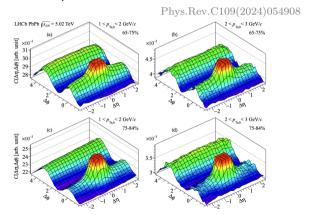

LHCb detector in Run2

- A single-arm general-purpose forward spectrometer, covering the pseudo-rapidity range of $2 < \eta < 5$.
- Excellent tracking and particle identification capabilities
- Complementary to other LHC experiments: forward rapidity, unique fixed-target mode, high-purity heavy flavor signals for flow measurements

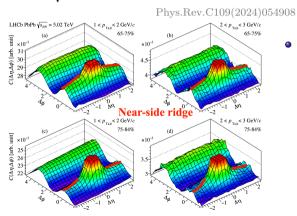
6/18


LHCb detector in Run3

- Upgraded tracking and trigger system to operate at higher luminosities
- More central data accessible for heavy-ion collisions
 - ▶ Up to 30% for PbPb, full centrality for light-ion and fixed-target collision

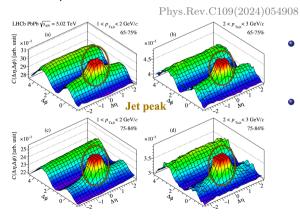

7/18

LHCb detector in Run3


- Upgraded tracking and trigger system to operate at higher luminosities
- More central data accessible for heavy-ion collisions
 - ▶ Up to 30% for PbPb, full centrality for light-ion and fixed-target collision
- New SMOG2 system for fixed-target program
 - Running simultaneously with collider mode
 - ▶ Unique energy range $\sqrt{s_{\rm NN}} \sim 30\text{--}110\,\text{GeV}$ and very backward rapidity
 - ▶ Wider choice of gas (H₂, He, Ne, Ar)

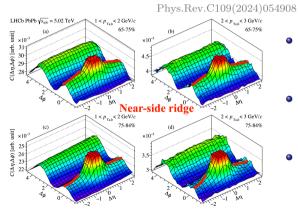
• Flow measurement with two-particle correlation with Run2 (peripheral) PbPb data at $\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$

8/18


• Flow measurement with two-particle correlation with Run2 (peripheral) PbPb data at $\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$

• Near-side ($|\Delta \eta| \gtrsim 1.5, \Delta \phi \sim 0$) ridge in correlation function considered as the signature of positive v_2

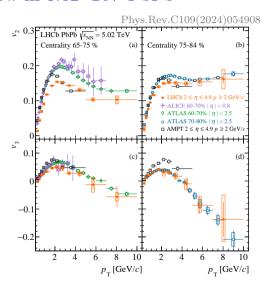
8 / 18


• Flow measurement with two-particle correlation with Run2 (peripheral) PbPb data at $\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$

- Near-side ($|\Delta \eta| \gtrsim 1.5, \Delta \phi \sim 0$) ridge in correlation function considered as the signature of positive v_2
- Dominant non-flow contribution from jet peak at $(\Delta \eta, \Delta \phi \sim 0, 0)$, subtracted by excluding short range region

8 / 18

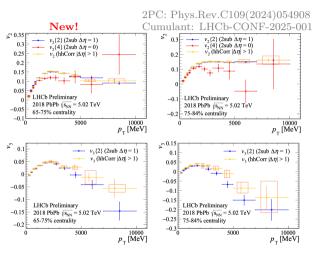
• Flow measurement with two-particle correlation with Run2 (peripheral) PbPb data at $\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$



- Near-side ($|\Delta \eta| \gtrsim 1.5, \Delta \phi \sim 0$) ridge in correlation function considered as the signature of positive v_2
 - Dominant non-flow contribution from jet peak at $(\Delta \eta, \Delta \phi \sim 0, 0)$, subtracted by excluding short range region
 - Lower ridge for more peripheral collisions

8/18

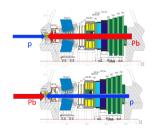
Flow in 5.02 TeV PbPb

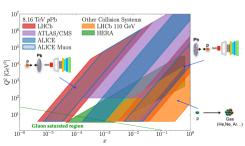

Jiangiao Wang

- Smaller $v_2(p_T)$ and $v_3(p_T)$ compared to ALICE and ATLAS results at midrapidity, possibly due to the dominant hadronic viscosity at forward rapidity [PRC.90.044904]
- AMPT overestimates v_n at forward rapidity. LHCb results can be helpful for tuning

Flow at LHCb October 31, 2025 9/18

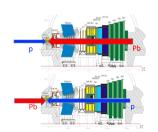

Flow in 5.02 TeV PbPb

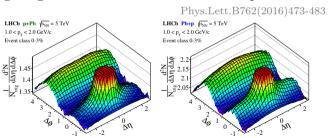

- Smaller $v_2(p_T)$ and $v_3(p_T)$ compared to ALICE and ATLAS results at midrapidity, possibly due to the dominant hadronic viscosity at forward rapidity [PRC.90.044904]
- AMPT overestimates v_n at forward rapidity. LHCb results can be helpful for tuning
- Validation with cumulant method
 - Good agreement between two methods
 - ▶ Different $v_2\{2\}$ and $v_2\{4\}$ due to fluctuation


Flow in pPb

• QGP formation was not expected in small systems

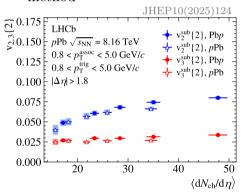
- Explanation for collectivity in high-multiplicity small systems
 - ▶ QGP droplet? Transport? Glasma?
 - Unique coverage to investigate possible gluon saturation


Jianqiao Wang Flow at LHCb October 31, 2025 10/18


Flow in pPb

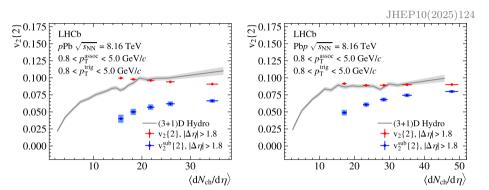
• QGP formation was not expected in small systems

- Explanation for collectivity in high-multiplicity small systems
 - ▶ QGP droplet? Transport? Glasma?
 - Long-range correlations observed in 5 TeV pPb



• No v_n extraction unfortunately

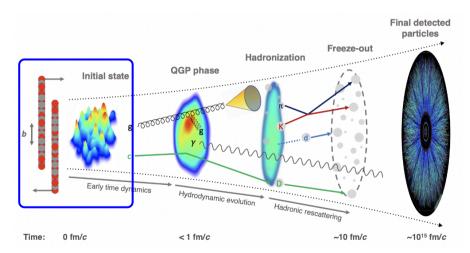
Flow in $8.16 \,\mathrm{TeV}\ p\mathrm{Pb}$


- \bullet More detailed analysis and higher statistics with Run2 pPb
- \bullet Improved non-flow suppression compared to PbPb: large η gap, jet-yield subtraction method

- Rising v_2 and flat v_3 trends as a function of charged particle density
- ullet Consistent result for both rapidities. No Bjorken-x dependence observed
 - ► Final-state effects dominant?

11/18

Flow in $8.16 \,\mathrm{TeV}\ p\mathrm{Pb}$

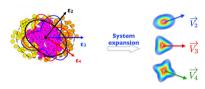

- \bullet Compared with (3+1)D hydrodynamic model, which calibrated with pp results at different energies
 - ightharpoonup Clearly overestimated v_2 : issue of fluid parametrization or hydrodynamics itself in small systems?

4 D > 4 D > 4 E > 4 E > E E 9 Q P

Jianqiao Wang Flow at LHCb October 31, 2025 12/18

Initial geometry

• Other knowledge from flow measurements

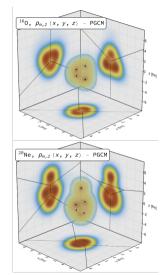

October 31, 2025

Nuclear shape

• Nuclear shape not necessarily spherical, indicated by low-energy nuclear experiments

- Various descriptions: Woods-Saxon parametrization, ab initio calculation
- \bullet High-energy heavy-ion collisions provide a unique imaging-by-smashing technique
 - ▶ Anisotropic initial shape can be converted to collective motion in momentum space

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ 亳|= 釣९@


14/18

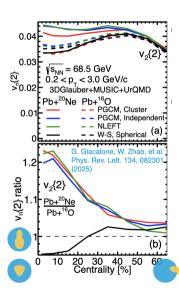
Nuclear shape

• Newest ab initio prediction

Jianqiao Wang

- ¹⁶O: nearly spherical shape consisting of 4 α-clusters
- ▶ ²⁰Ne: strongly deformed *bowling pin* shape with an extra α -cluster

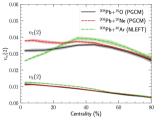
October 31, 2025

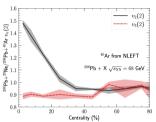

15/18

Phys. Rev. Lett. 135, 012302

Nuclear shape

- Newest ab initio prediction
 - ¹⁶O: nearly spherical shape consisting of 4 α-clusters
 - ▶ ²⁰Ne: strongly deformed *bowling pin* shape with an extra α -cluster
- Different v_2 expected
 - ightharpoonup Medium effects largely canceled in v_2 ratio
 - ► Sensitive to ²⁰Ne deformation in the most central collisions
 - ► Even more pronounced differences in fixed-target systems!

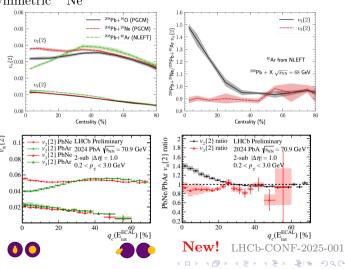




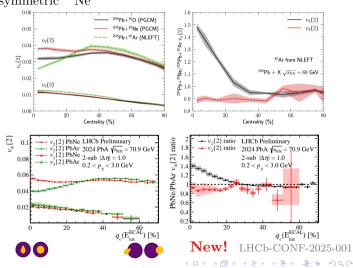
15/18

Flow in fixed-target PbNe and PbAr

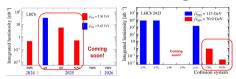
- Unfortunately no ¹⁶O injection but ⁴⁰Ar (nearly spherical) available as reference
- Negligible contribution from more symmetric ²²Ne



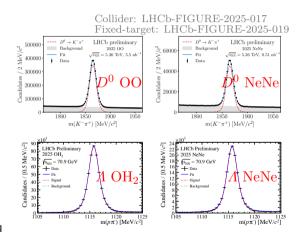
16/18


Flow in fixed-target PbNe and PbAr

- Unfortunately no ¹⁶O injection but ⁴⁰Ar (nearly spherical) available as reference
- Negligible contribution from more symmetric ²²Ne
- Flatter v_2 for light ions and decreasing v_3 from central to peripheral: validity of hydrodynamic description
- Significant enhanced v_2 ($\sim 40\%$) for PbNe at the most central collisions and trend well described by (3+1)D hydro predictions with ab-initio nuclear-structure: elongated ²⁰Ne shape


Flow in fixed-target PbNe and PbAr

- Unfortunately no ¹⁶O injection but ⁴⁰Ar (nearly spherical) available as reference
- Negligible contribution from more symmetric ²²Ne
- Flatter v₂ for light ions and decreasing v₃ from central to peripheral: validity of hydrodynamic description
- Significant enhanced v_2 ($\sim 40\%$) for PbNe at the most central collisions and trend well described by (3+1)D hydro predictions with ab-initio nuclear-structure: elongated ²⁰Ne shape
- Improved centrality calibration and updated models on the way for final results

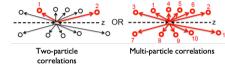


Light-ion data taking

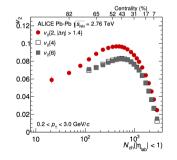
• Both collider and fixed-target data from light-ion runs

- Excellent data collected in OO and NeNe run
- Search QGP signature in small systems and study the *transition* from large system
- Fixed-target OH₂ and NeNe data simultaneously with collider mode
- Unique opportunity for cosmic ray and nuclear imaging

Summary and Prospects

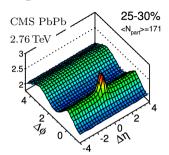

- Growing contributions on flow results from LHCb experiment
 - \triangleright Significant charged particle v_2 in pPb and PbPb collisions at forward rapidity, smaller than that observed at midrapidity
 - ightharpoonup Hydrodynamic model overestimates v_2 in $p{\rm Pb}$ collisions, more studies needed to understand the discrepancy
 - ► First preliminary result with upgraded SMOG2 system, suggesting the ²⁰Ne nucleus deformation
- Outlook
 - Further measurements (e.g. $v_n p_T$ correlation) for studying cluster structures of light nuclei
 - ▶ Excellent data from light-ion run both for colliding and fixed-target modes

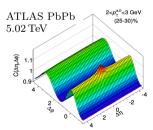
18 / 18


Thanks for your attention!

Cumulant method

• Cumulant method: nth order cumulant $c_n\{m\}$ can be derived from Q_n vectors


$$v_2{2} = (c_2{2})^{1/2}, \quad v_2{4} = (-c_2{4})^{1/4}$$



- Non-flow effects with suppressed with more particles correlated
- Results directly come from the event-by-event measurement

2/3

Two-particle correlation

- Two-particle correlation: $(\Delta \eta, \Delta \phi)$ correlation function
- Obtained by comparing distributions same-event and mixed-event pairs

$$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N^{\text{pair}}}{\mathrm{d}\Delta \eta \ \mathrm{d}\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

- Long-range correlation ridge symbolises the positive v_2
- Significant ridge and jet (non-flow) structures
- What about forward rapidity?

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺灣 釣魚()

3/3