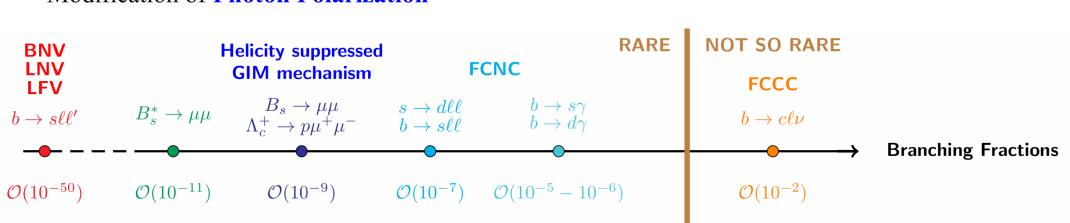
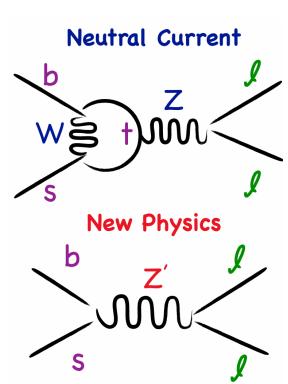


Study of Rare Decays at LHCb

Henan Normal University Kechen Li (李可陈)

On behalf of LHCb collaboration


- 1. Study of (semi)leptonic FCNC B decays
- 2. Study of hadronic FCNC B decays
- 3. Searching for very rare decays
- 4. Prospects and summary


1

(Semi)Leptonic Flavour-changing Neutral Current B decays

Study of $b \rightarrow s\ell\ell$ transitions at LHCb

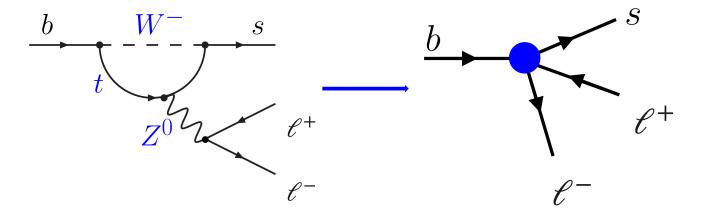
- ➤ New Physics (NP) beyond SM ⇒ indirect searches: test SM predictions to look for deviations from new virtual particles
- \triangleright SM contribution is suppressed in rare decays \Rightarrow sensitive to explore NP
- ➤ How would NP manifest?
 - Modification of the Branching Fraction
 - Modification of the **Angular Distributions**
 - Violation of Lepton Flavour Universality
 - New sources of CP Violation
 - Modification of Photon Polarization

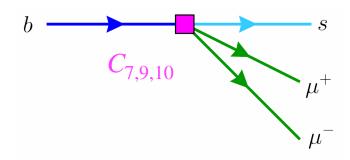
$b \rightarrow s\ell\ell$ decays in theory

- Electroweak penguin (EWP) decays in effective theory interpretation
- ✓ Wilson coefficients are complex values (CPV)
- ✓ SM is LFU but could be violated in NP:

$$C^e \neq C^\mu \neq C^\tau$$

$$O_7^{(')} = \frac{m_b}{e} (\bar{s} \sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu}$$
 dipole $(b \to s\gamma)$

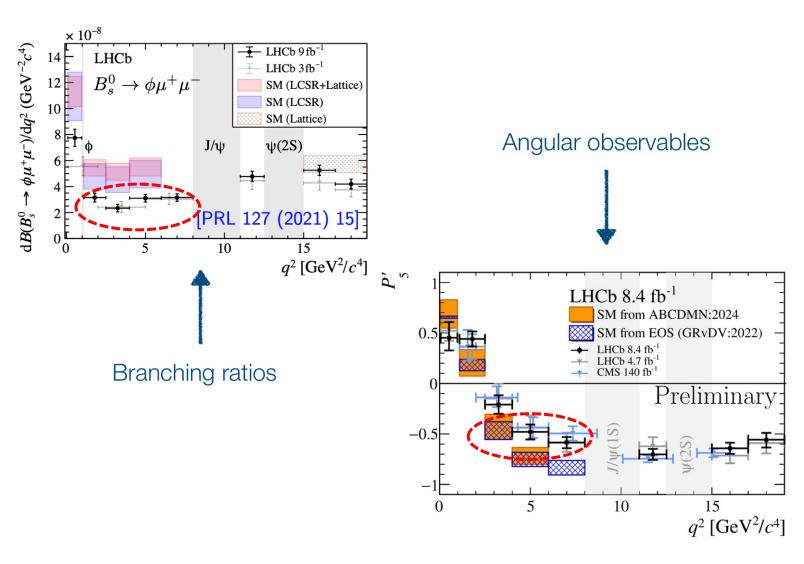

$$O_{\rm Q}^{(')} = (\bar{s}\gamma_{\mu}P_{\rm L(R)}b)(\bar{\ell}\gamma^{\mu}\ell)$$
 vector

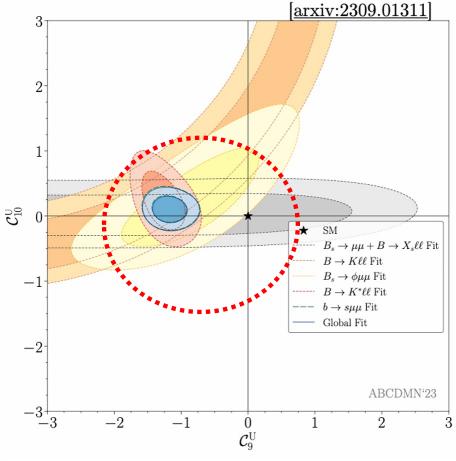

$$O_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{\mathrm{L(R)}}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$
 axial-vector

$$O_{\rm S}^{(')} = (\bar{s}\gamma_{\mu}P_{\rm R(L)}b)(\bar{\ell}\ell)$$
 scalar

$$O_P^{(')} = (\bar{s}\gamma_\mu P_{R(L)}b)(\bar{\ell}\gamma_5\ell)$$
 pseudo-scalar

	$C_7^{(')}$	$C_{9}^{(')}$	$C_{10}^{(')}$	$C_{S,P}^{(')}$
Radiative $b \rightarrow s \gamma $	/			
			✓	✓
Semileptonic $b → s\ell^+\ell^-$	~	~	✓	~

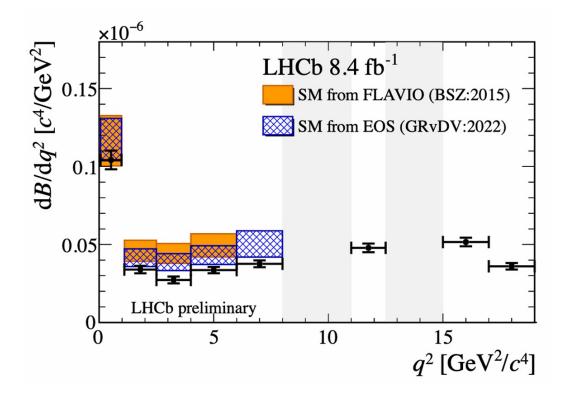


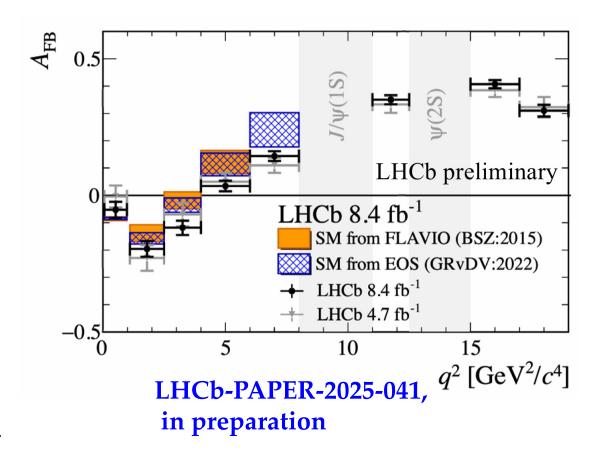


$$H_{eff} \propto \sum_{i} \mathcal{O}_{i} C_{i}$$
 Local-operator

CLHCP2025

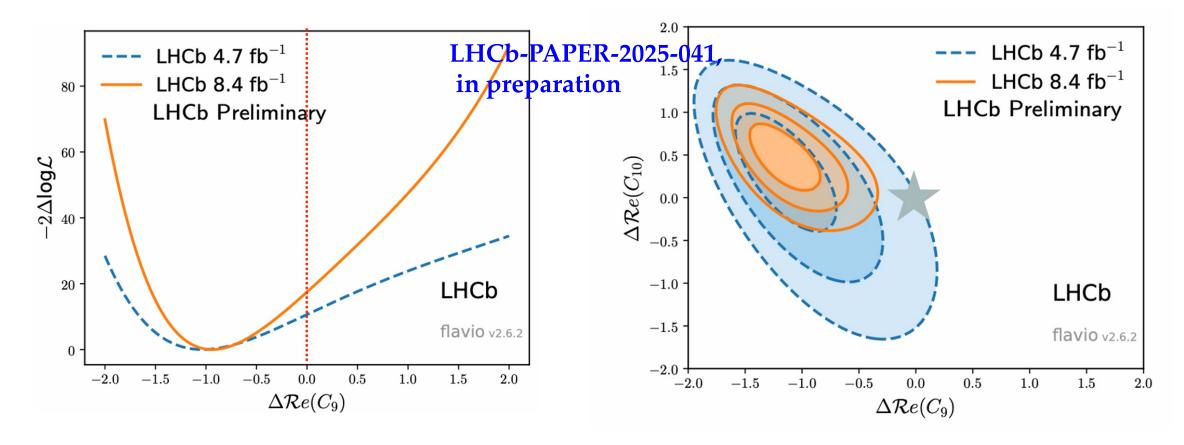
$b \rightarrow s\ell\ell$ anomalies




Global fits to all these observables point to a non-SM vector coupling (C_9)

CLHCP2025

Latest news for $B^0 \to K^{*0} \mu^+ \mu^-$


✓ A comprehensive analysis is re-performed to the LHCb Run1 +Run2 $B^0 \to K^{*0} \mu^+ \mu^-$ dataset

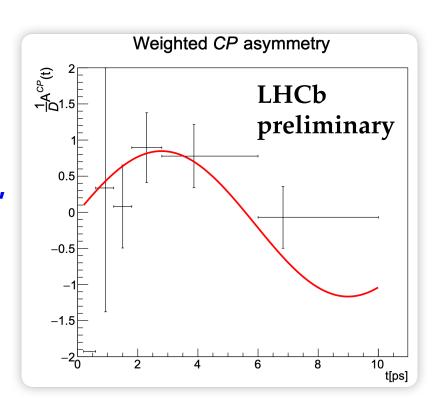
- ✓ The anomaly remains with the increasing sensitivity.
- \checkmark Tensions of 2.5 (2.2) σ and 1.9 (1.7) σ in 2.5-4 and 4-6 GeV²

Latest news for $B^0 \to K^{*0} \mu^+ \mu^-$

As expected, deviation most pronounced in C_9

$$\Delta \text{Re}(C_9) = -0.93^{+0.18}_{-0.16}$$

Significance: 4.1σ

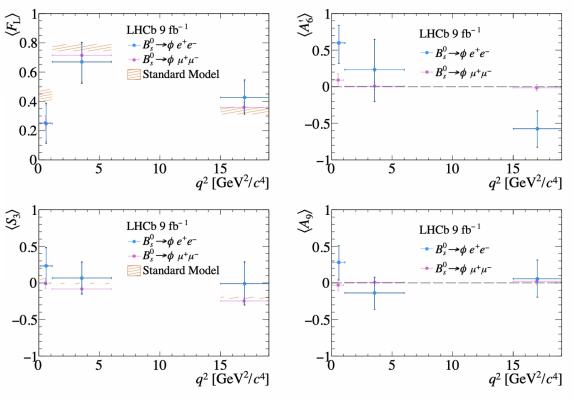

Time-dependent CP violation: a new avenue

河南师大、华中师大

✓ Searching for NP using time dependent CP violation in $b \rightarrow sl^+l^-$ decays

LHCb-PAPER-2024-008, Coming soon!

Background-subtracted decay time distribution n of $B^0 \to K_S^0 \mu^+ \mu^-$ candidates

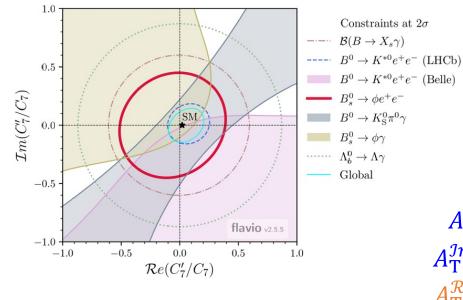

$$\mathcal{A}^{CP}(t) = \frac{\Gamma(\bar{B}^0(t) \to K_{\rm S}^0 \mu^+ \mu^-) - \Gamma(B^0(t) \to K_{\rm S}^0 \mu^+ \mu^-)}{\Gamma(\bar{B}^0(t) \to K_{\rm S}^0 \mu^+ \mu^-) + \Gamma(B^0(t) \to K_{\rm S}^0 \mu^+ \mu^-)}$$

Angular analysis of $B_s^0 \rightarrow \phi e^+ e^-$ decay

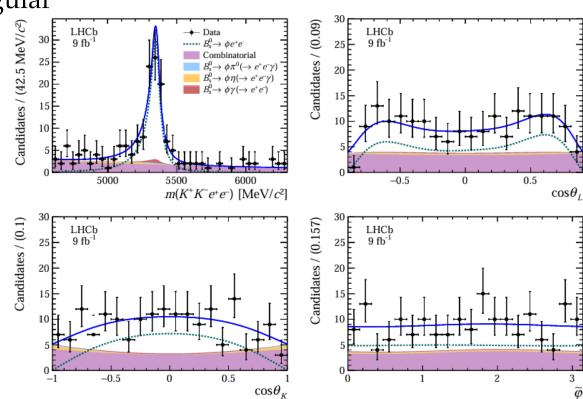
- \triangleright Angular analysis of similar decay mode in the low, central and high q^2 regions, to extract angular coefficients.
- \triangleright Results compatible with SM predictions and previous measurements on $B_s^0 \to \phi \mu^+ \mu^-$ [JHEP 11 (2021) 43]

$0.1 < q^2 < 1.1 \mathrm{GeV}^2/c^4$	$1.1 < q^2 < 6.0 \mathrm{GeV}^2/c^4$	$15.0 < q^2 < 19.0 \text{GeV}^2/c^4$
$0.25^{+0.12}_{-0.12} \pm 0.06$	$0.67^{+0.12}_{-0.13} \pm 0.06$	$0.43^{+0.11}_{-0.10} \pm 0.05$
$0.60^{+0.23}_{-0.28} \pm 0.05$	$0.24^{+0.40}_{-0.42}\pm0.09$	$-0.57^{+0.24}_{-0.25}\pm0.05$
$0.23^{+0.24}_{-0.24}\pm0.07$	$0.07^{+0.21}_{-0.21}\pm0.07$	$-0.01^{+0.29}_{-0.28}\pm0.08$
$0.28^{+0.23}_{-0.24}\pm0.04$	$-0.14^{+0.23}_{-0.24}\pm0.04$	$0.06^{+0.25}_{-0.25}\pm0.05$
	$0.25^{+0.12}_{-0.12} \pm 0.06$ $0.60^{+0.23}_{-0.28} \pm 0.05$ $0.23^{+0.24}_{-0.24} \pm 0.07$	$0.60^{+0.23}_{-0.28} \pm 0.05$ $0.24^{+0.40}_{-0.42} \pm 0.09$ $0.23^{+0.24}_{-0.24} \pm 0.07$ $0.07^{+0.21}_{-0.21} \pm 0.07$

Statistic limited, require more data for further improvement!


[JHEP03(2025)047]

Photon polarisation constraints from $B_s^0 \rightarrow \phi e^+ e^-$

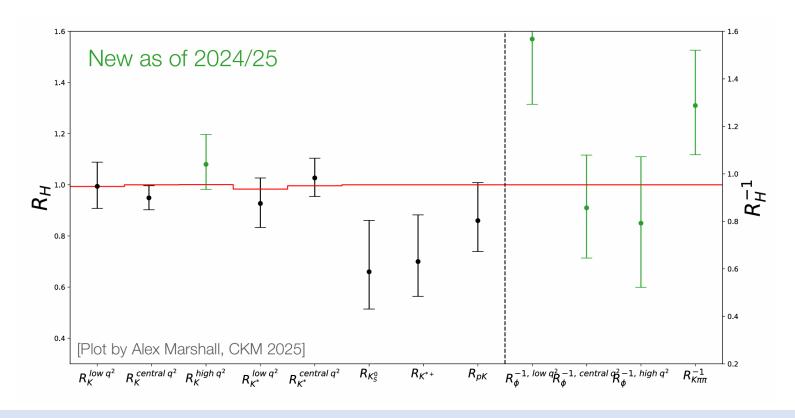

Perform angular analysis at very low q^2 region, angular observables are sensitive to C_7 and C_7'

*First observation of $B_s^0 \to \phi e^+ e^-$ decay

Consistent with the SM predictions

[JHEP03(2025)047]

 $q^2 \in [0.0009, 0.2615] \text{ GeV}^2/\text{c}^4$


$$A_{\rm T}^{(2)} = -0.045 \pm 0.235 \pm 0.014,$$
 $A_{\rm T}^{\it JmCP} = 0.002 \pm 0.247 \pm 0.016,$
 $A_{\rm T}^{\it ReCP} = 0.116 \pm 0.155 \pm 0.006,$
 $F_{\rm L} = (0.4 \pm 5.6 \pm 1.2)\%,$

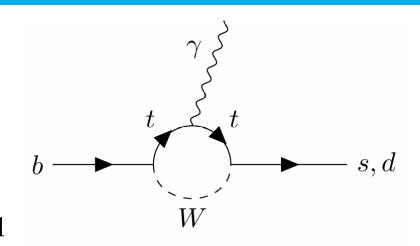
Sensitive to photon polarisation

Fwd-bkd asymmetry

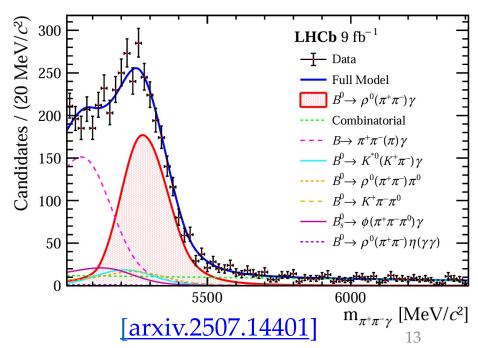
Longitudinal polarisation

Measurements of Lepton Flavour Universality $b \rightarrow sl^+l^-$ decays

[Talk on CKM2025]


- ✓ Most of the LFU ratios are consistent with the SM prediction
- ✓ The anomalies in angular distribution &BF disappeared:
 - Use CP violation as complementary probe
 - Probe the flavour structure of NP using $b \rightarrow d$ transition or $\tau\tau$ final states

Probing NP in $b \rightarrow d\gamma$


- ✓ $b \rightarrow d\gamma$ decay is further suppressed by $|V_{td}/V_{ts}|$, probe the NP in photon polarization.
- ✓ Recent combination in this decay gives: $B(B^0 \to \rho^0 \gamma) = (8.2 \pm 1.3) \times 10^{-7}$
- ✓ The analysis uses 9 fb⁻¹ of full Run1 + Run2 data set, and observed
- ~ 2k signal yields

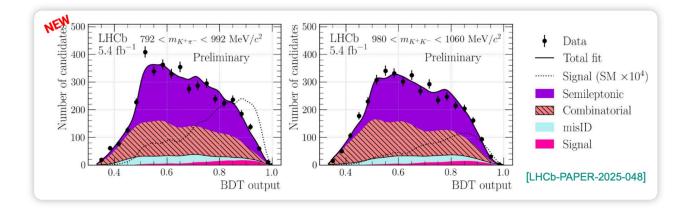
$$Br(B^0 \to \rho^0 \gamma) = (7.9 \pm 0.3 \pm 0.2 \pm 0.2) \times 10^{-7}$$

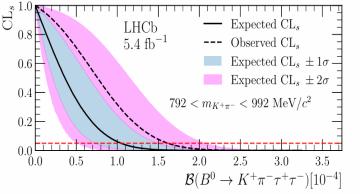
- ✓ Consistent with the current world average and the most precise to date
- ✓ Measurement of time-dependent CP violation to probe NP using $B^0 \to \rho^0 \gamma$ polarization ongoing

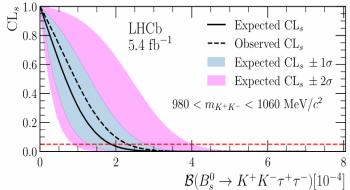
Searching for $b \rightarrow s\tau\tau$ decays

- New LHCb search for $B^0 \to K^+\pi^-\tau^+\tau^-$ and $B^0_s \to K^+K^-\tau^+\tau^-$ -using muonic taus
- BSM effects could be constrained by the BF:

$$C_9^{ au au}=C_9^{SM}-\Delta$$
 If $\Delta\gg C_{9,10}^{SM},$ $C_{10}^{ au au}=C_{10}^{SM}-\Delta$


$$B(B^0 \to K^{*0}\tau\tau) = (10.1 \pm 0.8) \times 10^{-9}) \times \Delta^2$$


$$B(B_s^0 \to \phi \tau \tau) = (9.1 \pm 0.5) \times 10^{-9}) \times \Delta^2$$


Could perfectly explain the $R(D^*)$ anomalies

[See backup slides]

No signal is observed!

[arxiv.2510.13716]

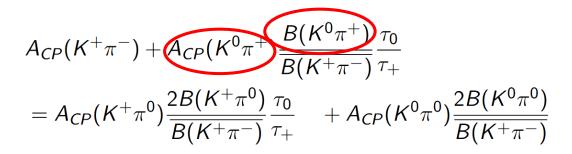
$$\mathcal{B}(B^0 \to K^{*0} \tau^+ \tau^-) < 2.8 \times 10^{-4} \ (2.5 \times 10^{-4}) \ \text{at } 95\% \ (90\%) \ \text{CL},$$
 $\mathcal{B}(B^0_s \to \phi \tau^+ \tau^-) < 4.7 \times 10^{-4} \ (4.1 \times 10^{-4}) \ \text{at } 95\% \ (90\%) \ \text{CL}.$ CLHCP2025 World's best precision!

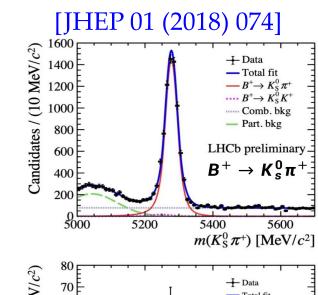
2

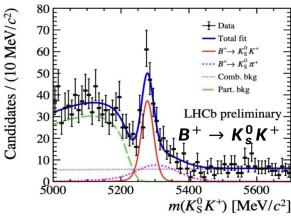
Hadronic FCNC decays

CP asymmetries in $B^+ \rightarrow K_S^0 h^+$ decays

✓ The CP asymmetries of $B^+ \to K_S^0 h^+$ decays are measured using full Run2 data, which yields


$$\mathcal{A}^{CP}(B^+ \to K_S^0 \pi^+) = -0.028 \pm 0.009(\text{stat}) \pm 0.009(\text{syst})$$


$$\mathcal{A}^{CP}(B^+ \to K_S^0 K^+) = 0.118 \pm 0.062(\text{stat}) \pm 0.031(\text{syst})$$

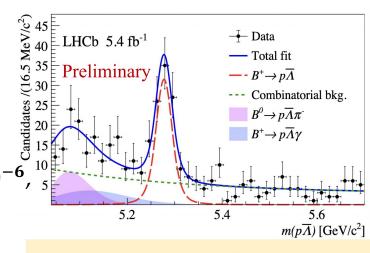

$$\mathcal{R} = \frac{\mathcal{B}(B^+ \to K_S^0 K^+)}{\mathcal{B}(B^+ \to K_S^0 \pi^+)} = 0.055 \pm 0.004(\text{stat}) \pm 0.002(\text{syst})$$

World' best precise measurement

✓ Could be used to probe NP in $b \rightarrow s$ decays as well as testing the isospin symmetry relation

Mode	BR[10 ⁻⁶]	A _{CP}
$B^+ o K^+ \pi^0$	12.94 ± 0.52	0.040 ± 0.021
$B_d^0 o K^+\pi^-$	19.57 ± 0.53	-0.082 ± 0.006

First observation of baryonic decay $B^+ o p \Lambda$


华中师大、湖南大学

- ightharpoonup The decay $B^+ \to p\Lambda$ is first time observed using LHCb Run2 data
- ► Branching fraction: $\mathcal{B}(B^+ \to p\bar{\Lambda}^0) = (1.24 \pm 0.17(stat) \pm 0.05(syst) \pm 0.03(norm)) \times 10^{-7}$
 - -Consistent with theoretical prediction
- Lower than the corresponding 3-body decay: $\mathcal{B}\big(B^+ \to p\overline{\Lambda}{}^0\pi^0\big) = (3.0^{+0.7}_{-0.6}) \times 10^{-6}$ $\mathcal{B}\big(B^0 \to p\overline{\Lambda}{}^0\pi^-\big) = (3.16 \pm 0.24) \times 10^{-6}$ (Threshold Enhancement?)
 - ightharpoonup The decay parameter of the $B^+ o p \overline{\Lambda}{}^0$ process is also measured:

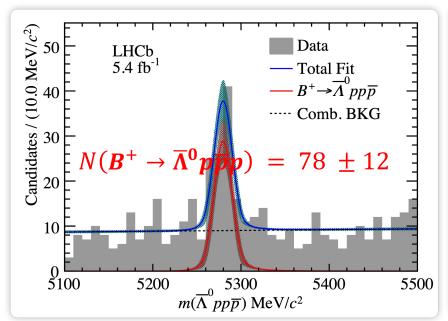
$$\frac{d\Gamma}{dcos\theta_p} \propto 1 - \alpha_\Lambda \ \alpha_B cos\theta_p, \text{ here } \alpha_\Lambda^{avg} = 0.755 \pm 0.003$$

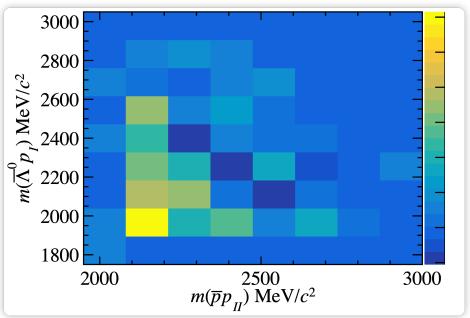
$$\alpha_B = 0.87^{+0.26}_{-0.29}(stat.) \pm 0.09(syst.)$$

✓ indicating the presence of comparable S-wave and P-wave decay amplitudes.

First observation!

Total Yields: $N(B^+ \to p\overline{\Lambda}) = 88 \pm 12$


First observation of $B^+ \to \overline{\Lambda}{}^0 p \overline{p} p$ decay


武汉大学

 \triangleright Observation of B^+ purely four body-baryonic decay:

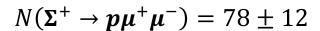
$$\mathcal{B}(B^+ \to \overline{\Lambda}{}^0 p \overline{p} p) = (1.80 \pm 0.30_{stat} \pm 0.05_{syst} \pm 0.25_{ext}) \times 10^{-7}$$

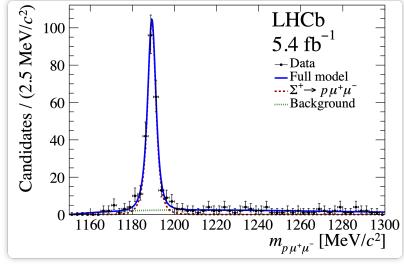
- \triangleright 2 σ lower than theoretical prediction
- A double threshold enhancement is observed.
- \triangleright The CP asymmetry is determined to be $A_{CP} = (5.4 \pm 15.6 \pm 2.4)\%$

arxiv.2508.16259

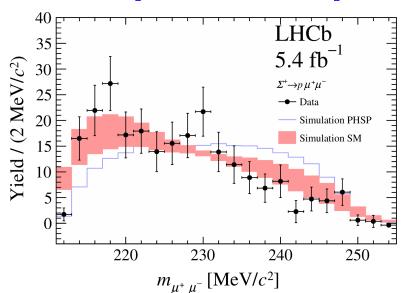
3

Very Rare Decays

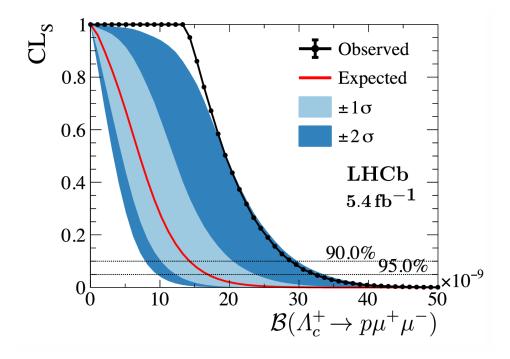

Observation of $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decays


✓ Observe $\Sigma^+ \rightarrow p\mu^+\mu^-$ decay using LHCb Run 2 data

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (1.08 \pm 0.17) \times 10^{-8},$$


Rarest baryon decay ever observed!

- ✓ Study resonances in the dimuon invariant mass distribution to probe P^0 particle predicted by HyperCP.[PRD(43)2005 073]
- ✓ Distribution compatible with SM prediction
 - HyperCP anomaly excluded



[arxiv.2504.06096]

CP asymmetries in $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ decays

The FCNC decay $\Lambda_c^+ \to p \mu^+ \mu^-$ is not observed yet. The CP asymmetry is measured in $\mu^+ \mu^-$ resonances.

- LHCb $\Lambda_{\rm c}^+ \rightarrow p \mu^+ \mu^ 5.4 \text{ fb}^{-1}$ -0.10.1 Σ $A_{
 m FB}$ -0.10.1 -0.1980 1000 1020 1040 $m(\mu^+\mu^-) [\text{MeV}/c^2]$
- ✓ First study of angular and CP asymmetries
- ✓ Consistent with SM prediction 0.

$$\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) < 2.9 \ (3.2) \times 10^{-8}$$
 at 90% (95%) CL.

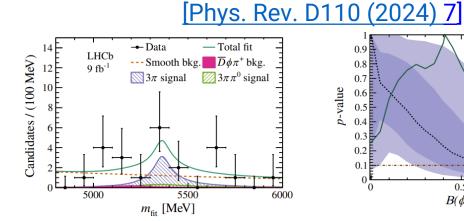
$$A_{CP} = (-1.1 \pm 4.0 \pm 0.5)\%,$$

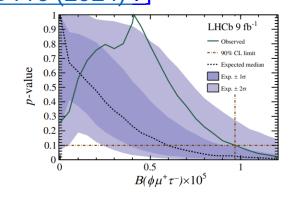
 $\Sigma A_{FB} = (3.9 \pm 4.0 \pm 0.6)\%,$
 $\Delta A_{FB} = (3.1 \pm 4.0 \pm 0.4)\%,$

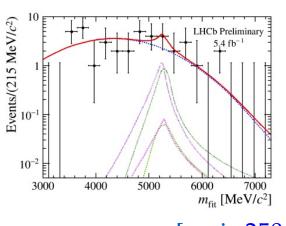
Search for LFV decays $b \rightarrow sll'$

Any observation of a charged LFV decay would provide clear evidence for physics beyond the SM

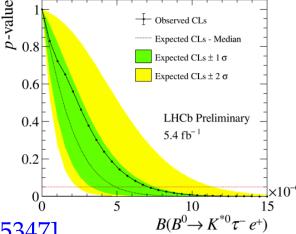
- Search for rare decay $B_s^0 \rightarrow \phi \mu \tau$
 - The first limit on this LFV decay


$$\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.0 \times 10^{-5} \text{at } 90\% \text{CL},$$


$$\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.1 \times 10^{-5} \text{at } 95\% \text{CL}.$$


- □ Search for rare decay $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$
 - ➤ Mass re-fitted including missing neutrino momentum and kinematic constraints

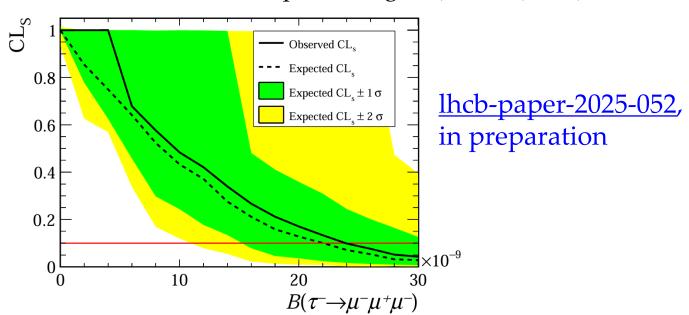
Model	Upper limit $[10^{-6}]$		
	$B^0 \rightarrow K^{*0} \tau^- e^+$	$B^0 \rightarrow K^{*0} \tau^+ e^-$	
Phase-space	5.9 (7.1)	4.9 (5.9)	
Left-handed	6.3(7.7)	5.4(6.4)	
Scalar	6.6 (8.0)	5.7 (6.8)	


the most stringent upper limits placed on $b \rightarrow s\tau e$ transitions

CLHCP2025

[arxiv.2506.15347

22

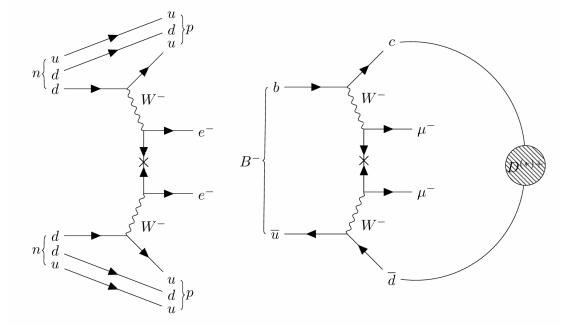

Search for LFV decays $\tau \rightarrow \mu\mu\mu$

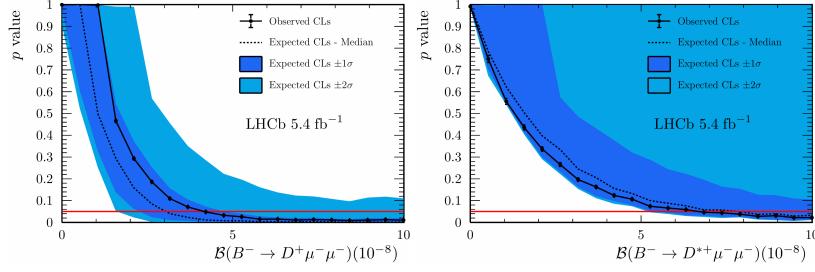
 \triangleright LFV decay strongly suppressed in SM + ν oscillations: $\mathcal{B}(\tau \rightarrow \mu \mu \mu) \sim 10^{-55}$ [Eur. Phys. J. C (2020) 80:506],

Observation of this decay will be a clear sign of new physics

- Set upper limit on the BF
 - •constrain theories of physics beyond the SM
 - •including *Z* or leptoquarks, heavy neutrinos...

[PRD 92, 054013, PRD 94, 115021], predicting $\mathcal{B}(\tau \to \mu \mu \mu) \sim \mathcal{O}(10^{-10} - 10^{-7})$




NP model with Z' boson μ^+

Search for B meson $0v\beta\beta$ decay

- Majorana nature of neutrinos can be tested with neutrinoless double β decay $(0v\beta\beta)$
- B mesons can decay in the $0\nu\beta\beta$ mode
- Upper limit is set using full Run2 data

$$\mathcal{B}(B^- \to D^+ \mu^- \mu^-) < 3.3 \ (4.2) \times 10^{-8} \ \text{at } 90\% \ (95\%) \ \text{CL},$$

 $\mathcal{B}(B^- \to D^{*+} \mu^- \mu^-) < 4.8 \ (6.7) \times 10^{-8} \ \text{at } 90\% \ (95\%) \ \text{CL}.$

CLHCP2025

24

4

Prospects & Conclusions

Prospects of LHCb physics

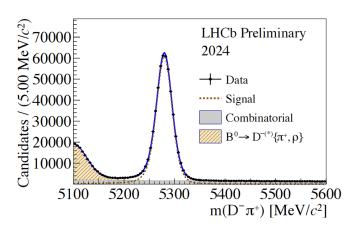
•The $b \rightarrow s(d)\ell\ell$ and $b \rightarrow s(d)\gamma$ decay will reach much better precision using the accumulated data after upgrade

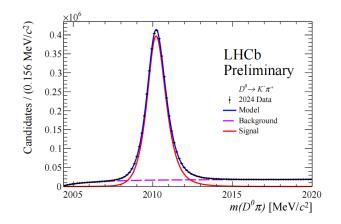
$egin{aligned} ext{Current LHCb} \ ext{(9 fb}^{-1}) \end{aligned}$			$egin{array}{l} { m Upgrade~II} \ { m (300~fb^{-1})} \end{array}$
69%	41%	27%	11%
			0.2
0.10	0.060	0.043	0.016
0.10	0.060	0.043	0.016
$^{+0.44}_{-0.41}$	0.124	0.083	0.033
0.32	0.093	0.062	0.025
$^{+0.17}_{-0.29}$	0.148	0.097	0.038
	(9 fb^{-1}) 69% $$ 0.10 0.10 $+0.44$ -0.41 0.32 $+0.17$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Conclusions

- ✓ Persistent anomaly in $b \rightarrow sl^+l^-$ decays under scrutiny
- ✓ Wider scope for exploitation in LHCb: LFU ratio, polarization, CP violation...
- ✓ A large set of data samples will be collected in the coming years

Stay tuned for the new results!

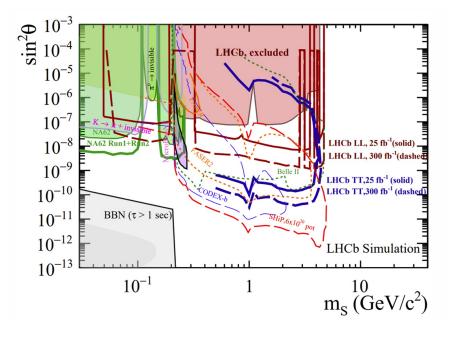

Thank you for listening!


Backup slides

What could be expected after upgrades?

■ More data than the expectation luminosity of Run 1 & 2 in 2024!

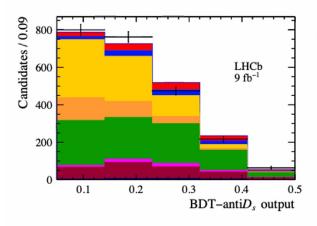
The gain maybe \sim 2× due to removal of hardware trigger

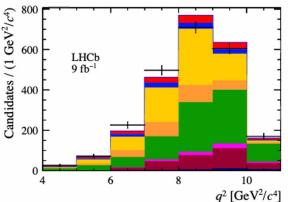


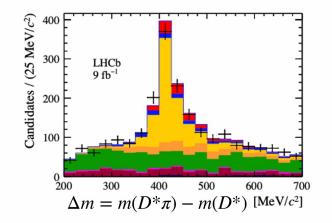
Candidates / (23 MeV/c ²) 420 420 420 420 420 420 420 420 420 420	- Data - Fit Model \(\text{Y(1S)} \) \(\text{Y(2S)} \) \(\text{Y(3S)} \) Background		0 < 2 <	Preliminary 2024 $p_{\mathrm{T}} < 14 \text{ GeV/}c$ $y < 4.5$	
0	9000	9500	10000	10500 m _{μ+μ} -[MeV	c^{2}

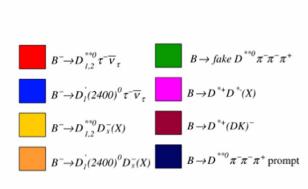
Topic	Comment
Spectroscopy	Enormous yields in gold-plated final states
	e.g. 4M $\Lambda_b^0 \to J\psi pK^-$ decays ('pentaquark' mode)
Higgs	Measure Higgs-charm Yukawa within factor 2 to 3 of SM value
$\sin^2 heta_W$	Uncertainty $< 10^{-4}$, better than LEP/SLD
Proton structure	Precision probes at extremely low and high Bjorken-x values,
	with $Q^2 > 10^5 \text{GeV}^2$
Hidden sector	Sensitivity to most of relevant parameter space for dark-photon models

Search for NP in charged current decays

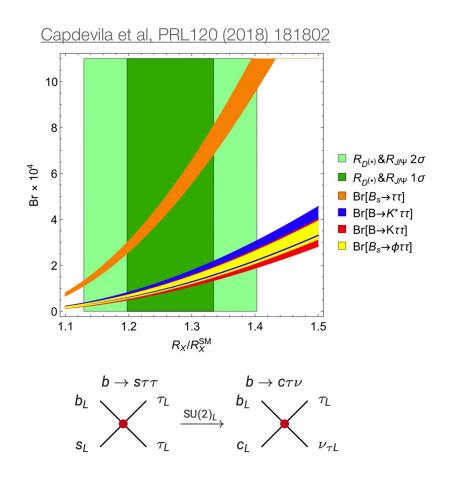

- First evidence of B+ \rightarrow D**0 τ + ν (3.5 σ)
- Normalising to B+→D**0 Ds, the branching ratio is measured to be


$$B(B^- \to D_{1.2}^{**0} \tau^- \nu_\tau) \times B(D_{1.2}^{**0} \to D^{*+} \pi^-) = (0.051 \pm 0.013 \text{ (stat)} \pm 0.006 \text{ (syst)} \pm 0.009 \text{ (ext)}) \%$$


LFU ratio

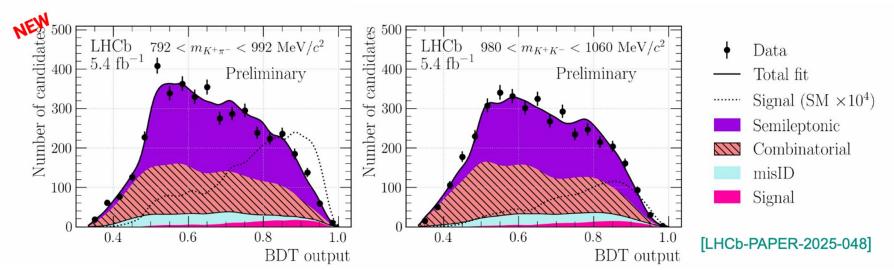

$$R(D_{1,2}^{**0}) = \frac{B(B^- \to D_{1,2}^{**0} \tau^- \nu_\tau)}{B(B^- \to D_{1,2}^{**0} \mu^- \nu_\mu)} = 0.13 \pm 0.03 \text{ (stat)} \pm 0.01 \text{ (syst)} \pm 0.02 \text{ (ext)}$$

compatible with SM prediction of $R(D^{**}_{1,2}) = 0.09 \pm 0.02$ [PRD 97 (2018) 075011]



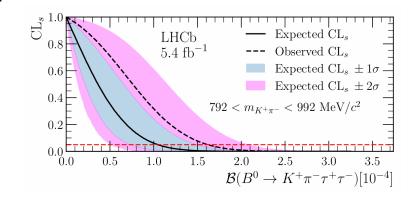
Connection between $b \rightarrow c\ell \nu$ and $b \rightarrow s\ell + \ell - ?$

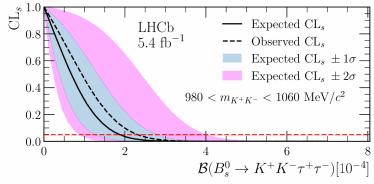
- Attempts to explain LFU violating effects in R(D)-R(D*) tend to enhance $b \to s\tau\tau$ couplings by 10³-10⁴ compared to the SM value
- As a bonus, one obtains higher order corrections to $b \to s \ell \ell$, causing a LFU shift in C_9


	SM prediction
$B_s \to \tau \tau$	$(7.73 \pm 0.49) \times 10^{-7}$
$B \to K \tau \tau [15, 22] \text{GeV}^2/c^2$	$(1.20 \pm 0.12) \times 10^{-7}$
$B \to K^* \tau \tau \ [15, 19] \text{GeV}^2/c^2$	$(0.98 \pm 0.10) \times 10^{-7}$
$B_s \to \phi \tau \tau [15, 18.8] \text{GeV}^2/c^2$	$(0.86 \pm 0.06) \times 10^{-7}$

Search for $b \rightarrow s \tau^+ \tau^-$ decays

- New LHCb search for $B^0 \to K^+\pi^-\tau^+\tau^-$ and $B^0_s \to K^+K^-\tau^+\tau^-$
 - Using muonic taus

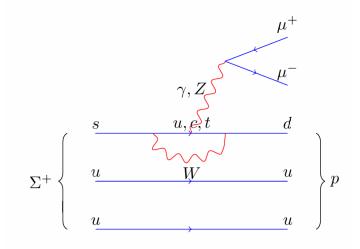

• No signal is observed, UL is set as



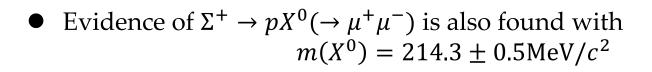
$$\mathcal{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.8 \times 10^{-4} \ (2.5 \times 10^{-4}) \text{ at } 95\% \ (90\%) \text{ CL},$$

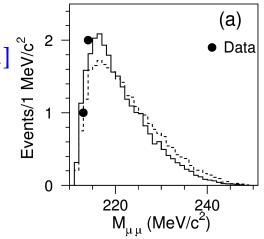
 $\mathcal{B}(B_s^0 \to \phi \tau^+\tau^-) < 4.7 \times 10^{-4} \ (4.1 \times 10^{-4}) \text{ at } 95\% \ (90\%) \text{ CL}.$

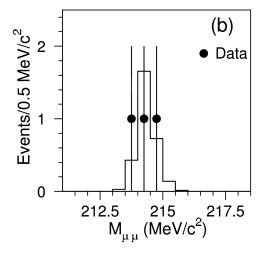
• Improves by approx a factor *10 the recent best limit from Belle


[arxiv: 2504.10042]

Observation of $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decays


• $\Sigma^+ \to p \mu^+ \mu^-$ is a very rare decay mediated by $s \to d$ transition –Short-distance contribution(penguin/box diagrams) $B \sim \mathcal{O}(10^{-12})$ –Long-distance contributions (from the decay $\Sigma^+ \to \rho \gamma^*$) $1.28 \times 10^{-8} < B(\Sigma^+ \to p \mu^+ \mu^-) < 7.8 \times 10^{-8}$ [PRD72(2005) 074003]

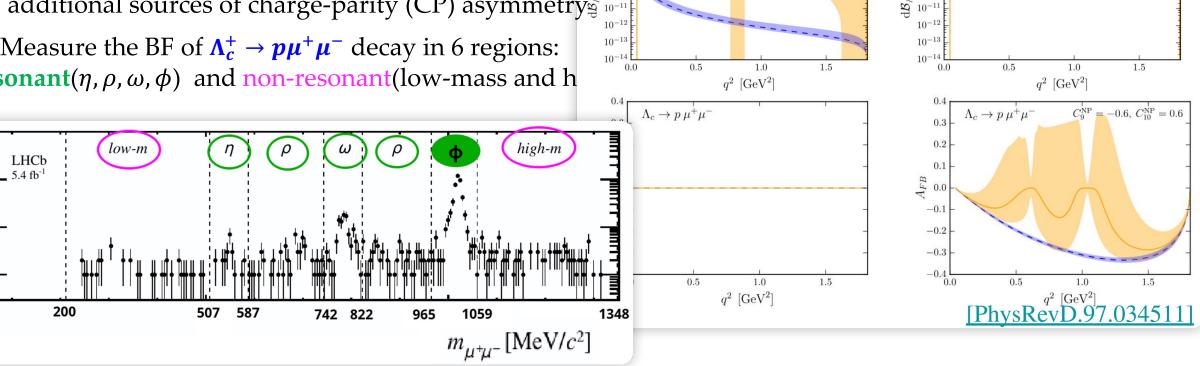



[JHEP1810(2018)040] [PRD111(2025)013003]

• First evidence for $\Sigma^+ \to p \mu^+ \mu^-$ decay was found by HyperCP (2005)

-3 events found in absence of background -Measured branching fraction. [PRL94(2005)021801] $B(\Sigma^+ \to p\mu^+\mu^-) = 8.6^{+6.6}_{-5.4} \pm 5.5 \times 10^{-8}$

Search for $\Lambda_c^+ \to p \mu^+ \mu^-$ decays


 $\rightarrow \Lambda_c^+ \rightarrow p \mu^+ \mu^-$ is a very rare FCNC + GIM mechanism

–Short-distance contribution(penguin/box diagrams) *B*

-Long-distance contributions $B \sim \mathcal{O}(10^{-8})$ from $\Lambda_c^+ \to p\lambda$

BSM contributions could enhance the expected BR, produce a non-zero forward-backward asymmetry or introduce 10additional sources of charge-parity (CP) asymmetry

Measure the BF of $\Lambda_c^+ \to p \mu^+ \mu^-$ decay in 6 regions: **resonant**(η , ρ , ω , ϕ) and non-resonant(low-mass and h

Resonances -Perturbative SM

LHCb 90% CI

 $\Lambda_c \to p \, \mu^+ \mu^-$

Resonances + NP

Perturbative SM + NP

 $C_{0}^{\text{NP}} = -0.6, C_{10}^{\text{NP}} = 0.6$