

Operation and performance of LHCb Upstream Tracker

¹Yuan YUAN (袁源) on behalf of the LHCb UT group

¹Institute of High Energy Physics, CAS

CONTENTS

01 Upstream tracker (UT) of LHCb

02 The Operation of UT

03 Recent performance results of UT

03 Summary

Part

Upstream tracker (UT) of LHCb

01 Upstream tracker (UT) of LHCb

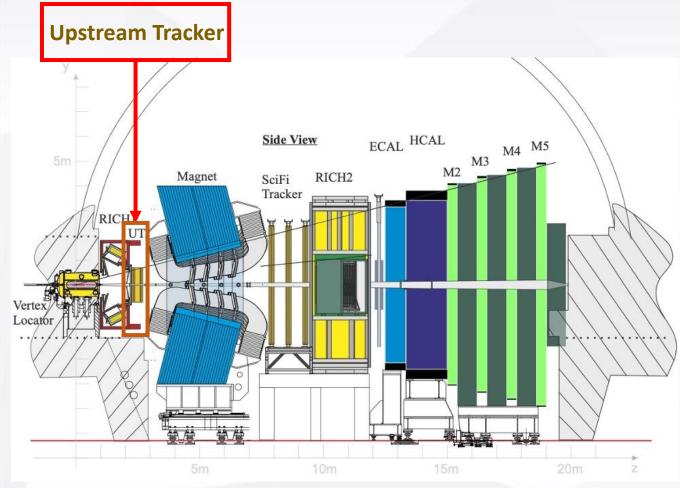


Fig 1. Layout of the upgraded LHCb detector

- ➤ The Upstream Tracker (UT) is designed for LHCb Upgrade I data-taking.
 - ightharpoonup Lumi = $2 \times 10^{33} cm^{-2} s^{-1}$
 - Crucial for track reconstruction of lowmomentum particles and decay products of long-lived particles

01 Upstream tracker (UT) of LHCb

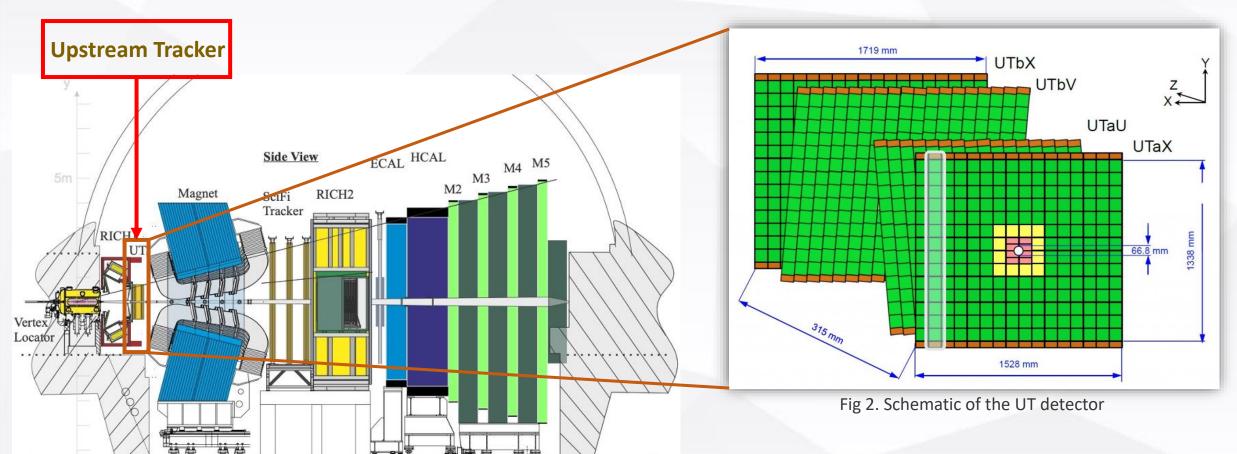


Fig 1. Layout of the upgraded LHCb detector

- > The UT is a silicon micro-strip detector
 - > 4 layers (x , u, v, x).
 - \triangleright 68 staves = 536,576 strips $\approx 2 \times (TT+IT)$!
 - ➤ Read-out with 4192 SALT ASICs. (40MHz)

Part

The Operation of UT

02 The operation of UT |

Calibration

- Goal: To efficiently reject noise hits from output to get as pure as possible signals.
- ➤ We have 3 tools:
 - Trimming DAC (analogue)
 - Pedestal subtraction (digital)
 - Common Mode Noise Subtraction

Monitoring

- Dedicated monitoring hub to make sure the detector is in a good shape.
- Real-time auto analyzed data can be access in Monet by everyone and everywhere (from LHCb)!

Single-Event Upset

- Record SEU events to ensure data quality, find anomalies and guide operation.
- Auto-recovery script to mitigate the SEU effects.

> TrimDAC adjustment to align the analog baseline

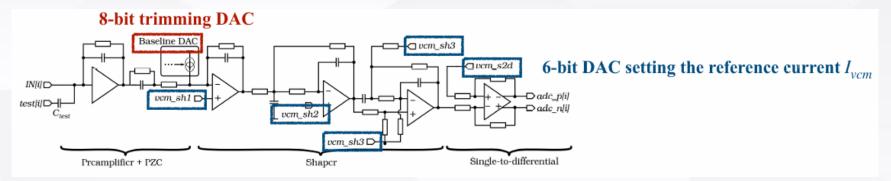


Fig 3. Schematic of Electronics for each channel

- ➤ Each channel contains an 8-bit trimming DAC for a precise baseline setting. And for each ASIC, we can set the reference current.
- ➤ We readout Non-Zero-Suppression data without beams, and scan each DAC from 0-255 (0.1 adjustment on ADC output).
- We get the baseline DAC (where ADC output=0) for each channel by fitting those data points.

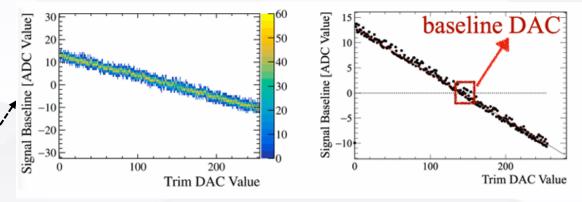


Fig 4. Typical results for each channel

> TrimDAC adjustment

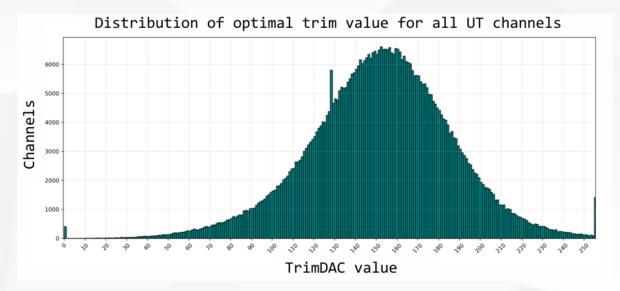
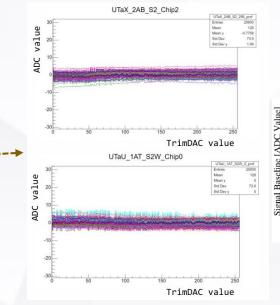
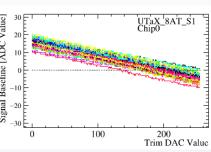
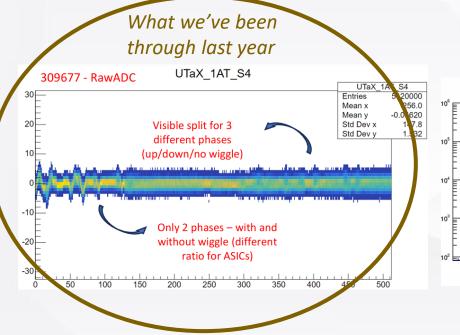
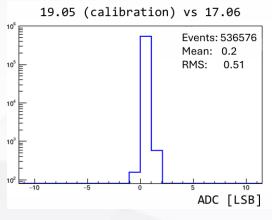



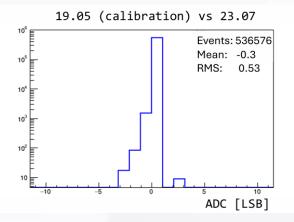
Fig 5. The most recent TrimDAC distribution deployed on UT

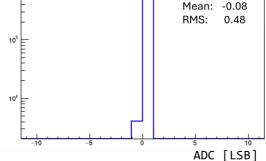

- Current TrimDAC was taken on May 15 and deployed on 23.
- ➤ The fitting procedure detected several "bad chips".--
 - ◆ UTaU_1AB_M2_0, UTaU_1AT_S2W_0, UTaU_2AT_M3_3
 - UTaX_1AT_S4_0, UTaX_2AB_M2_0, UTaX_2AB_S2_2
 - ◆ UTaX_3AB_M1_0, UTbV_2AB_M3_0, UTbX_2AB_M1W_0
 - ◆ UTbX_2AB_M3_1

Status	No. of channels
Overflow	398
Underflow	2919
Bad fit	5812


Examples of hybrids where the fitting procedure failed




What a good one should look like



- > Pedestal and Common Mode (CM) Noise subtraction
 - > The Pedestal + CM Noise represents the ADC output without beams (baseline).
 - \triangleright Final signal ADC Value = ADC_{raw} (Pedestal + CM Noise).
 - ➤ <u>Pedestal stabilities</u>: The pedestals were quite unstable last year (left). But pedestals calculated using 3 scans without beams during the last few months (right) shows no significant drift.

19.05 (calibration) vs 11.08

Events: 536576

Fig 6. Pedestals over 3 scans for UT

- > Pedestal and Common Mode (CM) Noise subtraction
 - > The Pedestal and CM Noise are calculated from the ADC output value without beams (baseline).
 - \triangleright Final signal ADC Value = ADC_{raw} (Pedestal + CM Noise).
 - > Long-term RMS of CM Subtracted ADC without beams for UT (after pedestals subtraction already)

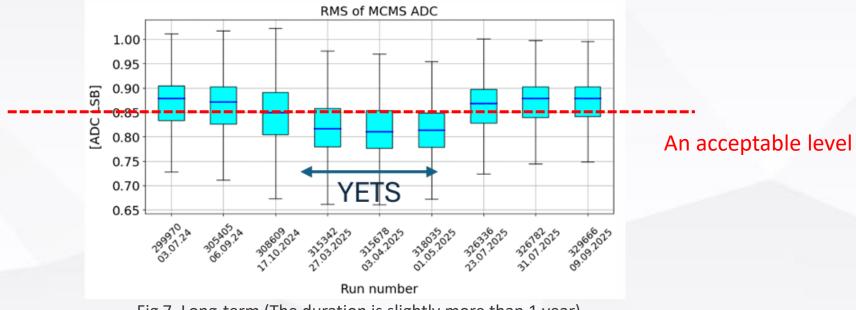
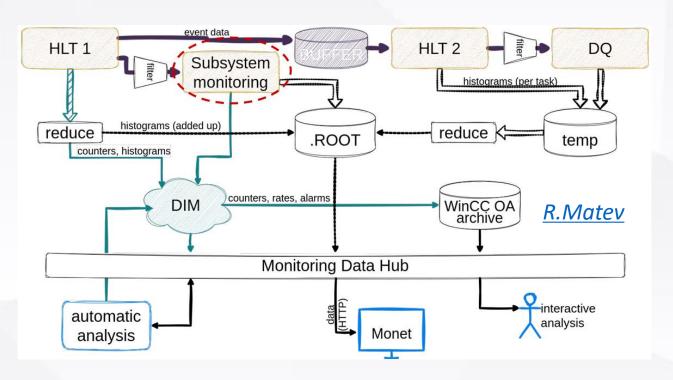


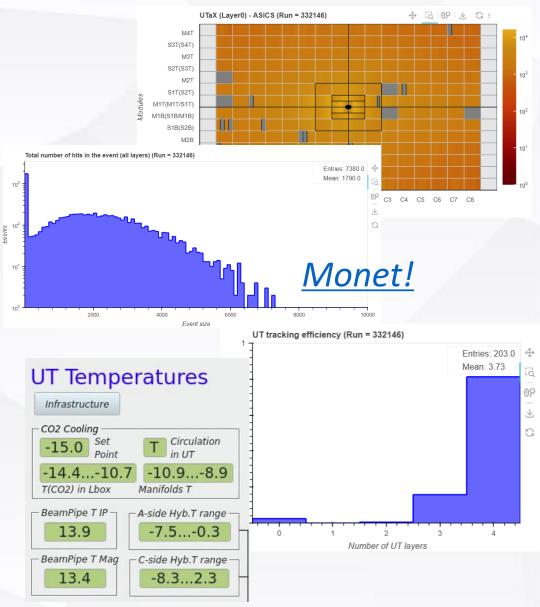
Fig 7. Long-term (The duration is slightly more than 1 year)

RMS of MCMS ADC

- Goal: To efficiently subtract noise from the ADC output to get as pure as possible signals.
- Can be done in 2 ways:
- Trimming DAC.(Analogue)
- Pedestal subtraction.(Digital)
- Mean Common Mode Subtraction(MCMS)

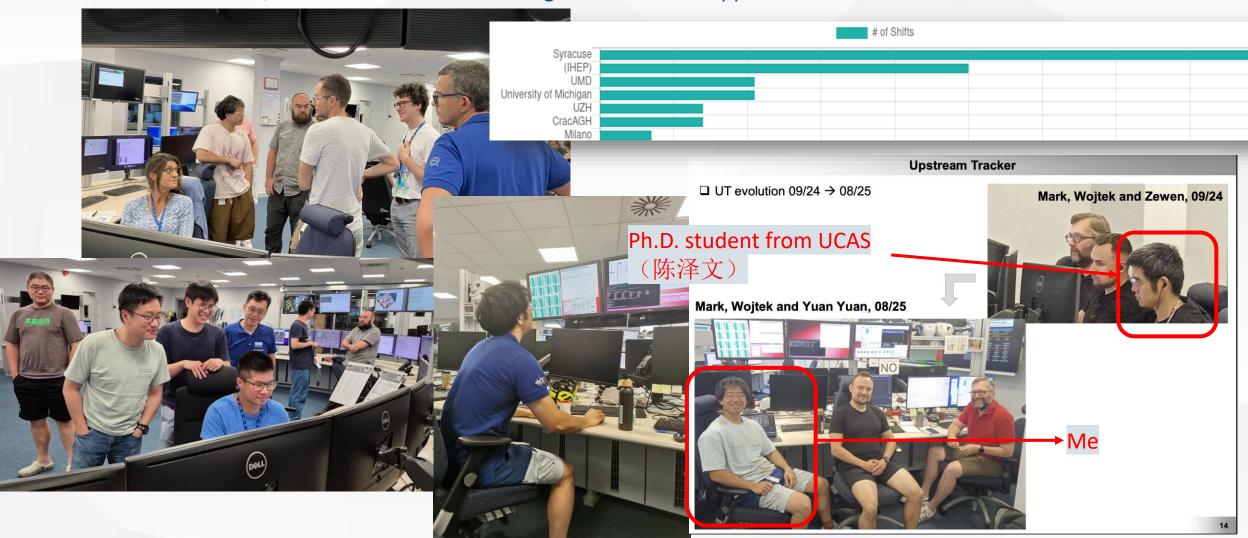
Monitoring


- Dedicated monitoring hub to make sure the detector is in a good shape.
- Real-time auto analyzed data are accessible in Monet by everyone and everywhere (from LHCb)!


Single-Event Upset

- Record SEU events to ensure data quality, find anomalies and guide operation.
- Auto-recovery script to mitigate the SEU effects.

02 Monitoring


- Monitoring in the LHCb includes:
 - > Environmental quantities (HV, temperature...)
 - Detector raw data
 - Output of HLT (High level trigger) reconstruction/selections
 - Automatic analyses (e.g. combined histograms, fits to shapes)

02 Monitoring

- **➤** Monitoring in the LHCb includes:
 - > And of course, a dedicated shift crew taking care of issues happened in the detector

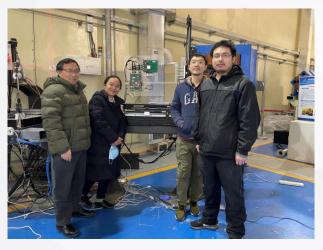
02 The operation of UT

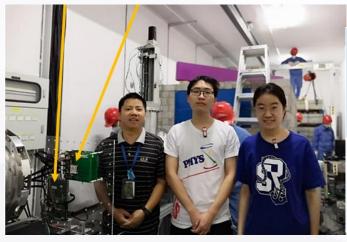
Calibration

- Goal: To efficiently subtract noise from the ADC output to get as pure as possible signals.
- Can be done in 2 ways:
- > Trimming DAC.(Analogue)
- Pedestal subtraction.(Digital)
- Mean Common Mode Subtraction(MCMS)

Monitoring

- Dedicated monitoring hub to make sure the detector is in a good shape.
- Real-time auto analyzed data can be access in Monet by everyone and everywhere (from LHCb)!


Single-Event Upset


- Record SEU events to ensure data quality, find anomalies and guide operation.
- Auto-recovery script to mitigate the SEU effects.

02 Single-Event Upset

> Single-Event Upset

- > IHEP UT group had a long history on tackling the SEU issues in the readout ASIC.
 - ✓ During the **early production stage**, we have conducted 3 radiation tests at PSI (Paul Scherrer Institute, 2019), CIAE (China Institute of Atomic Energy, 2020) and CSNS (China Spallation Neutron Source, 2021) for different versions of the readout chip (v3.5 and 3.9).
 - ✓ We have estimated the impact on the final UT system (e.g. Rate and cross section of SEU).
 - ✓ Mark, Petre, Baasansuren and me (from IHEP) are working on analyzing and tackling the current UT SEUs.

Chip version	Register SEU	Mem SEU	
Cilip Version	TrimDAC/ cm^2	Pedestal/cm ²	cross section/ cm^2
v3.5	6.4×10^{-12}	1.8×10^{-12}	-
v3.9	4.7×10^{-13}	6.1×10^{-13}	2.6×10^{-15}

Fig 8. Test beam @CIAE (left), and test beam @CSNS (right).

SEU during data transmission

02 Single-Event Upset

> Single-Event Upset

- In the current UT, we detect trimdac/pedestal registers SEUs (baseline SEUs) every 30s.
 - ✓ If detected, an auto-recovery script will be activated to re-write the register (by Mark).
- ➤ We also handle analogue register SEUs (e.g. pre_amp, shaper_cfg, which would cause hot/cold channels) by detecting anomalies in the hit map.

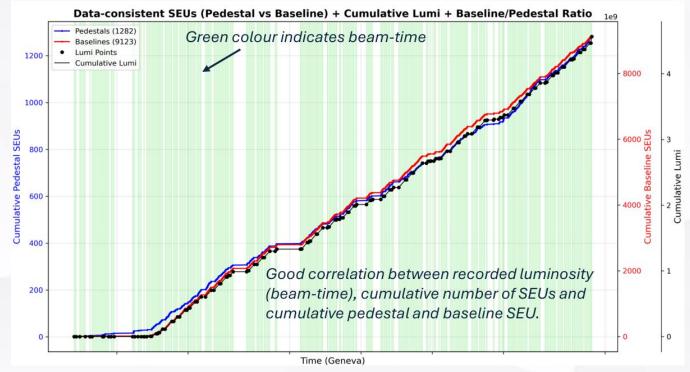


Fig 8. Cumulative number of trimdac SEUs (red), pedestal SEUs (blue), and recorded luminosity vs time for 2025 proton physics & special runs.

Part

Recent performance results of UT

03 Efficiency across Run3 |

Overall, very good performance!

➤ Thanks to Yisheng Fu 傅逸昇 (IHEP) and Zhijie Wang 王智颉(LZU) who wrote the UT tracking efficiency calculation script!

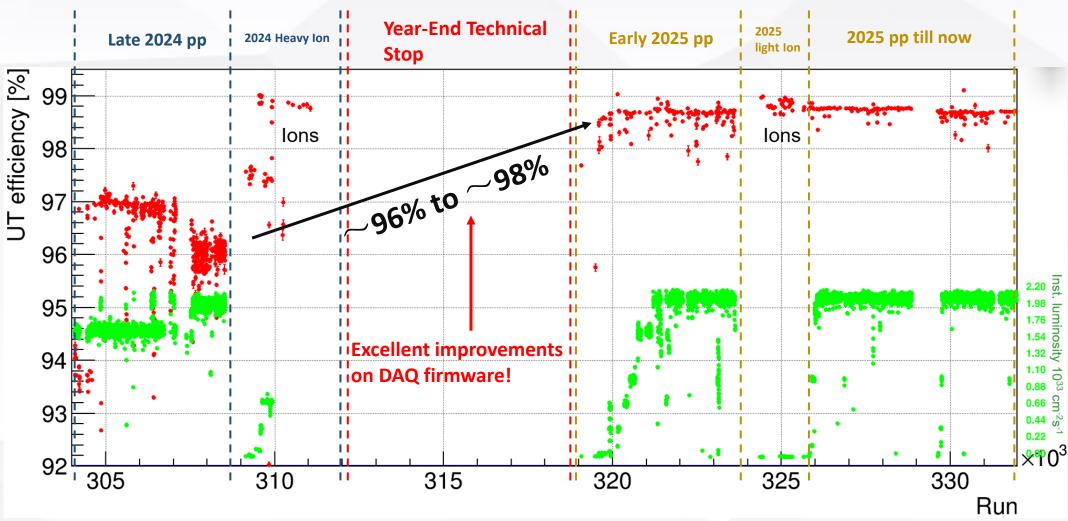


Fig 9. UT tracking efficiency(>= 3 UT hits) 2025 vs 2024

03 Efficiency across Run3 |

> Overall, very good performance!

➤ Thanks to Yisheng Fu 傅逸昇 (IHEP) and Zhijie Wang 王智颉(LZU) who wrote the UT tracking efficiency calculation script!

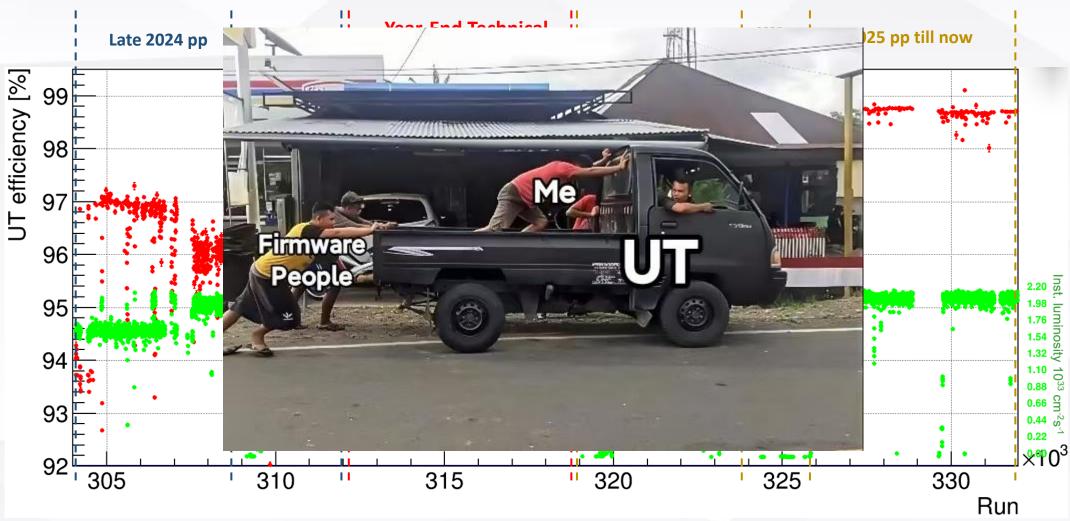
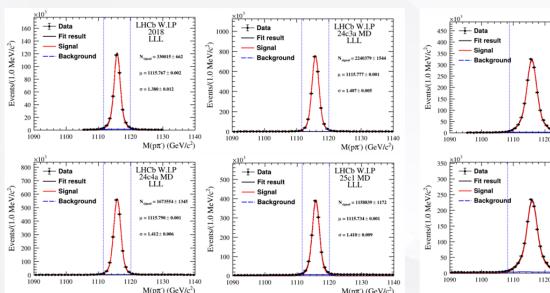



Fig 9. UT tracking efficiency(>= 3 UT hits) 2025 vs 2024

03 Efficiency across Run3 |

- \triangleright Performance study by comparing data from run2 and run3 via $\Xi_c^0 \to \Xi^- \pi^+, \Xi^- \to \Lambda \pi^-, \Lambda \to p \pi^-$
 - $\rightarrow \pi^+/\pi^-$: long track (across the whole tracking system: VELO, UT and SciFi).
 - $p\pi^-$: long/downstream track (only across downstream tracking system: UT and SciFi).
- \triangleright Mass resolution of Λ :

Events/(1.0 MeV/c ²)	## Data	Events/(1.0 MeV/c²)	1090 1100 1110 1120 1130 1140 M(pπ) (GeV/c²)
Events/(1.0 MeV/c ²)	350	Events/(1.0 MeV/c²)	The property of the propert

>	The Λ mass resolution is comparable
	hatwoon Pun2 and 2024/2025

	25c1	1.410 ± 0.009	2.396 ± 0.009
>	The Λ mass	resolution is com	parable

LLL

 1.380 ± 0.012

 1.407 ± 0.005

1.412 + 0.006

DDL

 2.320 ± 0.009

2.585 + 0.009

2.559 + 0.011

Fig 10. Mass resolution of Λ , using long tracks (left) and downstream tracks (right)

 σ (MeV)

2018

24c3a

24c4a

03 Efficiency across Run3

- ightharpoonup Performance study by comparing data from run2 and run3 via $\Xi_c^0 o \Xi^- \pi^+$, $\Xi^- o \Lambda \pi^-$, $\Lambda o p \pi^-$
 - $\rightarrow \pi^+/\pi^-$: long track (across the whole tracking system: VELO, UT and SciFi).
 - $p\pi^-$: long/downstream track (only across downstream tracking system: UT and SciFi).
- **➤** Signal yield/luminosity:
 - > Trigger:
 - ✓ L0 (only applied in 2018): L0Hadron_TOS||TIS
 - ✓ Hlt1: Inclusive HLT1 trigger (= no specific requirements)

- Selections
- ✓ Apply the same cuts on 2018, 2024c3/c4, 2025c1 samples

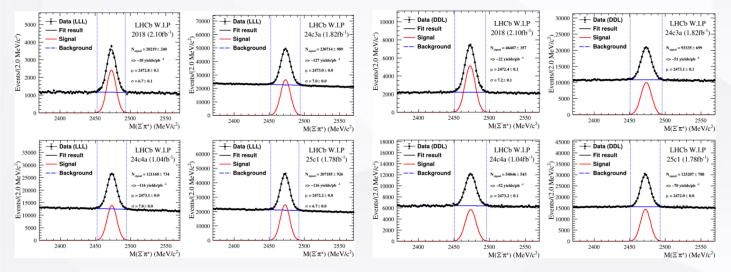
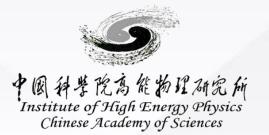


Fig 11. Signal yield using long tracks(left) and downstream tracks(right)

Yields/pb ⁻¹	LLL	DDL	DDL/LLL	
2018	10	22	2.20	
24c3a	127	51	0.40	
24c4a	116	52	0.45	
25c1	116	70	0.60	

- Compare to 2018
 - Significant increase in $\mathbf{\Xi}_c^0$ reconstruction
 - LLL ~10x
 - DDL ~3x
 - Gain: No L0 trigger & improvement in HLT1

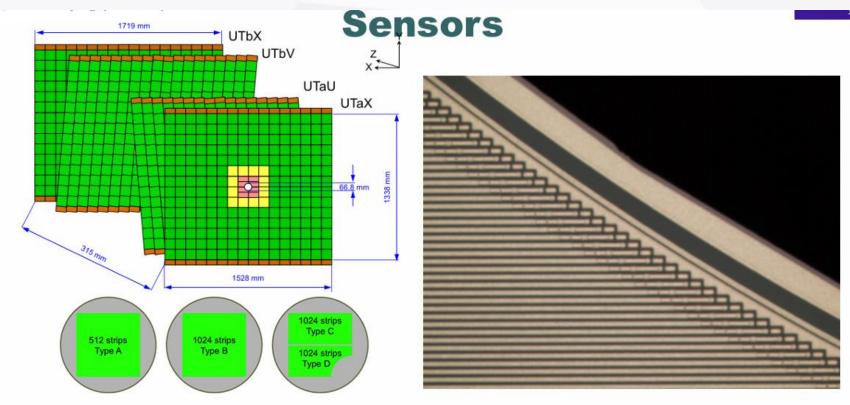

Part

Summary

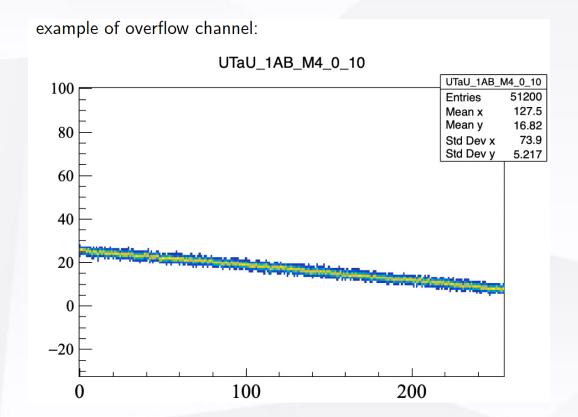
04 Summary

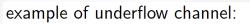
- ➤ The operation of UT includes calibration, monitoring and strategies of tackling single-event upset issue.
- > Recent TrimDAC and pedestals results show the stability and reasonable low noise in UT.
- \succ The performance of UT, in terms of tracking level efficiency, has achieved \sim 98% this year !
- \succ Also, a comprehensive performance study via a Ξ_c^0 decay channel is conducted; we see very promising enhancement on the luminosity averaged signal yield.
- ➤ For the future: The Phase II upgrade (Upstream Pixel detector) will be installed in 2033-2034.

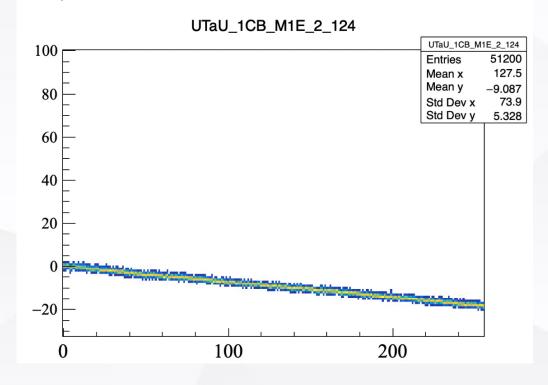
 Many Chinese teams play leading role. (高能物理研究所,华南师范大学,湖南大学,<u>河南师</u>
 <u>范大学</u>,西北工业大学, 兰州大学,中国科学院大学,中南大学)

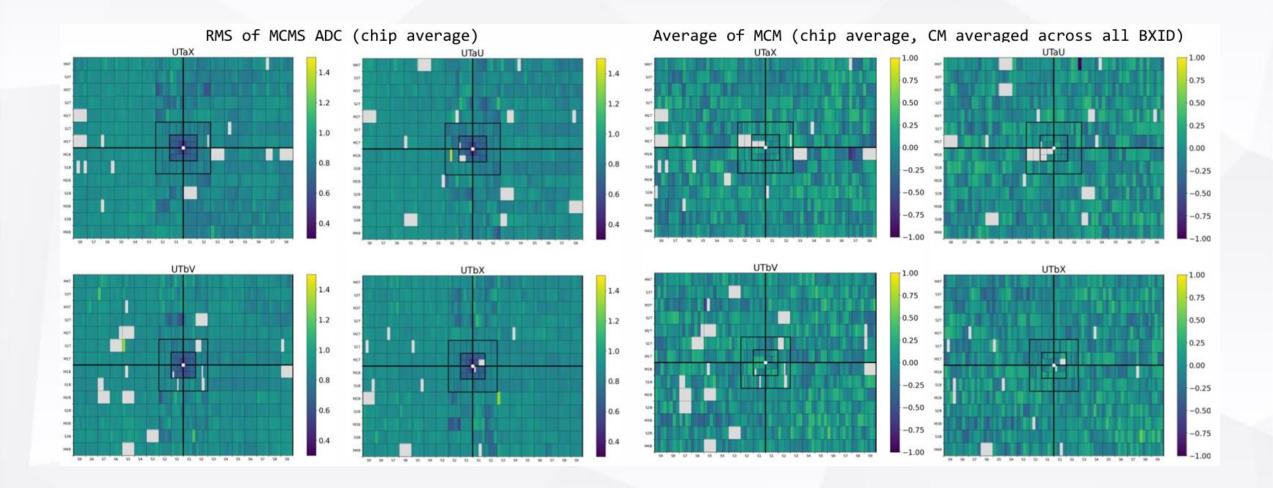


Thanks for your attention!






Back up



- Four types of sensors.
 - n- and p-type with 512 or 1024 strips.
 - $-320/250 \mu m$ thick; 187.5/93.5 μm pitch.
- 888, 48, 16 & 16 type A, B, C, D, respectively!

UT efficiency changes reflect our improving understanding how to match \, \, setting to the DAQ rate limitation while sacrificing as little tracking efficiency as possible

Triggers

- Fit result

—— Data (LLL)

Background

- Fit result

2400

Background

2450

2450

3500

2500

2000

1500

500

MeV/c²)

4000

2000

✓ LO (only applied in 2018): LOHadron TOS||TIS

LHCb W.I.P

2018 (2.10fb⁻¹)

 $N_{signal} = 17170 \pm 211$

 $M(\Xi^{\dagger}\pi^{+}) (MeV/c^{2})$

LHCb W.I.P

24c4a (1.04fb⁻¹)

 $N_{signal} = 32229 \pm 380$

2550

 $M(\Xi^{\dagger}\pi^{+})$ (MeV/c²)

=> ~31 yields/pb

 $\mu = 2472.7 \pm 0.1$

2500

⇒ ~8 yields/pb -1

 $\mu=2472.8\pm0.1$

 $\sigma = 6.7 \pm 0.1$

✓ Hlt1: Exclusive HLT1 trigger (Xic {Track, TwoTrack}MVA TIS||TOS)

16000

َ 2 14000

C 10000

8000

6000

4000

18000

16000

> 14000

¥ 12000 }

2; 10000 E

8000

4000 ₺

18000 - T Data (LLL)

- Fit result

2400

— Data (LLL)

- Fit result

-- Background

2400

2450

2450

Yields/pb^{−1}

2018

24c3a

24c4a

25c1

LHCb W.I.P

⇒ ~34 yields/pb

 $\mu = 2472.7 \pm 0.1$

 $\sigma = 7.0 \pm 0.1$

24c3a (1.82fb⁻¹)

2550

2550

LLL

 $10 \to 8$

 $116 \to 36 \quad 70 \to 43$

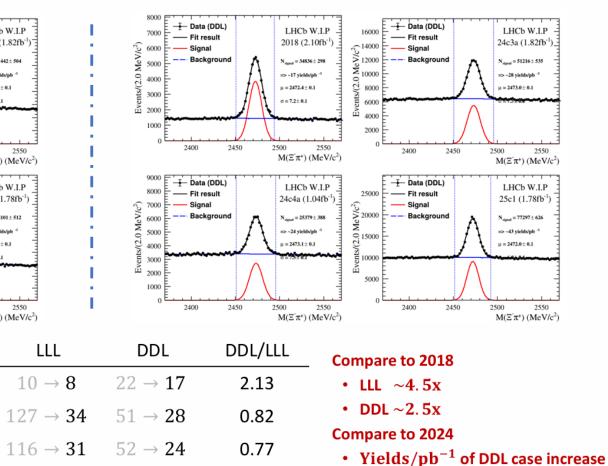
 $M(\Xi^{\dagger}\pi^{+}) (MeV/c^{2})$

 $M(\Xi^{\dagger}\pi^{+}) (MeV/c^{2})$

LHCb W.I.P

25c1 (1.78fb⁻¹)

 $N_{signal}=64101\pm512$


 $\mu=2472.0\pm0.1$

 $\sigma = 6.8 \pm 0.1$

2500

✓ Apply the same cuts on 2018, 2024c3/c4, 2025c1 samples

• Improvement from UT & rec. Algorithm

1.19

Triggers

Selection

✓ L0 (only applied in 2018): L0Hadron_TOS||TIS

- ✓ Apply the same cuts on 2018, 2024c3/c4, 2025c1 samples
- ✓ Hlt1: Exclusive HLT1 trigger (Xic_{Track, TwoTrack}MVA_TIS||TOS)

• Simulation Options:

- ✓ 2024: Official production (AP!3703) (sim10f)
- ✓ 2025: private production (Moore/v57r6p3, config_pp_2025)

	Simulation	2024			2025		
		LLL	DDL	DDL/LLL	LLL	DDL	DDL/LLL
	After DaVinci	272	564	2.07	274	647	2.36
	TrueID Match	211 (77%)	388 (69%)	1.84	217 (79%)	457 (71%)	2.11
The last Step I for	Mass Window (Λ/Ξ^-)	205 (97%)	379 (98%)	1.85	211 (97%)	444 (97%)	2.10
DATA procedure	procedure —Apply same cut	185 (90%)	311 (82%)	1.68	161 (76%)	340 (77%)	2.11
(DDL/LLL ≈ 0.5)	Hlt1 Trigger	28 (15%)	38 (12%)	1.36	29 (18%)	40 (12%)	1.38

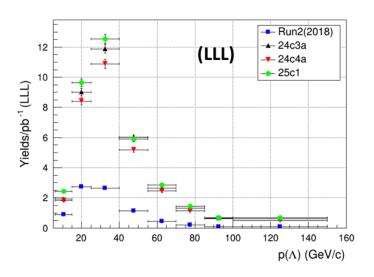
• The DDL/LLL ratio is comparable to 2025 data (\sim 1. 19)

Triggers

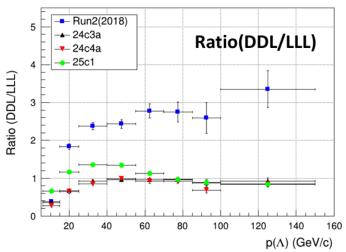
- ✓ L0 (only applied in 2018): L0Hadron_TOS||TIS
- ✓ Hlt1: Exclusive HLT1 trigger (Xic_{Track, TwoTrack}MVA_TIS||TOS)

Binning method

- ✓ Separate bins on $p(\Xi_c^0)$, $p_T(\Xi_c^0)$, $p(\Lambda)$, $\eta(\Lambda)$ (see other plots in backup)
- ✓ Plots show as the order: Yields/fb $^{-1}$ (DDL), Yields/fb $^{-1}$ (LLL), Ratio (DDL/LLL)


p(Λ)

(DDL)


- Run2(2018)
- 24c3a
- 24c4a
- 25c1

- 25c1

(DDL)

Selection

✓ Apply the same cuts on 2018, 2024c3/c4, 2025c1 samples

- The lower ratio in Run 3 (w.r.t. Run 2) is mainly due to the significant increase in LLL production rate (no L0 trigger & dedicated HLT1 trigger ...)
- In Run3, increase in DDL yields w.r.t. Run2 of about a factor 2.5