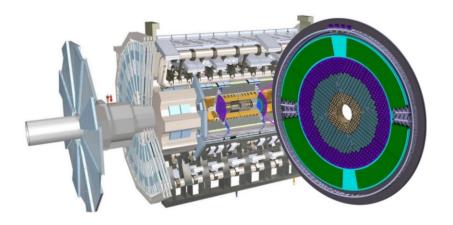


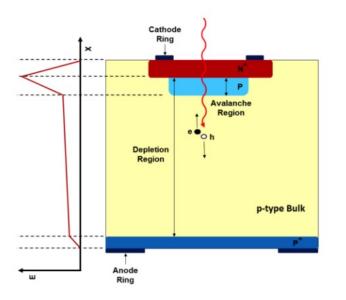
Status of the HGTD Sensors upgrade

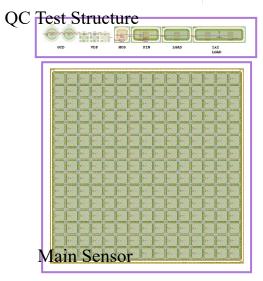
Tianyuan Zhang, Mei Zhao, Zhijun Liang on behalf of HGTD Sensor Group 30-10-2025



- **►** Introduction
- ➤ Company Quality Control (CQC)
- ➤ Sensor Quality Control (SQC)
- ➤ Process Quality Control (PQC)
- >Irradiation Tests (IT)
- >Summary

High-Granularity Timing Detector (HGTD)





- The collisions per Bunch Crossing(BX): 140~ 200 with 1.5 vertex/mm on average along the z axis;
- The High-Granularity Timing Detector based on Low Gain Avalanche Detector (LGAD): provides timing information to enhance vertex reconstruction and luminosity monitoring.

Sensor production:

- About 21800 sensors;
- IHEP-IME: 90% (pilot batch + 5 batches);
- USTC-IME: 10%.

LGAD Technology:

- N-in-P diode structure with extra p-type gain-layer;
- Gain: $10 \sim 20$.

LGAD sensor for HGTD:

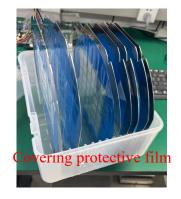
- Active thickness: 50 μm;
- 15x15 pads with 1.3×1.3 mm² cells;
- Carbon-enriched gain-layer for radiation hardness;
- Radiation tolerance : 2.5×10^{15} n_{eq}/cm², 200Mrad
- Time resolution: ≈ 35 ps (start); ≈ 70 ps (end of lifetime);
- Min. charge: 4fC;

HGTD Sensor Acceptance Criteria

IME

Some companies

Wafer processing, Company Dicing, picking, and **Quality Control (CQC)** packing


IME, USTC

Sensor Quality Control (SQC)

• $V_{bd} = Min(V_{bd,15 pad}) \rightarrow 165V < V_{bd} < 195V, \frac{RMS(V_{bd,15 pad})}{AVERAGE(V_{bd,15 pad})} < 5\%$

• Current spread: $Max(I_{15 pad} \text{ at } 0.8 \cdot V_{bd}) / Min(I_{15 pad} \text{ at } 0.8 \cdot V_{bd}) \le 2.5$

Process Quality Control (PQC)

CERN

• LGAD CV $\rightarrow \frac{\text{RMS}(V_{gl})}{\text{AVERAGE}(V_{gl})} < 2\%$

- LGAD IV
- MOS CV
- Sheet resistors

USP

Process Quality Control (PQC)

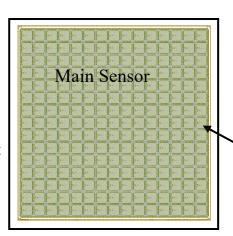
JSI

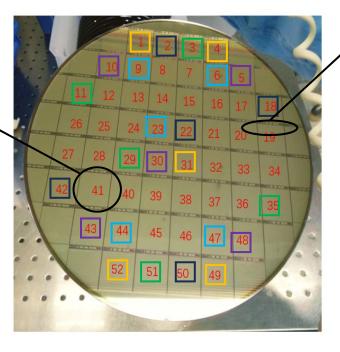
Irradiation Test (IT)

- Gain @ 100V(TCT)
- V_{gl} (CV after irradiation)

- > Introduction
- ➤ Company Quality Control (CQC)
- ➤ Sensor Quality Control (SQC)
- ➤ Process Quality Control (PQC)
- >Irradiation Tests (IT)
- **Summary**

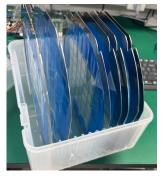
Company quality control(CQC)





QC-TS

Wafer layout


- 52 complete sensors on the entire wafer;
- One sensor consisting of a main sensor and Quality Control Test Structures (QC-TS).

• Five QC-TS structures are selected at five distinct positions on the wafer.

Allocated to	TS grouping	TS Position Number
OEDN	1	2、18、22、42、50
CERN	2	6、9、23、44、47
HOD	1	1、4、31、49、52
USP	2	3、11、29、35、51
JSI	1	5、10、30、43、48

IV test

- **IHEP**: 15x1 probe card IV measurements on sensors by IME before dicing;
- USTC: single-needle per-pad measurements on all sensors by IME before dicing.
- IME uploads the IV test data to HGTD database;
- IME provides classification results based on IV test data without temperature correction;
- Some companies perform dicing, selecting Class A sensors and QC-TS structures from five different positions are gathered together.

28929

20WS0010400002

Wafer

IHEP-IME

Testing upload 8

Sensor Acceptance Criteria

> A: sensor passes all the acceptance criteria.

at 20°C

Break down current:

 $I_{bd,15 \text{ pad}} = 15 \cdot I_{pad,bd} \rightarrow V_{bd,15 \text{ pad}}$ is defined at $I_{15 \text{ pad}} > 7500 \text{ nA}$, where $I_{pad,bd}$ is the pad current breakdown threshold.

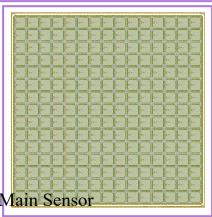
• Sensor break down voltage:

$$V_{bd} = Min(V_{bd,15 pad}) \rightarrow 165V < V_{bd} < 195V$$

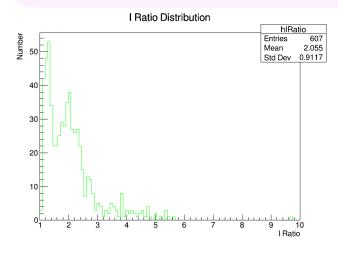
• Break down spread:

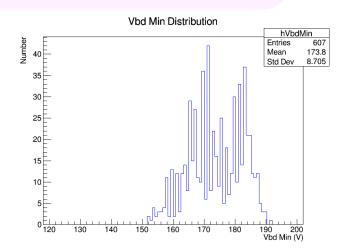
 $RMS(V_{bd,15 pad})/AVERAGE(V_{bd,15 pad}) < 0.05$

• Current spread:


 $\text{Max}(\mathbf{I_{15\,pad}} \text{ at } 0.8 \cdot \mathbf{V_{bd}}) / \text{Min}(\mathbf{I_{15\,pad}} \text{ at } 0.8 \cdot \mathbf{V_{bd}}) \le 2.5$

- \triangleright B1: sensor with 150V < V_{bd} < 165V, fills the leakage current requirement
- **B2**: sensor fill Current spread criteria with
- $2.5 < Max(I_{15pad} \text{ at } 0.8 \cdot V_{bd}) / Min(I_{15pad} \text{ at } 0.8 \cdot V_{bd}) < 10.$
- C: sensor fills any of the tests and are not of category B.

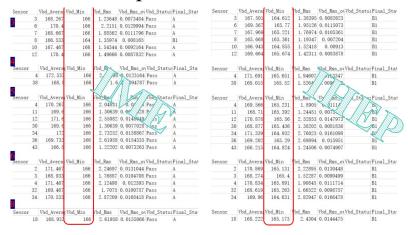

QC Test Structure



Company Quality Control (CQC)

17 wafers of IHEP Pilot Batch

- Class A sensors according to IME analysis results is 403;
- Class A sensors according to IHEP analysis results with temperature correction is 372;
- Information of sensors from 17 wafers from IME test data
 - V_{bd} distribution:
 - A+B1+B2: from 152V to 192V;
 - Leakage current ratio at 0.8V_{bd}:
 - Except for one main sensor(type B2) with an IRatio of 9.7, the rest (A+B1+B2) are less than 5.8.



Temperature correction:

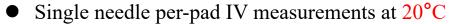
Class	A	Yield
A	372	42.08%
B1	119	13.46%
B2	116	13.12%
total	607	68.66%

- > Introduction
- ➤ Company Quality Control (CQC)
- ➤ Sensor Quality Control (SQC)
- ➤ Process Quality Control (PQC)
- >Irradiation Tests (IT)
- **Summary**

Sensor Quality Control (SQC)

• SQC: IHEP per-pad tested one Class-A sensor per wafer from 17 wafers;

SQC:


Class A: 17 in total;

Class B1: 2 in total;

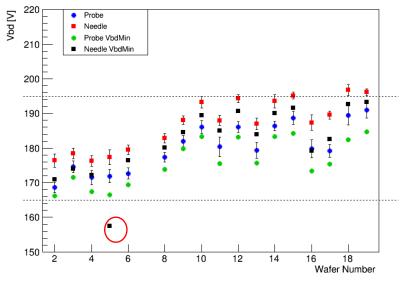
Class B2: 4 in total;

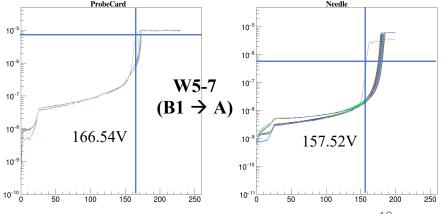
Class C: 1 in total;

• GR: floating, identical to IME

• Each sensor requires approximately 2 hours for needle test.

• Research into B1 and B2 class sensors to determine whether they can be


accepted

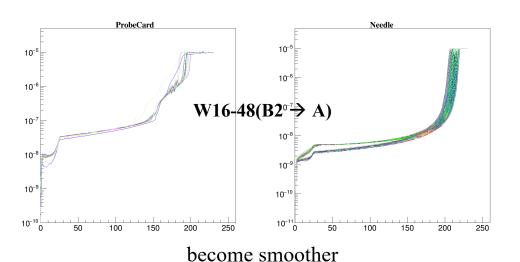

17 Class-A at IHEP, 3 Class-A at JSI:

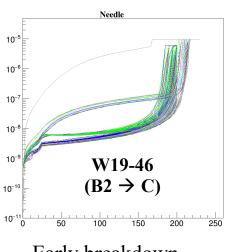
- 19 remain A;
- $1 \text{ (W5P7)} \rightarrow \text{B1(V}_{bd} < 165\text{V)};$
- Vbd from the needle test (by IHEP and JSI) was 2.41~10.15 V higher than the probe card test;

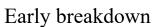
The V_{bd} values from IHEP's needle test results are higher than those from IME's probe card test results. We are currently investigating the reason.

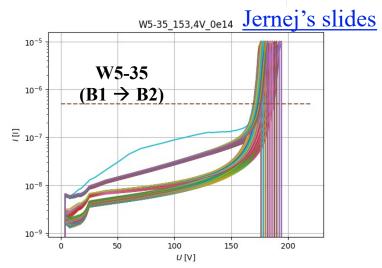
Sensor Quality Control (SQC)

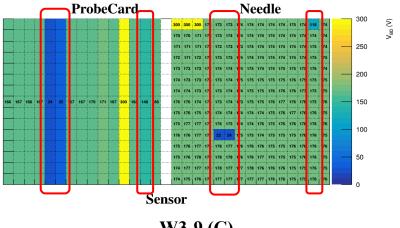
2 Class-B1 at IHEP, 5 Class-B1 at JSI:


• 3 B1 \rightarrow A(V_{bd} >165V); 2 B1 \rightarrow B2; 2 B1 \rightarrow C(with one bad pad near GR);


4 Class-B2 at IHEP, 5 Class-B1 at JSI:


- $5 B2 \rightarrow A;$
- $4 B2 \rightarrow C(early breakdown);$


1 Class-C:


- Remains C;
- Probecard test and needle test yielded identical lower columns of the V_{bd}.

W3-9(C)

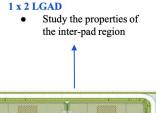
- > Introduction
- ➤ Company Quality Control (CQC)
- ➤ Sensor Quality Control (SQC)
- ➤ Process Quality Control (PQC)
- ➤ Irradiation Tests (IT)
- **Summary**

Process Quality Control (PQC)

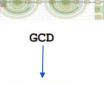
17 wafers of IHEP-IME Pilot batch

- 10 QC-TS/wafer at CERN and USP
- Probe card: needles contacting all 30 pads
- 5 minutes/structure
- 80-position stencil from USP
- Temperature: T=20°C
- The acceptance of the wafers will be based on spread of gain-layer depletion voltage:

• Spread =
$$\frac{RMS(V_{gl})}{AVERAGE(V_{gl})} < 2\%$$



Pin Diode


- I-V measurements
- Like LGAD but no gain layer (gain =1)

PIN

Used to understand gain

1x2 LGAD

Van der Pauw (VDP)

aluminium

Resistance of n+,p-

stop substrates and

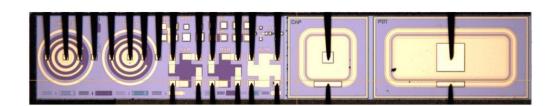
VDP

Gate-Control-Diodes

- Purpose: Measure surface currents
- Only used in initial measurements
 - Showed that GCD design doesn't allow for useful measurements of surface currents

Metal-Oxide-Semiconductor Capacitor

MOS

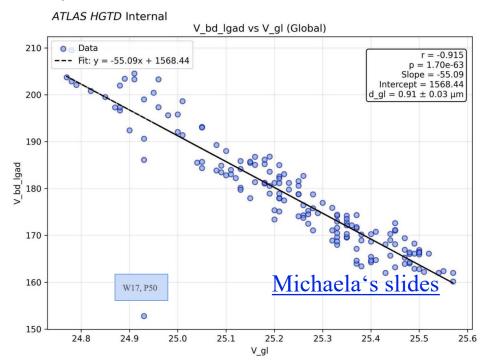

flat-band voltage (V_fb) and oxide thickness (t_ox)

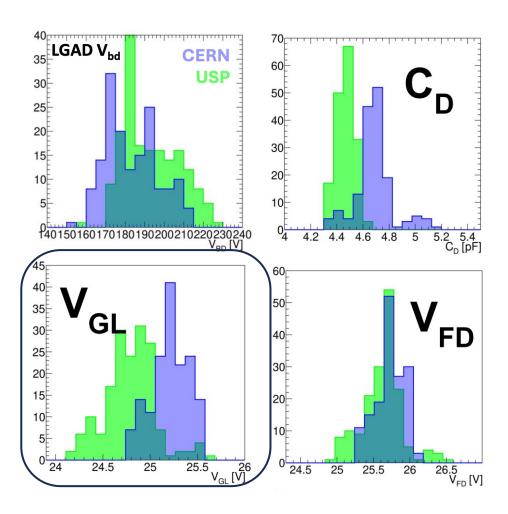
LGAD

Same area as main sensor pad just longer

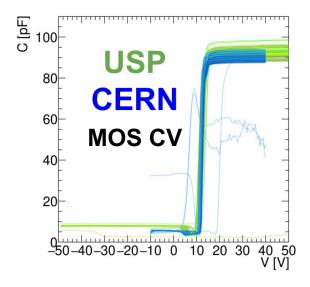
LGAD

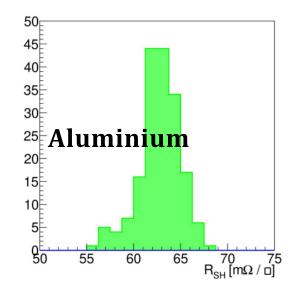
- I-V → V_bd, I_meas at operational voltage
- C-V → Gain layer depletion voltage, V_fd, C_d

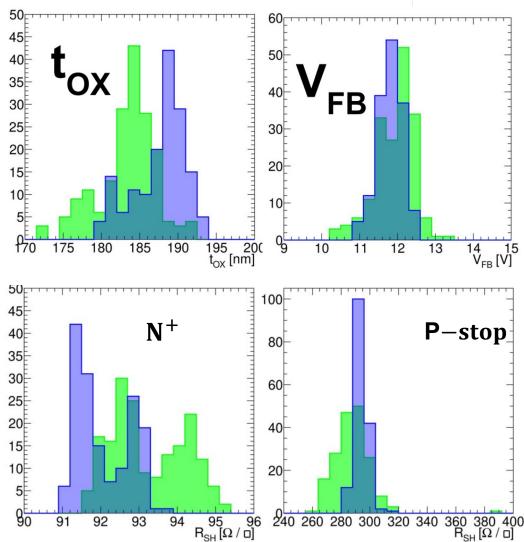



Process Quality Control (PQC)

- LGAD IV and CV: Results for sites individually ok, slight discrepancy between USP and CERN in V_{gl} and C_D
 - V_{gl} spread
 - ✓ USP 17/17 wafer would pass PQC
 - ✓ CERN 17/17 wafer would pass PQC
 - C_D : average of 4.45 pF
- V_{gl} vs. V_{bd}: strong correlation observed as expected (unlike for preproduction)


Guilherme's slides


Process Quality Control (PQC)

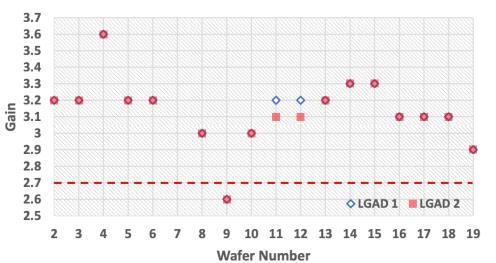


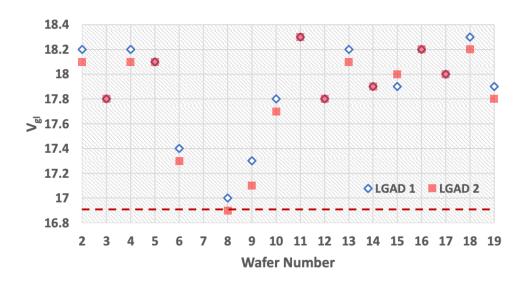
- MOS CV: Much more stable measurement w.r.t. preproduction
 - V_{FB}: Good agreement between sites
 - Oxide thickness: slight tension between sites
- Sheet resistors:
 - N⁺: Very low spread, indicating uniform doping profile
 - P-stop: Good agreement between sites
 - Aluminium sheet resistance with same spread as preproduction

Guilherme's slides

- > Introduction
- ➤ Company Quality Control (CQC)
- ➤ Sensor Quality Control (SQC)
- ➤ Process Quality Control (PQC)
- ➤ Irradiation Tests (IT)
- >Summary

Irradiation Test (IT)




17 wafers of IHEP-IME Pilot batch

- Irradiation Test: QC-TS are irradiated at JSI with neutrons at end-of-life fluence(2.5×10¹⁵ n_{eq}/cm²) (and are annealed for 80min at 60°C)
- Transient Current Technique (TCT) measurement:
 - Gain @ 100V measured the 1x2 LGAD of the QC-TS
- CV measurement: V_{gl}
- Defined after ⁹⁰Sr measurements on pre-production QC-TS:

Design	Gain @ 100 V	V _{gl}
IHEP	≥ 2.7	≥ 16.9V
USTC	≥ 1.4	≥ 16.6V

- 5 QCTS/wafer at JSI, 1 QC-TS/wafer tested by JSI
- Always position 30 measured center of the wafer
- All wafers pass V_{gl} requirements
- One wafer (9) barely fails gain criteria(to do ⁹⁰Sr measurements on W9)

Summary

Pilot Batch

- PQC: done --- all wafer accepted.
- IT: done --- all wafer accepted.
 - 16/17 wafers passed need to do ⁹⁰Sr for one wafer.
- O CQC:
 - IME is testing A, B1 and B2 sensors that were tested also at IHEP.
- O SQC:
 - 20 Class A sensors from 17 wafers passed SQC testing by IHEP and JSI.
 - \bigcirc SQC gives 2~10V higher V_{bd} than CQC(confirmed by IHEP and JSI).

First Batch

○ 50 wafers (containing a total of 1,371 Class A sensors) are currently undergoing dicing and picking by some companies.

Test temperature

Wafer Temperature(°C)

B4-2	20. 5
B4-3	21.3
B4-4	21.6
B4-5	21. 0
B4-6	21.6
B4-8	21. 1
B4-9	21
B4-10	21. 1
B4-11	21

Wafer Temperature(°C)

B4-12	20. 7
B4-13	21. 4
B4-14	21. 2
B4-15	21
B4-16	20. 9
B4-17	21. 1
B4-18	21
B4-19	21. 1

WAFER 9 – additional tests

Position 5	ATLAS ID	Wafer	Position	Vgl 1	Vgl 2	Gain 1	Gain 2
	20WS2104000905	9	5	17.7	17.7	2.7	3.0
	20WS2104000905 (repeat)	9	5	17.8	17.9	2.9	2.9

	ATLAS ID	Wafer	Position	Vgl 1	Vgl 2	Gain 1	Gain 2
Position 3	20WS2104000930 (repeat 1)	9	30	17.1	17.2	2.6	2.6
	20WS2104000930 (repeat 2)	9	30	17.1	17.3	2.6	2.6
	20WS2104000930 (repeat 3)	9	30	17.3	17.2	2.8	2.7
	20WS2104000930 (repeat 4)	9	30	17.4	17.3	2.8	2.8

Acceptance criteria (IHEP): Vgl ≥ 16.9 V Gain (100 V) ≥ 2.7

HGTD SENSOR MEETING: IRRADIATION TEST REPORT (PRODUCTION)