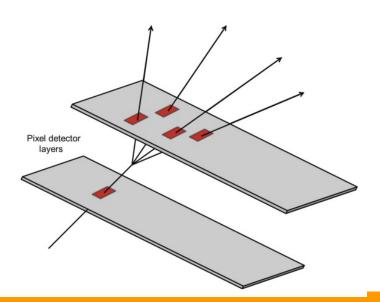

CEPC vertex Detector


Zhijun Liang
(On behalf of the CEPC physics and detector group)

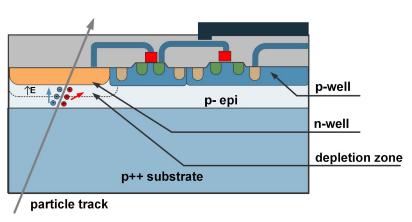
Introduction: vertex detector

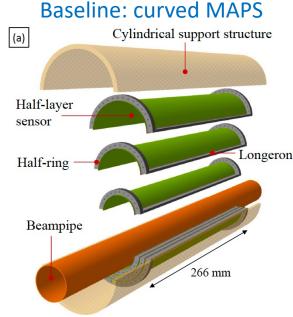
- Vertex detector optimized for first 10 year of CEPC operation (ZH, low lumi-Z runs)
 - Low lumi Z runs is ~20% instant luminosity of high lumi Z runs
- Motivation:
 - Aim for impact parameter resolution and vertexing capability
 - For H \rightarrow bb/ H \rightarrow cc/ H \rightarrow light quark or gluons analysis
 - The observation $H \rightarrow cc$ or $H \rightarrow gg$ is important goal for CEPC

Vertex Requirement

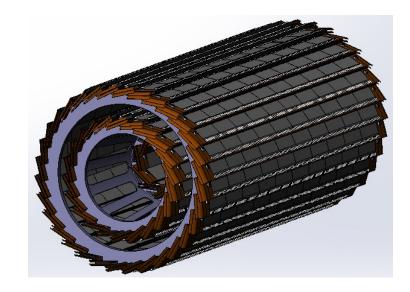
- Inner most layer (b-layer) need to be as close to beam pipe as possible
 - Challenges: b-layer radius (11mm) is smaller compared with ALICE ITS3 (18mm)

Table 4.2: Vertex Detector Design Parameters


Parameter	Design
Spatial Resolution	~ 5 μm
Detector material budget	$\sim 0.8\%~X_0$
First layer radius	11.1 mm
Power Consumption	< 40 mW/cm ² (air cooling requirement)
Time stamp precision	100 ns
Fluence	$\sim 2 \times 10^{14} \text{ Neq/cm}^2 \text{ (for first 10 years)}$
Operation Temperature	~ 5 °C to 30 °C
Readout Electronics	Fast, low-noise, low-power
Mechanical Support	Ultralight structures
Angular Coverage	$ \cos\theta < 0.99$


Technology survey and our choices

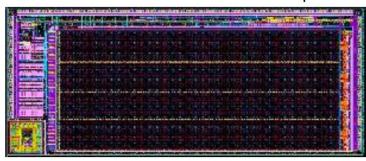
- Curved MAPS chosen as baseline for Reference detector TDR. arXiv:2510.05260
 - Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design[1])
 - Advantage: 2~3 times smaller material budget compared to alternative (ladder options)
 - Alternative: Ladder design based on CMOS MAPS


Monolithic active Pixel CMOS (MAPS)

Monolithic Pixels

Alternative: ladder based MAPS

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181

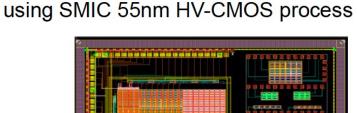

R&D status and final goal

Key technology	Status	CEPC Final goal
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS
Detector integration	Detector prototype with ladder design	Detector with bent silicon design
Spatial resolution	4.9 μm	3-5 μm
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power
Bent CMOS silicon	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm
Stitching	11*11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor

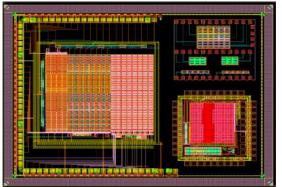
Silicon Pixel Chips for Vertex Detector

2 layers / ladder R_{in}~16 mm

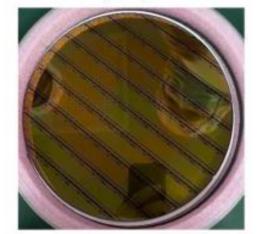
JadePix-3 Pixel size ~16×23 μm²

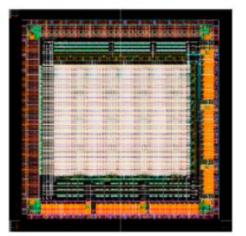


Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm² Goal: $\sigma(IP) \sim 5 \mu m$ for high P track


CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

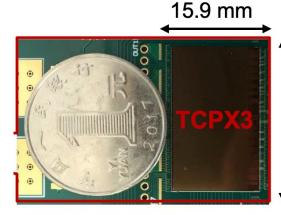

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, COFFEE

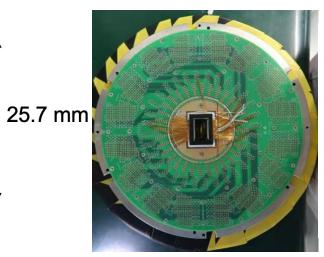

Develop **COFFEE** for a CEPC tracker


TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

CPV4 (SOI-3D), 64×64 array ~21×17 µm² pixel size


Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

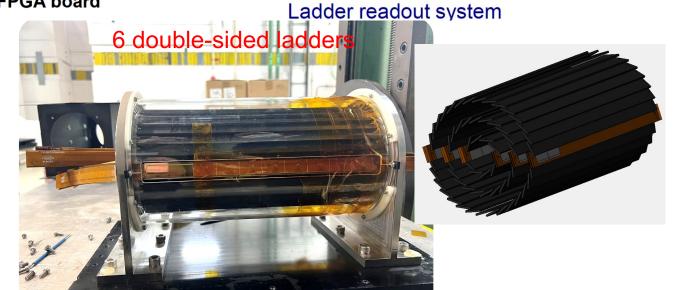


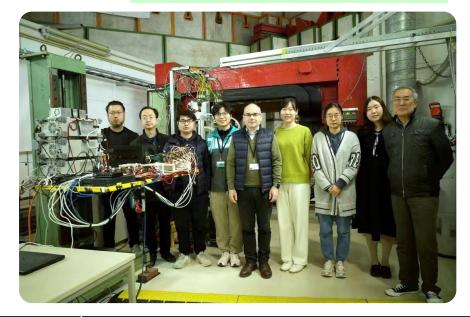

R&D efforts: Full-size TaichuPix3

- Full size CMOS chip developed, 1st engineering run
 - 1024×512 Pixel array, Chip Size: 15.9×25.7mm
 - 25µm×25µm pixel size with high spatial resolution
 - Process: Towerjazz 180nm CIS process
 - Fast digital readout to cope with ZH and Z runs (support 40MHz clock)

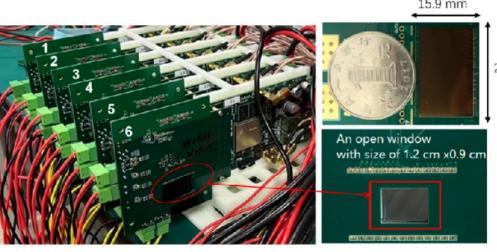
TaichuPix-3 chip vs. coin

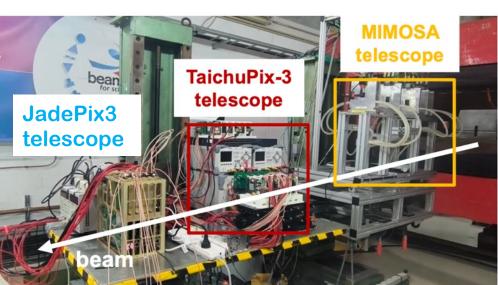
An example of wafer test result


	Status	CEPC Final goal
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS

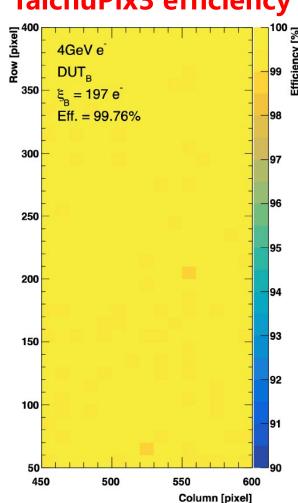

R&D effort: vertex detector prototype

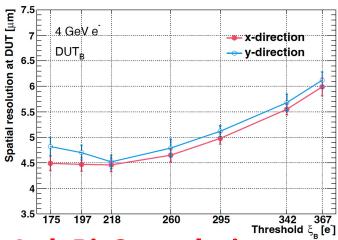
TaichuPix-based prototype detector tested at DESY in April 2023


Spatial resolution ~ 4.9 μm



	Status	CEPC Final goal	
Detector integration	Detector prototype with ladder design	Detector with bent silicon design	


R&D efforts and results: Jadepix3/TaichuPix3 beam test @ DESY

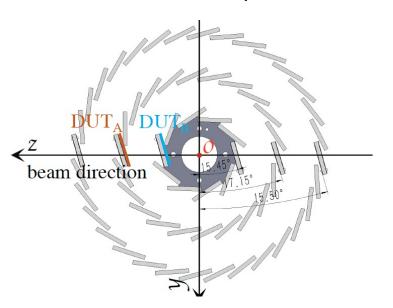


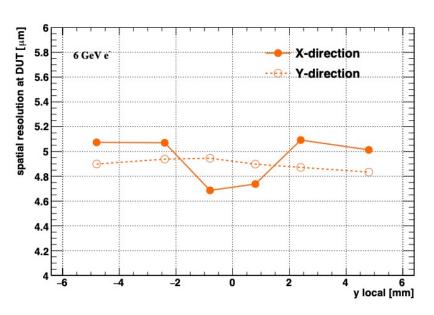
Spatial resolution 4~5um, Efficiency >99%

TaichuPix3 efficiency

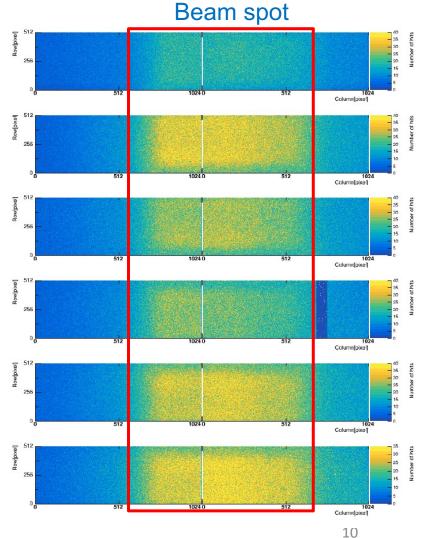
TaichuPix3 resolution

JadePix3 resolution

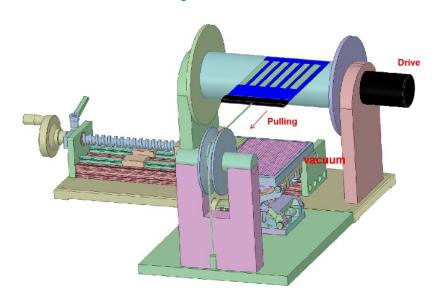



Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

R&D efforts and results: vertex detector prototype beam test


Hit maps of multiple layers of vertex detector

Spatial resolution ~ 5 μm



	Status	CEPC Final goal
Spatial resolution	4.9 μm	3-5 μm

R&D efforts curved MAPS

- CEPC b-layer radius (11mm) smaller compared with ALICE ITS3 (radius=18mm)
- Feasibility: Mechanical prototype with dummy wafer can curved to a radius of 12mm
 - The dummy wafer has been thinned to 40μm

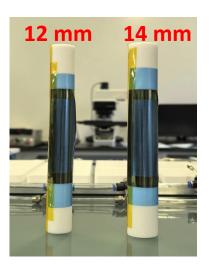
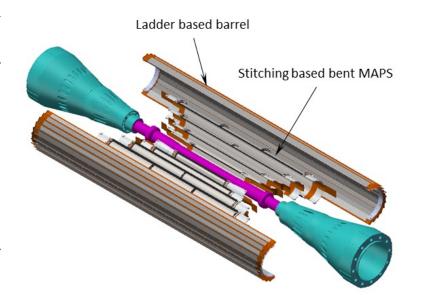
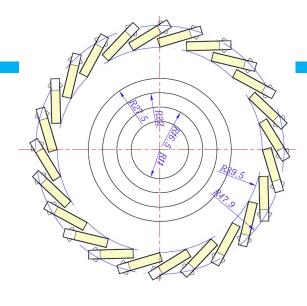
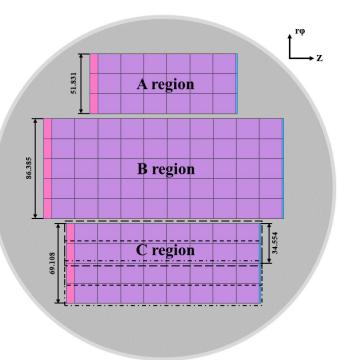


Figure 4.26: 12 mm bending radius.

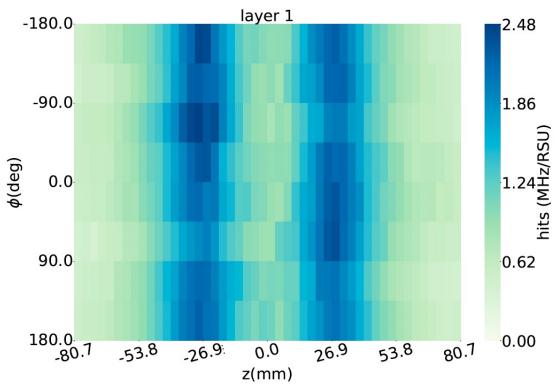

	Status	CEPC Final goal
Bent silicon with radius	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm


Baseline in Ref-TDR: bent MAPS

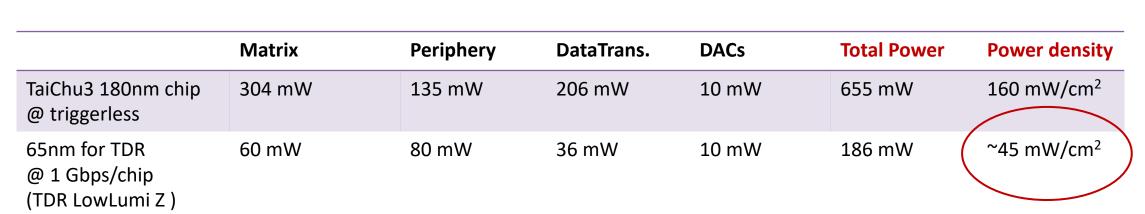

- 4 single layer of bent MAPS + 1 double layer ladder
 - Material budget is much lower than alternative option
- Use single bent MAPS for Inner layer (~0.15m²)
 - Low material budget 0.06%X0 per layer
 - Different rotation angle in each layer to reduce dead area

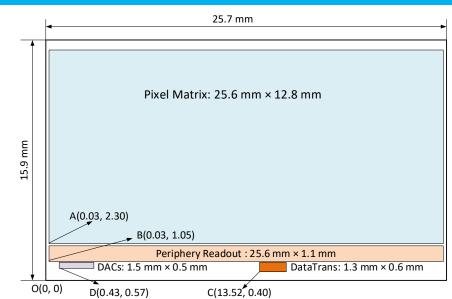
Long barrel layout (no endcap disk) to cover $\cos \theta <= 0.991$

layer/VXD X	radius .mm	length .mm
layer 1	11.06	161.4
layer 2	16.56	242.2
layer 3	22.06	323.0
layer 4	27.56	403.8
VXD 5	39.50	682.0



Data rate estimation of vertex detector


Layer	Ave. Hit Rate (MHz/cm²)	Max. Hit Rate (MHz/cm ²)	Ave. Data Rate (Mbps/cm²)	Max. Data Rate (Mbps/cm²)
	Higg	gs mode: Bunch Spaci	ng: 277 ns, 63% Gap	
1	1.2	1.4	130	170
2	0.34	0.54	35	56
3	0.086	0.17	9.8	19
4	0.039	0.087	5.1	16
5	0.013	0.077	1.7	12
6	0.009	0.043	1.2	6.6
Low-luminosity Z mode: Bunch Spacing: 69 ns, 17% Gap				
1	4.7	9.3	680	1400
2	0.45	0.75	60	120
3	0.16	0.38	23	96
4	0.096	0.23	15	78
5	0.022	0.048	3.2	7.2
6	0.017	0.036	2.4	6.1



- > Data rate is dominated by background from pair production.
 - > Estimated based on old version of software
 - ➤ More details in Haoyu's MDI talk this afternoon
- > WW runs and low Lumi Z runs (20% of high lumi Z)
- > Data rate @1Gbps per chip for triggerless readout

Chip design for ref- TDR and power consumption

- Power consumption
 - Fast priority digital readout for 40MHz at Z pole
 - 65/55nm CIS technology
 - Power consumption can reduced to ~40mW/cm²
- Air cooling feasibility study
 - Baseline layout can be cooled down to ~20 ℃
 - Based on 3 m/s air speed, estimated by thermal simulation

Detailed design: Electronics

- Stitching layer: stitching and RDL metal layer on wafer to replace PCB
- Outer layer (L5/L6): flexible PCB (also used in alternative layout)
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

Stitching layers: ALICE ITS3 like stitching

SUPPLIES REB RSU **RSU RSU** RSU RSU RSU **RSU RSU** I/Os **SUPPLIES** RSU RSU **RSU RSU RSU** RSU RSU **RSU**

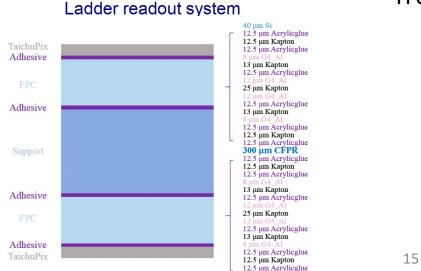
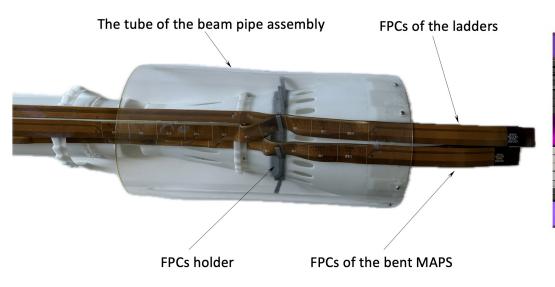
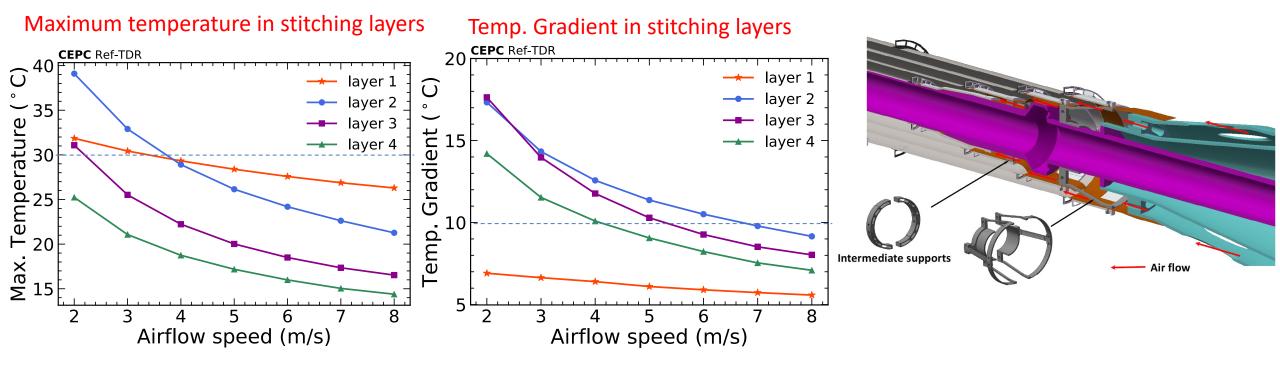

Outer layer (layer 5/6,): flexible PCB

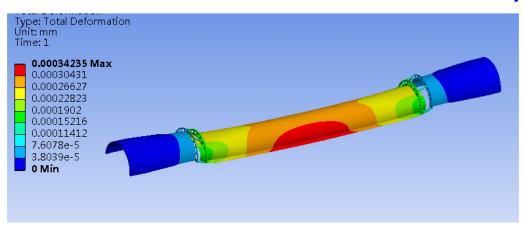
Figure 4.15

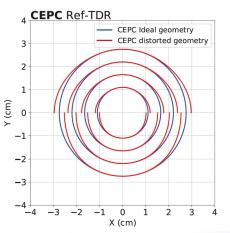

Table 4.12, Estimates of average power dissipation per unit area

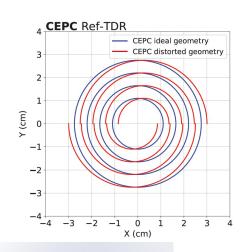
	Power density [mW/cm ²]	
Repeated Sensor Unit	38	
Left-End Block	485	
[1] ALICE ITS3 TDR:	https://cds.cern.ch/reco	ord/289018

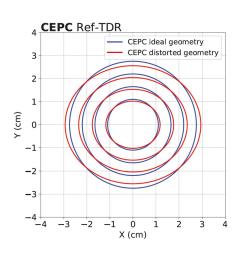
Mockup to validate cable routing


- Full-size 3D printed vertex detector and beam-pipe mockup
 - Validate there is enough space for cable routing and air cooling channel
 - The total cross-sectional area available for air cooling in the inner four layers is 12.6 cm²


Thermal simulation

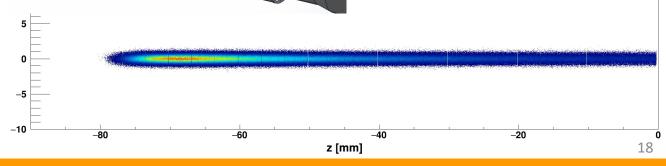

- New thermal simulation, baseline air speed increased from 3.5m/s to 7m/s
 - All Obstacles and Thermal gradients considered (just included support structure and flexible cable)
 - The simulation results indicate that the airflow is turbulent




Alignment in stitching layer

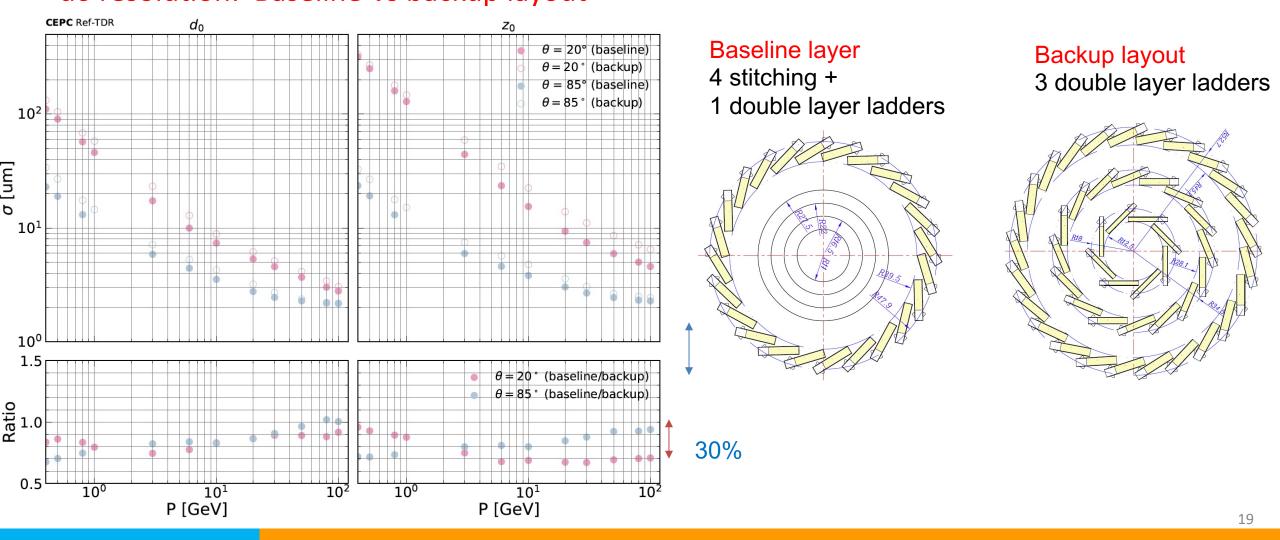
Deformation mode simulated by FEA.




Figure 4.71: The simulated defromation of the inner layer bent MAPS half cylinder.

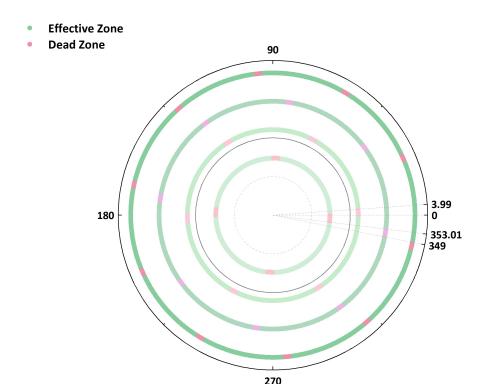
Real time Deformation monitoring by infra-red laser alignment system

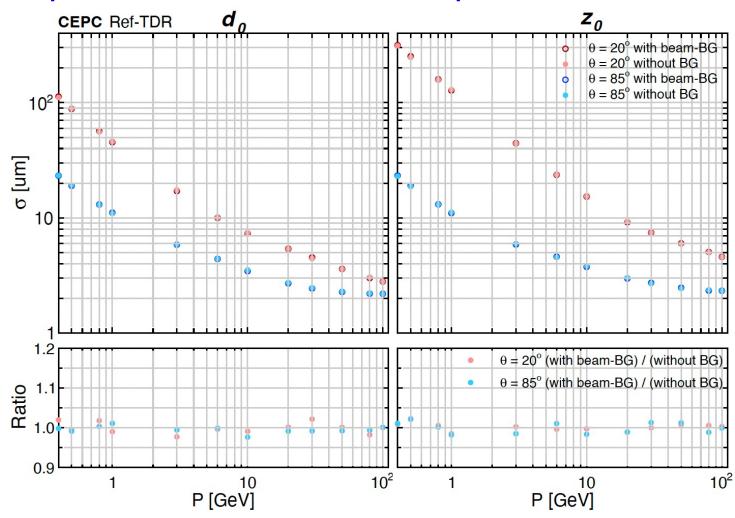
2D and 3D model on laser alignment system on vertex detector (inspired by CMS tracker laser alignment)



laser beamspot on bent-MAPS

Performance: impact parameter resolution


 Baseline has better resolution than alternative (ladder) (25-40%) in low momentum d0 resolution: Baseline Vs backup layout


Performance with beam background

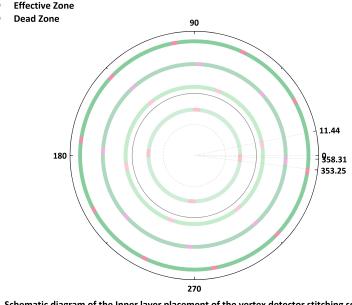
The impact of beam background to performance has been updated.

No visible effect in d0/Z0 resolution

Schematic diagram of the Inner layer placement of the vertex detector stitching scheme.

Performance: Efficiency

A few percent Inefficiency expected in stitching layer


Tracklet efficiency

0.7

 $cos(\theta)$

0.8

- Sensor (RSU) has inefficiency region in power stitch
- 99.7% of the track with >=4 hits (6 hits expected)

Schematic diagram of the Inner layer placement of the vertex detector stitching scheme

Number of hits Hits = 7Tracklet Efficiency Hits = 410.9% 0.97 Other 7.9% Hits = 60.96 Hits = 581.3% 7.6% 0.95

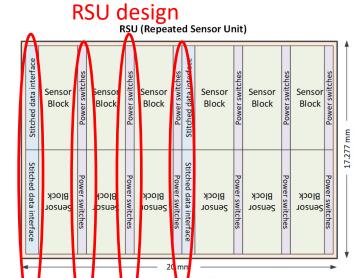
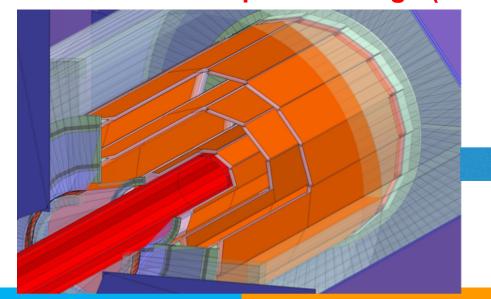
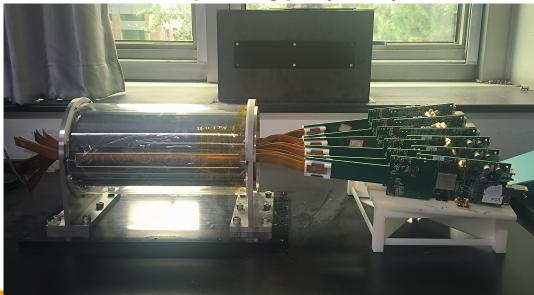


Figure 4.50: Proposed floor-plan for a releated sensor wit (RSU) (not to scale). It contains several identical sensor blocks. Each of them has a pixel matrix with its own biasing generator, slow control and periphery readout circuit. Eac nsor block can be electively synched on/off. The stitched data interface blocks are used to transmit control signals and 1.0 data to the edge of the stitching sensor.


Research team

- IHEP: 8 faculty, 2 postdoc, 5 students
- CERN: Recent joint R & D collaboration in HLMC 55nm aiming for ALICE3 upgrade
- IPHC/CNRS: Christine Hu et al (3 faculty): Collaboration in FCPPL and DRD3
 - CEPC Jadepix design, ALICE ITS3 upgrade (especially on MAPS design, stitching)
- IFAE: Chip design , Sebastian Grinstein et al (2 faculty)
 - CEPC Taichupix chip design, ATLAS ITK pixel and HGTD upgrade
- ShanDong U.: Stitching chip design (3 faculty, 1 postdoc, 3 students)
- CCNU: chip design, ladder assembly (2 faculty, 3 students)
- Northwestern Polytechnical U.: Chip design (5 faculty, 2 students)
- Nanchang U.: chip design, (1 faculty, 1 students)
- Nanjing U.: irradiation study, chip design : (2 faculty, 4 students)
- NanKai U.: physics performance (1 faculty, 1 student)

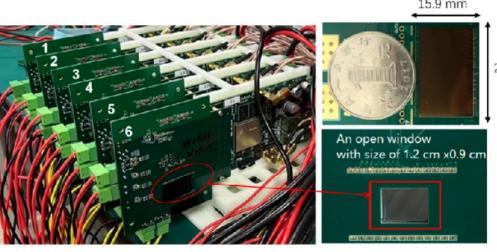

Summary

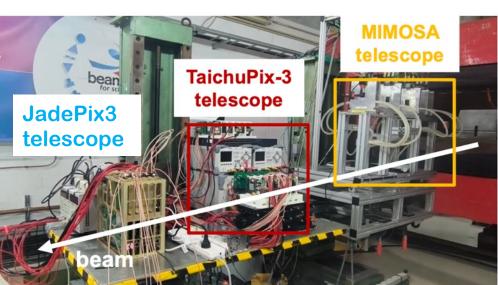
- 1st full-size Prototype based ladder design for CEPC vertex detector developed
- Curved MAPS option chosen as baseline for Reference detector TDR. (arXiv:2510.05260)
- We active expanding international collaboration and explore synergies with other projects
 - Recent collaboration with CERN on ALICE3 tracker upgrade
 - We are member of ECFA DRD3 collaboration.

CEPC vertex conceptional design (2016)

CEPC vertex prototype (2023)

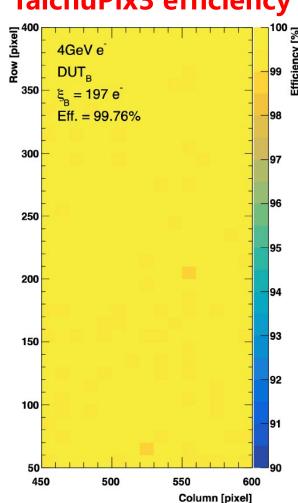
Thank you for your attention!

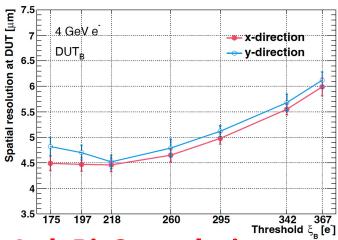

Working plan


- Development of wafer-scale stitching MAPSs
 - Develop wafer-scale stitching with 180nm technology
 - The second-generation stitching chip will transition to 65 nm/55 nm
 - Baseline: TPSCo's 65 nm technology
 - Alternative: HLMC's 55 nm technology.
- Ultra-thin mechanical supports and low-mass integration techniques.
 - Start with prototype with dummy silicon wafer
- Construction of a full-scale VTX prototype to address challenges in mechanical precision, cooling performance, laser alignment, and system-level integration.

Summary: working plan

	Status	CEPC Final goal	CEPC Expected date
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS	2027: Full-size 65nm chip
Spatial resolution	4.9 μm	3-5 μm with final chip	2028
Stitching	11*11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor	2029
Bent silicon with small radius	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm	2030
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power	2027: thermal mockup
Detector integration	Detector prototype with ladder design	Detector with bent silicon design	2032


R&D efforts and results: Jadepix3/TaichuPix3 beam test @ DESY

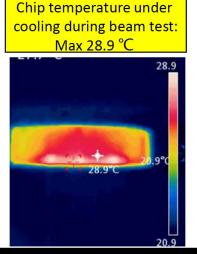


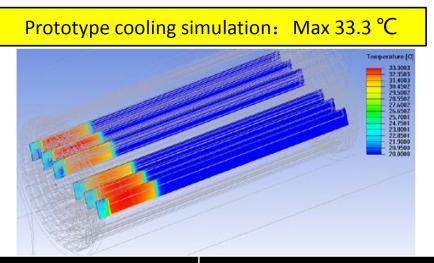
Spatial resolution 4~5um, Efficiency >99%

TaichuPix3 efficiency

TaichuPix3 resolution

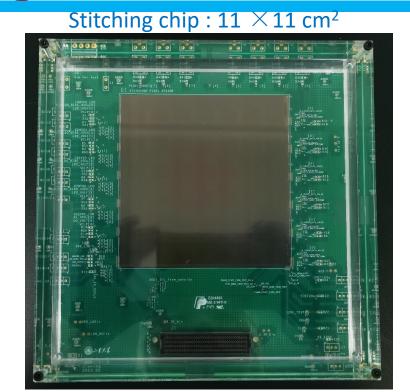
JadePix3 resolution




Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

R&D efforts: Air cooling in vertex prototype

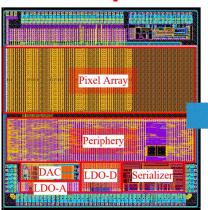
- Dedicated air cooling channel designed in prototype.
 - Measured Power Dissipation of Taichu chip: ~60 mW/cm² (17.5 MHz in testbeam)
 - Before (after) turning on the cooling, chip temperature 41 °C (25 °C)
 - In good agreement to our cooling simulation
 - No visible vibration effect in spatial resolution when turning on the fan

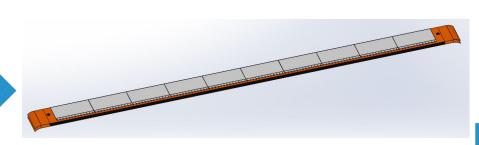


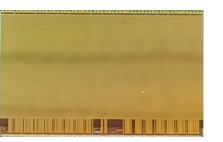
Key technology	Status	CEPC Final goal
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power

R&D efforts and results: R & D for curved MAPS

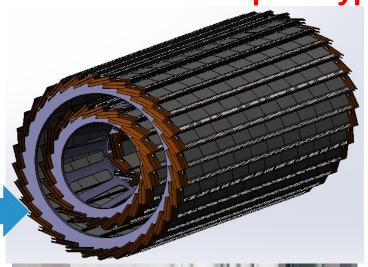
- Stitching chip design (by ShanDong U.)
 - 350nm CIS technology Xfabs
 - Wafer level size after stitching ~11 ×11 cm²
 - reticle size ~2 ×2 cm²
 - 2D stitching
 - Engineering run, chip under testing



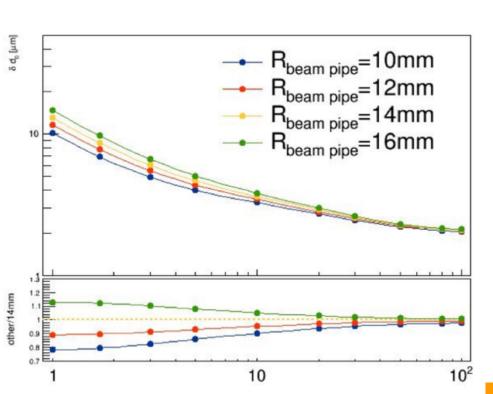

Key technology	Status	CEPC Final goal
Stitching 1	11*11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor

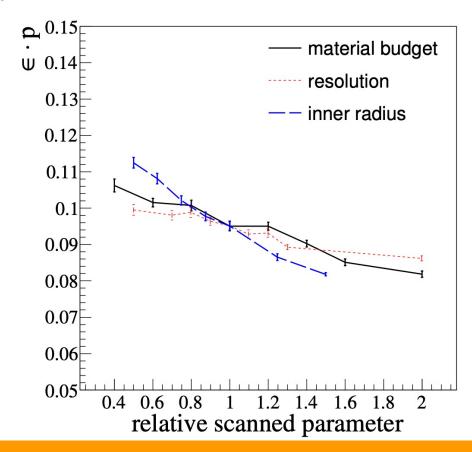

Overview of CEPC vertex detector prototype R & D

CMOS Sensor chip development


Detector module (Ladder) **Prototyping**

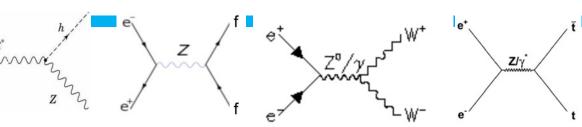






Vertex Requirement

- 1st priority: Small inner radius, close to beam pipe (11mm)
- 2nd priority: Low material budget <0.15% X0 per layer</p>
- 3rd priority: High resolution pixel sensor : 3~5 μm



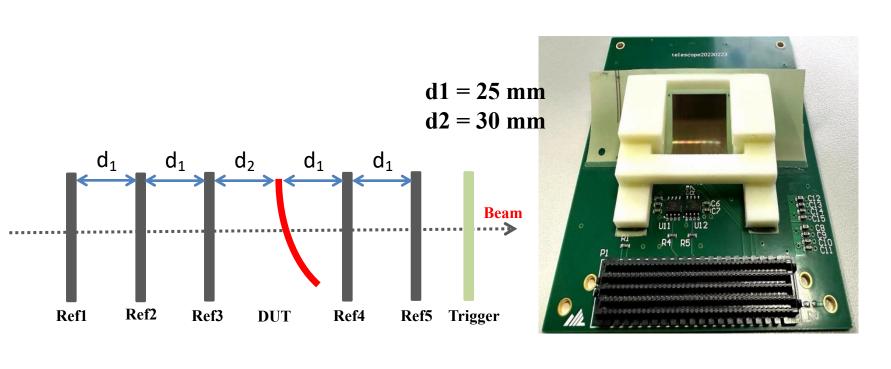
CEPC physics program

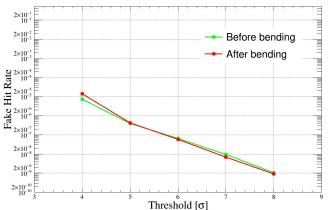
An extremely versatile machine with a broad spectrum of physics opportunities

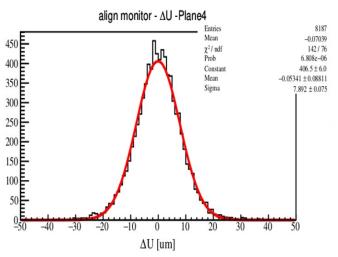
→ Far beyond a Higgs factory

Operation mode			ZH	Z	W ⁺ W ⁻	$tar{t}$	
\sqrt{s} [GeV]		~240	~91.2	~160	~360		
Run time [years]		10	2	1	5		
CDR (30 MW)		$L / IP [\times 10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	3	32	10	-	
		$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-	
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-	
Run Time [years]		10	2	1	~5		
Latest	30 MW	$L / IP [\times 10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	5.0	115	16	0.5	
	50 MW	$L / IP [\times 10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	8.3	191.7	26.6	0.8	
		$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1	
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵	

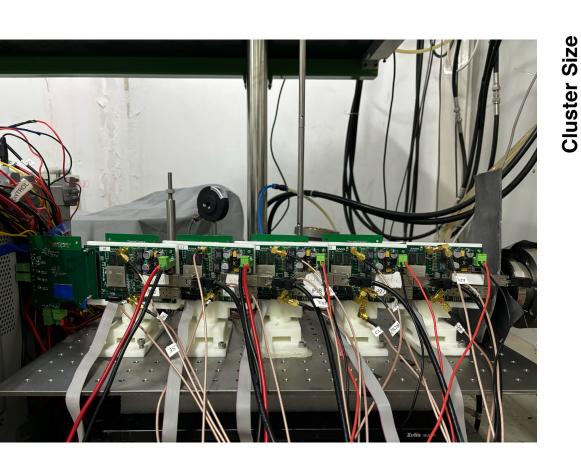
Huge measurement potential for precision tests of SM: Higgs, electroweak physics, flavor physics, QCD/Top

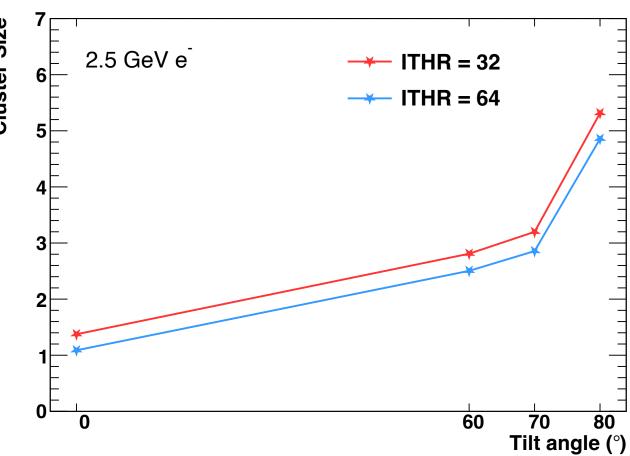

Searching for exotic or rare decays of H, Z, B and τ , and new physics

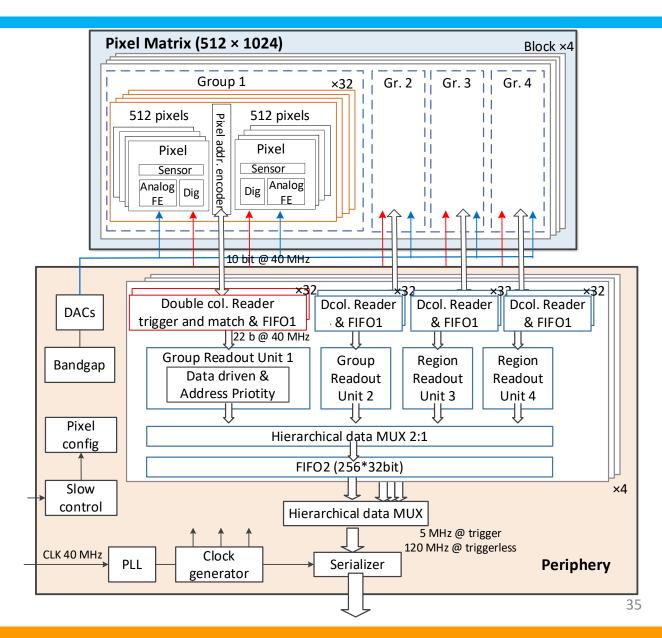

CEPC community joined **ECFA** Phy focus


Both 50 MW and $t\bar{t}$ modes are currently considered as CEPC upgrades.

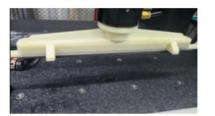
R&D efforts: Curved MAPS testbeam


- R & D of curved maps with MIMOSA28 chip
 - No visible difference in noise level or spatial resolution before/after bending




Long barrel: cluster size vs incident angle

TaichuPix design

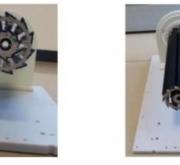

- Pixel 25 μm × 25 μm
 - Continuously active front-end, in-pixel discrimination
 - Fast-readout digital, with masking & testing config. logic
- Column-drain readout for pixel matrix
 - Priority based data-driven readout
 - Readout time: 50-100 ns for each pixel
- 2-level FIFO architecture
 - L1 FIFO: de-randomize the injecting charge
 - L2 FIFO: match the in/out data rate
 - between core and interface
- Trigger-less & Trigger mode compatible
 - Trigger-less: 3.84 Gbps data interface
 - Trigger: data coincidence by time stamp only matched event will be readout
- Features standalone operation
 - On-chip bias generation, LDO, slow control, etc

TaichuPix3 vertex detector prototype

New pickup tools

Dummy ladder glue automatic dispensing using gantry

Ladder on wire bonding machine


Dummy Ladder on holder

The first vertex detector (prototype) ever built in China

Research team

- IHEP: overall intergration, chip design, detector assembly, electronics, offline
 - Overall : Joao, Zhijun ,Ouyang Qun
 - Mechnical: Jinyu Fu
 - Electronics: Wei wei, Ying Zhang, Jun Hu, Yunpeng Lu, Yang Zhou, Xiaoting Li
 - DAQ: Hongyu Zhang
 - Detector assembly: Mingyi Dong
 - Physics: Chengdong Fu, linghui Wu, Gang Li
- IFAE: Chip design , Sebastian Grinstein, Raimon Casanova et al
- IPHC/CNRS: chip design , Christine Hu, Yongcai Hu et al
- ShanDong: chip design , Meng Wang, Liang Zhang, Jianing Dong
- CCNU: chip design, ladder assembly, Xiangming Sun, Ping Yang
- North West U.: Chip design Xiaoming Wei, Jia Wang, Yongcai Hu
- Nanchang U.: chip design, Tianya Wu
- Nanjing: irradation study: Ming Qi, Lei Zhang