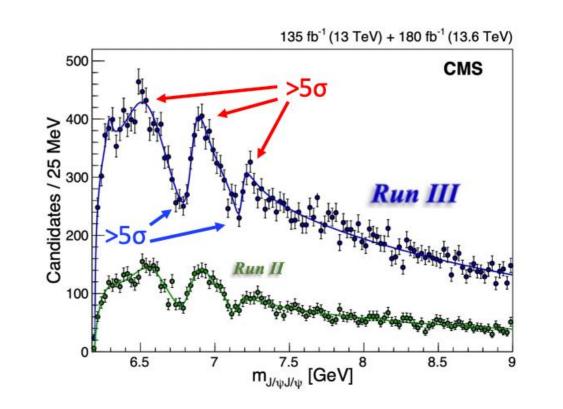

Observation of X(6900) and evidence of X(7100) in the J/ $\psi\psi$ (2S) $\rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ mass spectrum

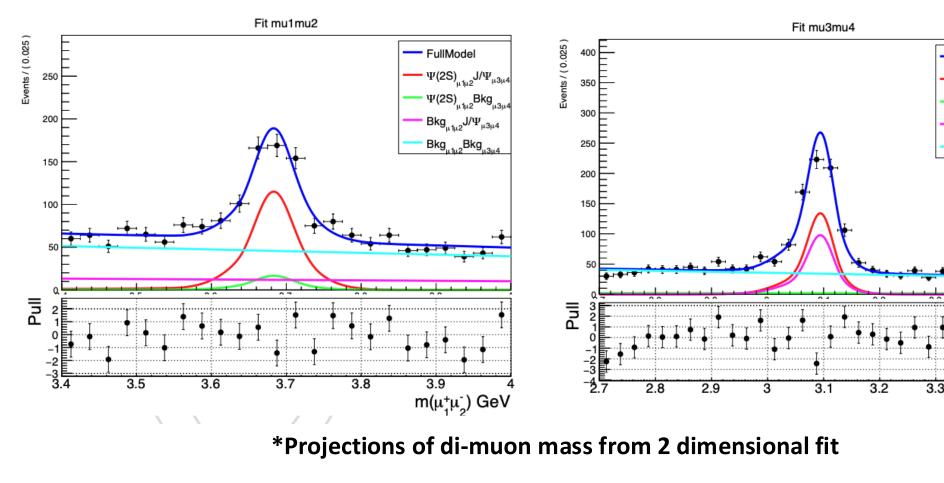


Liangliang CHEN* (Nanjing Normal University) on behalf of the CMS Collaboration The 11th China LHC Physics Conference (CLHCP2025), 29 Oct 2025, Henan

Introduction

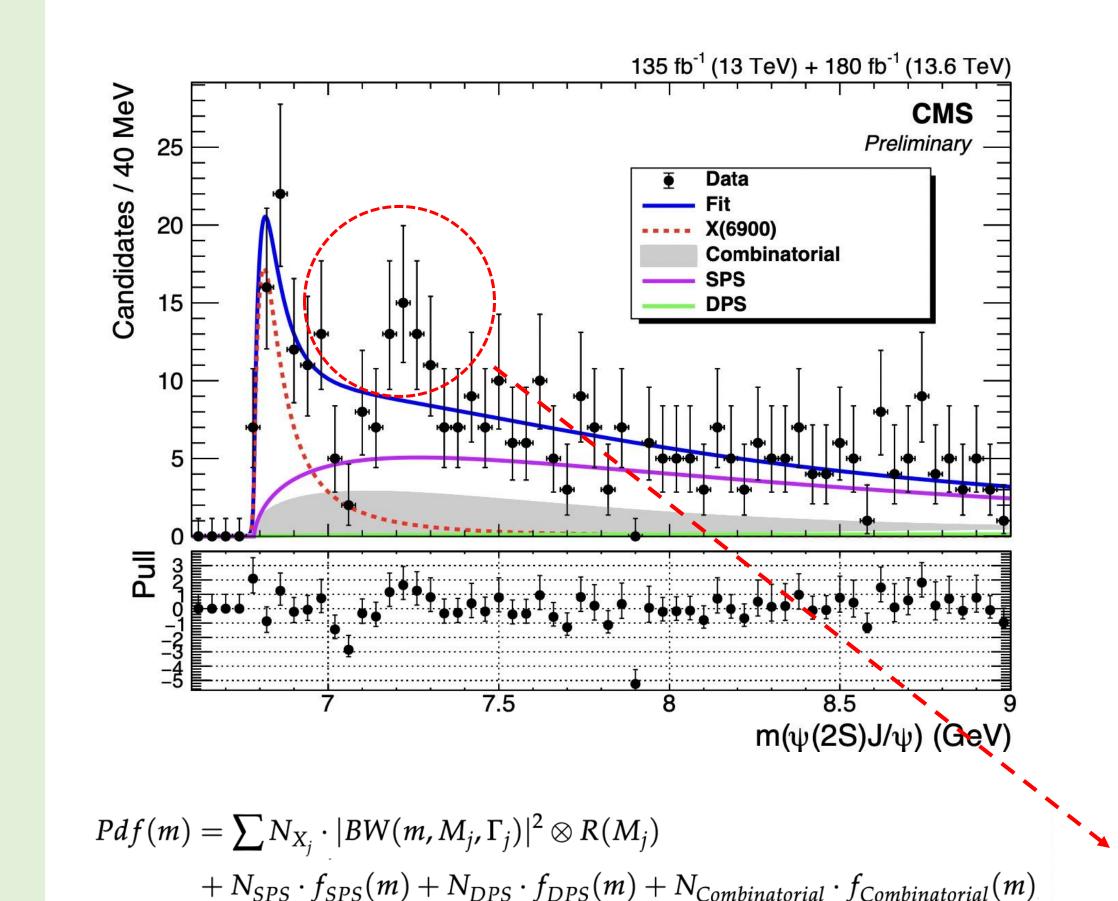
- \succ CMS have established candidates for all-charm tetra-quark family, each peak and each dip well over 5σ in complete dataset [1]:
 - > X(6900) observed by 3 experiment [2-4],
 - > X(6600) and X(7100) added by CMS [2].
- \triangleright If seen in $J/\psi/J/\psi$, probably in $\psi(2S)J/\psi$?
- \succ X(6600) is below the J/ $\psi\psi$ (2S) threshold, but both X(6900) and X(7100) are above it.
- $\rightarrow \psi(2S)J/\psi's$ model defined: **2 peaks with interference**.

Data samples & Event selections


- > 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- > 180 fb⁻¹ CMS data taken in 2022, 2023 and 2024 LHC runs

> Trigger:

- > HLT_Dimuon0_Jpsi_Muon
- HLT_Dimuon0_Jpsi3p5_Muon2
- > HLT_DoubleMu4_3_LowMass
- Main selections:
 - > Fire corresponding trigger in each year;
 - > Single μ from J/ ψ : $p_T(\mu)>=3.5$ GeV; soft muon ID;
 - > Single μ from $\psi(2S)$: $p_T(\mu)>=2.5$ GeV; loose muon ID;
 - Single J/ψ: $p_T >= 11$ GeV; $m(\mu^+\mu^-)$ within 2.5σ; constraint to J/ψ mass;
 - > Single ψ (2S): p_T>=13.5 GeV; m($\mu^+\mu^-$) within 2.5σ; constraint to ψ (2S) mass;
 - > |η(μ)|<=2.4;
 - \triangleright 4 μ vertex probability > 0.005, total charge is 0;
 - \triangleright Exclude events with wrong combination within 2σ of $J/\psi J/\psi$
- ➤ Multiple candidates treatment:
 - Select best combination of same 4μ with


$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{\psi(2S)}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

- Keep all candidates arising from more than 4μ
- ➤ Signal and background MC samples are produced by JHUGen and Pythia8

Independent measurement - 1BW - X(6900)

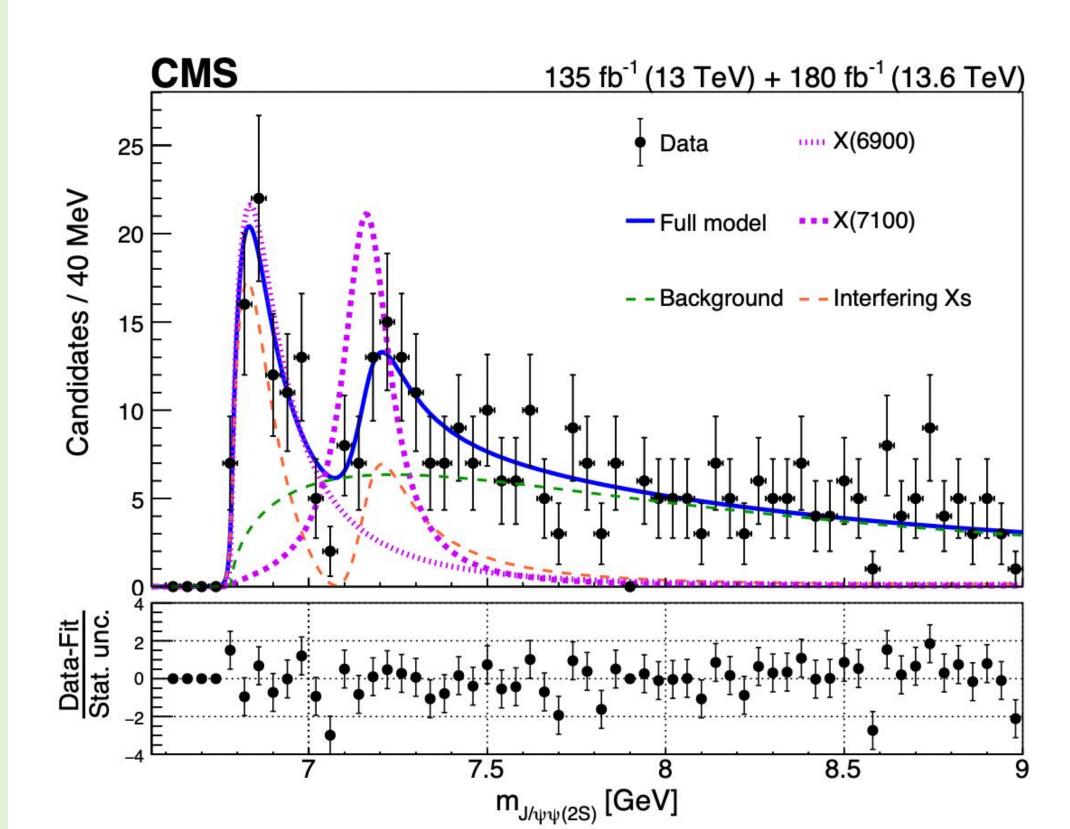
 \succ The J/ $\psi\psi$ (2S) mass spectrum with the fit including **1BW**:

Signal shapes:

Relativistic **Breit-Wigner** functions convolved with **Gaussian resolution functions** (BW)

Background shapes:

Single-parton scattering (NRSPS, MC simulation)
Double-parton scattering (DPS, data event-mixing)
Combinatorial background (Comb, nine-tile method)


Fit model building:

- Based on J/ψJ/ψ analysis
- > X(6600) under J/ψψ(2S) mass threshold

For the 1BW model, it is evident that one additional peak need to be incorporated into consideration - X(7100)

Independent measurement - 2BW (Interference) - X(6900)&X(7100)

- > Dips in the data show possible interference effects
- \succ The J/ $\psi\psi$ (2S) mass spectrum with the fit including 2BW (interference):

- ightharpoonup Constrain mass & width of both peaks within 1σ of $J/\psi J/\psi$ values to calculate significances:
- γυγή values to calculate significances:
 Model I: 2BW interfered (NLL = -2056.83)
- Model II: X(6900) only (NLL = -2045.87)
- ➤ Model III: X(7100) only (NLL = -2021.63)
- Model I vs Model III -> X(6900)
- ➤ Model I vs Model II -> X(7100)
- The floating parameters differ by twoDegrees of freedom = 2
- \triangleright Significance of X(6900) = 8.1 σ
- > Significance of $X(7100) = 4.3\sigma$

 $Pdf(m) = N_{X-\text{interf}} \cdot \left| \sum \left(r_k \cdot \exp(i\phi_k) \cdot BW(m, M_k, \Gamma_k) \right) \right|^2 \otimes R(M_j) \cdot \epsilon(M_j)$ $+ N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot f_{DPS}(m) + N_{Combinatorial} \cdot f_{Combinatorial}(m)$

Summary

CMS observed X(6900) and found evidence of X(7100) in J/ψψ(2S) using 315 fb⁻¹ data.

- They are consistent with those observed in $J/\psi J/\psi$ channel [1,2]
- > A family of structures which are candidates for all-charm tetra-quarks
- > Provide critical insights into non-perturbative QCD dynamics, particularly within heavy-quark systems
- > Challenge traditional quark models and refine predictions from lattice QCD and effective theories
- > Further searches in other decay modes will deepen our understanding of exotic hadrons

CMS has good sensitivity to all-muon final states in this mass region

	X (6600)	X (6900)	X (7100)
m (MeV)	$6593~^{+15}_{-14}\pm25$	$6847 \pm 10 \pm 15$	$7173^{\ +9}_{\ -10}\pm 13$
Γ (MeV)	$446_{-54}^{+66}\pm87$	$135{}^{+16}_{-14}\pm14$	$73~^{+18}_{-15}\pm 10$
m (MeV)		$6876~^{+46}_{-29}\pm110$	$7169 {}^{+26}_{-52} {}^{+74}_{-70}$
Γ (MeV)	_	$253~^{+290}_{-100}\pm120$	$154 \ ^{+110}_{-82} \ ^{+140}_{-160}$
m (MeV)	$6638 \ ^{+43+16}_{-38-31}$	$6847 \ ^{+44+48}_{-28-20}$	$7134 \ ^{+48+41}_{-25-15}$
J/ψ J/ψ : Run 2 [14] Γ (MeV)	$440\ ^{+230+110}_{-200-240}$	$191 {}^{+66+25}_{-49-17}$	$97 {}^{+40+29}_{-29-26}$
	Γ (MeV) m (MeV) Γ (MeV) m (MeV)	$m (\text{MeV}) 6593 ^{+15}_{-14} \pm 25$ $\Gamma (\text{MeV}) 446 ^{+66}_{-54} \pm 87$ $m (\text{MeV}) \qquad \Gamma (\text{MeV}) \qquad m (\text{MeV}) \qquad 6638 ^{+43+16}_{-38-31}$	m (MeV) $6593^{+15}_{-14} \pm 25$ $6847 \pm 10 \pm 15$ Γ (MeV) $446^{+66}_{-54} \pm 87$ $135^{+16}_{-14} \pm 14$ m (MeV) — $6876^{+46}_{-29} \pm 110$ Γ (MeV) — $253^{+290}_{-100} \pm 120$ m (MeV) 6638^{+43+16}_{-38-31} 6847^{+44+48}_{-28-20}

Bibliography

- [1] CMS collaboration, "Observation of a family of all-charm tetraquark candidates at the LHC", CMS-PAS-BPH-24-003 (2024).
- [2] CMS Collaboration, "New Structures in the J/ ψ J/ ψ Mass Spectrum in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV", Phys. Rev. Lett. 132 (2024), no. 11, 111901, doi:10.1103/PhysRevLett.132.111901, arXiv:2306.07164.
- [3] LHCb Collaboration, "Observation of structure in the J/ ψ -pair mass spectrum", Sci. Bull. 65 (2020) 1983, doi:10.1016/j.scib.2020.08.032, arXiv:2006.16957.

- Ψ(2S)_{μ1μ2}Bkg_{μ3μ}

[4] ATLAS Collaboration, "Observation of an Excess of Dicharmonium Events in the Four-Muon Final State with the ATLAS Detector", Phys. Rev. Lett. 131 (2023), no. 15, 151902, doi:10.1103/PhysRevLett.131.151902, arXiv:2304.08962.