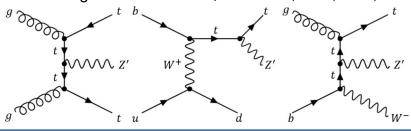


Search for a top-philic Z' boson in the final state with an electron or a muon and jets

Xiaonan Hou

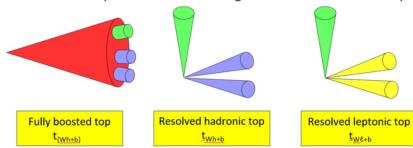
on behalf of the CMS Collaboration

Institute of High Energy Physics and Chinese Academy of Science


中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

A search for a top-philic Z' boson in the final state with an electron or a muon and jets is presented. The top-philic Z' boson is produced in association with a top quark and also decays to a top quark-antiquark pair, as it couplies exclusively to top quarks. The analysis aims to identify a heavy Z' boson that produces boosted top quarks, whose hadronic decay products are merged into large-radius jets. A machine learning algorithm (ParticleNet) is employed to identify such jets. The distribution of the invariant mass of the two most energetic top quark candidates is used in the search for a Z' boson in the mass range of 0.5 to 3 TeV, with decay widths of 4%, 10%, 20%, and 50% relative to its mass. The results obtained are found to be in agreement with the standard model background prediction. Upper limits at the 95% confidence level are set for the production cross section of the Z' boson, for each of the decay widths as a function of its mass. These results represent the most stringent constraints to date on the existence of the top-philic Z' boson. The data were recorded by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s} = 13$ TeV and correspond to an integrated luminosity of 138 fb^{-1} .


Introduction

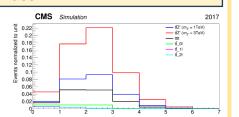
- Discovery of Higgs boson motivates search for new physics
- If couplings to light-quarks are suppressed, Z' can manifest via new mechanisms: t-quark fusion, b-quark fusion and VBF.
- Recently both ATLAS and CMS have the results for SM tttt measurement.
- We search for a Z' associated with tops in the single lepton final state. (ttZ', Z'->tt; 1l+jets)
- We use the Top-philic-Zprime V1 UFO model.
- Z' mass range: 0.5 TeV 3TeV, width: 4%, 10%, 20%, 50%.

Analysis strategy

A dedicated top reconstruction algorithm with different top decays:

- Reconstruct all top candidates (regardless of whether they share the same constituents)
- 2. Define a $x^2 = \left(\frac{\text{recoTop} mass genTop mass}{\sigma_t}\right)^2 + \left(\frac{\text{recoW} mass genW mass}}{\sigma_w}\right)^2$ resolutions from simulation, and sort all tops in $\chi 2$ -increasing order (boosted top have $\chi 2 = 0$)
- 3. Select a top candidate if χ 2<5, and next top does not share constituents with previous one.

Final discriminating variable:


Z' mass = invariant mass of the first 2 tops have the highest p_T

Event Selection

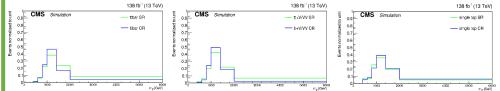
In order to improve the sensitivity of the analysis, the following selection is applied:

- ✓ Exactly 1 lepton
- ✓ Single lepton triggers
- √ Noise filters
- ✓ HT > 700 GeV (HT = sum of pt of all AK4 jets)
- ✓ MET pt > 60 GeV
- ✓ Number of jets >= 6
- √ event categorization: >= 2
 boosted tops && >=1 loose b jets
- ✓ ST > 200 GeV (ST = sum of pt of all the tops)

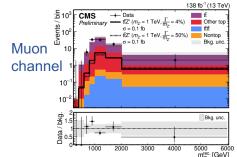
similar with SM 4top (1I), but tightening further in number of jets, (≥6 instead of 4 and HT>700 instead of 500 GeV) as we look for events at high Z' mass.

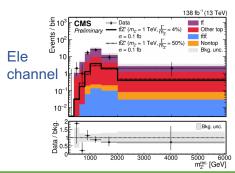
Background Estimation

• We define a CR that closely resembles the SR in composition, and applied rate parameter with CR and SR simultaneous fit.

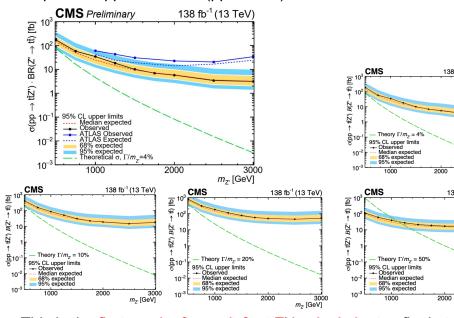

Signal Region	Control Region
Exactly 1 lepton	Exactly 1 lepton
Single lepton triggers	Single lepton triggers
Noise Filters	Noise Filters
HT > 700 GeV	HT > 700 GeV
MET pT > 60 GeV	MET pT > 60 GeV
N jets >= 6	N jets >= 6
>= 2 boosted tops && >= 1 loose b jets	>= 2 boosted tops && < 1 loose b jets
ST > 200 GeV	ST > 200 GeV

☐ Signal efficiency


SR	CR
0.15070%	0.02310%
2.48830%	0.22740%
	0.15070%


■ Background composition comparison

BKG	ttbar	other top (ttt, tt+boson, st)	tttt	Non top (bosons/DY)
SR	74.74%	20.72%	3.99%	0.55%
CR	67.86%	30.48%	0.51%	1.15%


- Our control region appear rather similar to our signal region
- CR distribution

Results

• Expected upper limit on $\sigma(pp \to tt Z')$ as a function to Z' mass

- This is the first result of search for ttZ' in single lepton final state in CMS
- We use a wider range than ATLAS from 0.5 TeV to 3 TeV
- We are slightly better than ATLAS result