DESI Dark Energy and Hubble tension

王少江 中国科学院理论物理研究所

暗物质暗能量研究现状发展趋势及对策专题研讨会 2025-06-25 10:10-10:45

2505.22369 Jia-Le Ling, Guo-Hong Du, Tian-Nuo Li, Jing-Fei Zhang, Shao-Jiang Wang, Xin Zhang Model-independent cosmological inference after the DESI DR2 data with improved inverse distance ladder

This talk is mainly based on 2502.04212 Lu Huang (黄路), Rong-Gen Cai, Shao-Jiang Wang The DESI DR1/DR2 evidence for dynamical dark energy is biased by low-redshift supernovae

2410.06053 Lu Huang, Rong-Gen Cai, Shao-Jiang Wang, Jian-Qi Liu, Yan-Hong Yao Narrowing down the Hubble tension to the first two rungs of distance ladders Sci.China Phys.Mech.Astron. 68 (2025) 8, 280405

2401.14170 Lu Huang, Shao-Jiang Wang, Wang-Wei Yu No-go guide for the Hubble tension: Late-time or local-scale new physics Sci.China Phys.Mech.Astron. 68 (2025) 2, 220413

2202.12214 Rong-Gen Cai, Zong-Kuan Guo, Shao-Jiang Wang, Wang-Wei Yu, Yong Zhou No-go guide for late-time solutions to the Hubble tension: Matter perturbations Phys.Rev.D 106 (2022) 6, 063519

2107.13286 Rong-Gen Cai, Zong-Kuan Guo, Shao-Jiang Wang, Wang-Wei Yu, Yong Zhou No-go guide for the Hubble tension: Late-time solutions Phys.Rev.D 105 (2022) 2, L021301

2102.02020 Rong-Gen Cai, Zong-Kuan Guo, Li Li, Shao-Jiang Wang, Wang-Wei Yu Chameleon dark energy can resolve the Hubble tension Phys.Rev.D 103 (2021) L121302 & & 2209.14732 Wang-Wei Ye

& 2209.14732 Wang-Wei Yu, Li Li, Shao-Jiang Wang First detection of the Hubble variation correlation and its scale dependence

H_0 tension

Early-late tension

S₈ tension?

γ tension!

2302.01331 (PRL) growth index tension $D(a(t)) = \delta(t)/\delta(t_0) : f(a) = d \ln D/d \ln a = \Omega_m(a)^{\gamma}$

DESI-BAO+Planck-CMB+SNe 2404.03002 DESI DR1 Y1 BAO 2503.14738 DESI DR2 Y3 BAO $\left(\right)$ $\left(\right)$ DESI+CMB+Pantheon+ DESI+CMB+Union3 DESI+CMB+DESY5 DESI+CMB _1 —1 2.8σ w_{a} 3.8σ w_{a} 4.2σ 3.1*σ* -2-2 2.5σ DESI BAO + CMB + PantheonPlusDESI BAO + CMB + Union3 **DESY5=low-**Z + **DES-SN** 3.9σ DESI BAO + CMB + DESY5-3

 w_0

-0.8

-1.0

 \dot{v}_0

-0.6

-0.4

2505.02658 George Efstathiou "Baryon Acoustic Oscillations from a Different Angle"

 w_0

-0.4

-0.2

0.0

-0.6

-0.8

2408.07175 George Efstathiou "Evolving dark energy or supernovae systematics?" MNRAS 538 (2025) 2, 875-882

DESI-BAO+Planck-CMB+SNe

Distance ladder

Distance ladder

THE ASTROPHYSICAL JOURNAL, 935:83 (19pp), 2022 August 20

https://doi.org/10.3847/1538-4357/ac80bd

© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

2204.10866

Measurements of the Hubble Constant with a Two-rung Distance Ladder: Two Out of Three Ain't Bad

a_B tension around $z \sim 0.01$?

Redshift corrections for 2nd-rung SNe

Rigorous approach: SH0ES 2204.10866

PV corrections directly from reconstructions of density field and velocity field from 2M++/2MRS Efficient approach: Ours 2410.06053 Redshift corrected from minimizing difference of $a_{B,i} = \lg d_L(z_i) - 0.2m_{B,i}$ to Planck-calibrated late-time SNe

a_B consistency around $z \sim 0.01$

Our first two-rung distance ladder result

SH0ES first two-rung distance ladder: supports our redshift correction

SH0ES three-rung distance ladder: no third-rung SN systemactics $H_{0} = \begin{cases} 73.1 \pm 2.4 \text{ km/s/Mpc}, & z_{\text{CSP}} + \mu_{\text{Cepheid}}, \\ 74.5 \pm 3.5 \text{ km/s/Mpc}, & z_{\text{CSP}} + \mu_{\text{TRGB}}, \\ 72.1 \pm 2.3 \text{ km/s/Mpc}, & z_{\text{CSP}} + \mu_{\text{SBF}}. \end{cases}$

There is no more disagreement between Riess and Freedman

a_R tension around $z \sim 0.1$?

2505.22369 Jia-Le Ling, Guo-Hong Du, Tian-Nuo Li, Jing-Fei Zhang, Shao-Jiang Wang, Xin Zhang Model-independent cosmological inference after the DESI DR2 data with improved inverse distance ladder

$$m_B = 5 \lg d_L(z) - 5a_B$$
$$-5a_B \equiv M_B + 5 \lg \frac{c/H_0}{Mpc} + 25$$

There is an a_B tension between DESY5 and PantheonPlus SNe regardless of DESI DR2/SDSS or CMB/CC and Λ CDM/PAge !

a_B tension around $z \sim 0.1$?

Intercept $-5a_B$ is the degeneracy direction of H_0 and M_B and more sensitive to systematics in m and zIts measured value is more reliable at high redshifts than low redshift, less affected by peculiar velocity DESY5=low-z+DES-SN admits a_B discrepancy between low-z and DES-SN, unlike uniform PantheonPlus

a_B tension around $z \sim 0.1$?

2502.04212 Huang, Cai, SJW "The DESI DR1/DR2 evidence for dynamical dark energy is biased by low-redshift supernovae" $m_{B,i}^{\text{std.}} = 5 \lg \hat{d}_L(z_i) - 5a_B,$

a_B consistency around $z \sim 0.1$

2502.04212 Huang, Cai, SJW "The DESI DR1/DR2 evidence for dynamical dark energy is biased by low-redshift supernovae"

The DDE evidence from Planck-CMB+DESI Y1 BAO+DESY5(low-z+DES-SN) is reduced from 3.5σ to 1.5σ after our bias correction, and the pure late-Universe data without Planck-CMB deviates from Λ CDM only at 0.5σ

a_B consistency around $z \sim 0.1$

2502.04212 Huang, Cai, SJW "The DESI DR1/DR2 evidence for dynamical dark energy is biased by low-redshift supernovae"

The DDE evidence from Planck-CMB+DESI Y3 BAO+DESY5(low-z+DES-SN) is reduced from 3.7σ to 1.6σ after our bias correction, and the pure late-Universe data without Planck-CMB deviates from Λ CDM only at 0.7σ

DESI-BAO VS Planck-CMB

2503.14738 DESI DR2 Y3 BAO What DESI DR2 truly want to tell us is Ω_m tension with Planck-CMB within Λ CDM

DESI BAO

DESI BAO

LRG2 is among the largest deviation from Λ CDM for a positive correlation between D_M/r_d and D_H/r_d

DESI BAO

DESI tension with Hubble tension

	\wedge	DESI BAO + CMB + PantheonPlus DESI BAO + CMB + Union3 DESI BAO + CMB + DESY5		Model/Datas	set	$\Omega_{ m m}$	$H_0 \; [{\rm km \; s^{-1} \; Mpc^{-1}}]$	
		2404-0300	404.03002 DESI DR1 Y1 BAO		ΛCDM	2503.14738 DESI DR	2 Y3 BAO	
70				CMB		0.3169 ± 0.0065	67.14 ± 0.47	
68					DESI		0.2975 ± 0.0086	
${}^{0}H_{66}$	-				DESI+BBN		0.2977 ± 0.0086	68.51 ± 0.58
64					DESI+BBN-	$+ heta_*$	0.2967 ± 0.0045	68.45 ± 0.47
0.84					DESI+CMB		0.3027 ± 0.0036	68.17 ± 0.28
$\overset{\infty}{\overset{0.82}{\overset{0.82}{\overset{0.80}{{\overset{0.80}{{{{{{{{{{{{{{{{{{{{{{{{$		- 0 -			$w_0 w_a ext{CDM}$ 2503.14738 DESI DR2 Y3 BAO			
0.78				CMB		$0.220\substack{+0.019\\-0.078}$	83^{+20}_{-6}	
-0.4		-			DESI		$0.352\substack{+0.041\\-0.018}$	
$\hat{\mathfrak{S}}^{0\ -0.6}_{=0\ 8}$					DESI+Panth	neon+	$0.298\substack{+0.025\\-0.011}$	
-1.0					DESI+Unior	13	$0.328\substack{+0.019\\-0.014}$	—
0					DESI+DESY	75	$0.319\substack{+0.017\\-0.011}$	
$\overset{a}{\mathfrak{M}}^{a}$	-			-	$\text{DESI+}(\theta_*,\omega$	$_{ m b},\omega_{ m bc})_{ m CMB}$	0.353 ± 0.022	$63.7^{+1.7}_{-2.2}$
-2					DESI+CMB	(no lensing)	0.352 ± 0.021	$63.7^{+1.7}_{-2.1}$
0.005				+	DESI+CMB		0.353 ± 0.021	$63.6^{+1.6}_{-2.1}$
0.000 OM					DESI+CMB	+Pantheon+	0.3114 ± 0.0057	67.51 ± 0.59
-0.005					DESI+CMB	+Union3	0.3275 ± 0.0086	65.91 ± 0.84
	0.140 0.145	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.80 0.84 -0.9 -0.6	3	DESI+CMB	+DESY5	0.3191 ± 0.0056	66.74 ± 0.56
	$\Omega_{ m m}h^2$		σ_8 w_0	w_0	DESI+DESY	$73 (3 \times 2 pt) + Pantheon +$	0.3140 ± 0.0091	
Hubble tension is worsen!				DESI+DESY	$X3 (3 \times 2 pt) + Union3$	0.333 ± 0.012		
					DESI+DESY	$(3 \times 2 pt) + DESY5$	0.3239 ± 0.0092	

DESI tension with early Hubble solutions

DESI tension with late Hubble solutions

DESI tension with γ tension

Since the Hubble expansion suppresses the matter perturbation growth, a weakening DE compared to the cosmological constant will less suppress matter perturbation growth, leading to faster growth than Λ CDM

Non-minimal coupling

27/30

 \mathcal{Z}

2407.15832 Gen Ye, Matteo Martinelli, Bin Hu, Alessandra Silvestri, "Non-minimally coupled gravity as a physically viable fit to DESI 2024 BAO" PRL 134 (2025) 181002

均偏好一个非最小耦合的引力

2503.19898 Jiaming Pan, Gen Ye, "Nonminimally coupled gravity constraints from DESI DR2 data"

Conclusions and discussions

It is indeed the critical time from Λ CDM to something different MG&DDE: thawing?

What DESI BAO really want to tell us is the disagreement with Planck-CMB on Ω_m if Λ CDM is assumed

Whatever left can be interpreted diversely, e.g. MG /& **Phenomenological?** DDE, but the crossing crucially depends on low-z SNe

DESI DDE is not only in tension with H_0 tension (in tension with both early/late solutions to H_0 tension) but also the way out of it has already ruled out its preferred phantom crossing from $w_{\rm DE} < -1$ to $w_{\rm DE} > -1$

> **DESI DDE** is not only in tension with H_0 tension but also in tension with S_8 tension, γ tension, and δH_0 tension

> The beyond- Λ CDM new physics might be thawing dark energy from modified gravity with coupling to matter

Such a non-minimal coupling of scalar field to gravity might be naturally motivated from UV completed theory, e.g. modular field from string compactifications and 2007.04396

Thank you

中国科学院理论物理研究所 & 宁波大学基础物理与量子科技研究院

后哈勃时代宇宙学: JWST、DESI、CSST观测与理论研讨会

2025年06月27-30日 · 宁波

紧接在宁波大学宇宙大尺度结构前沿讲习班后面

https://conferences.koushare.com/ itpgcH02025

诚邀相关领域专家学者以及青年 科研人员莅临指导、报告和交流

