Axion Dark Matter (theory & experiment)

Jing Shu (Peking University, Beijing)

Outline

Motivation for axion dark matter
Axion Dark Matter Theory
Experiment: Astroparticle
Experiment: Table-top
Summary and Outlook

Motivation of ultralight dark matter

In QCD, we have the
$${\cal L}_ heta=rac{ heta_{
m QCD}g_s^2}{32\pi^2}G_{\mu
u}^a ilde{G}^{a\mu
u}$$

However, a quark axial rotation will shift this theta term and the quark mass phase. (axial U(I) is anomalous under SU(3) QCD instanton)

$$q_i o e^{i lpha_i \gamma_5} q_i \hspace{1cm} M o e^{-2i lpha} M \hspace{1cm} heta o heta - 2 N_f lpha$$

Physical:
$$\theta_{\text{eff}} = \theta + \arg \det M_q$$

This \theta term also contribute to the neutron EDM

$$egin{aligned} \mathcal{L}_{\pi N}^{ ext{CPV}} &\supset ar{g}_0 \, ar{N} ec{ au} \cdot ec{\pi} N \ ar{g}_0 &\sim heta_{ ext{eff}} \cdot rac{m_u m_d}{m_u + m_d} \cdot rac{1}{f_\pi} \end{aligned}$$

Therefore, we obtain

 $d_n|_{\beta=-1} \sim (0.5 - 1.5) \times 10^{-16} \, e \, \mathrm{cm} \times \bar{\theta}.$

Yohei Ema, Ting Gao, Maxim Pospelov and Adam Ritz, Phys. Rev. D 110, 034028 (2024)

Consider the current limit $|d_n| < 1.8 \times 10^{-26} e \cdot cm$ (90% CL. nEDM Collaboration, *Phys. Rev. Lett.* 124, 081803 (2020) $|\theta_{QCD}| \lesssim 10^{-10}$ Why it is so small?

One natural question is that is the theta term zero?

If yes, is there a symmetry to protect it?

Dynamical tunning from symmetry

Consider theta as a dynamical field, introduce the "axion" a

$$\mathcal{L} \supset \left(rac{a}{f_a} + heta
ight) rac{1}{32\pi^2} G ilde{G}$$

The anomalous axial U(I) symmetry is the shift symmetry fro axion

$$a \rightarrow a + \alpha f_a, \quad \theta \rightarrow \theta - \alpha, \quad PQ \text{ symmetry}$$

Peccei Quinn Dirac Medal 2000

6

Below QCD scale, described by the Chiral perturbation theory

$$egin{aligned} \mathcal{L}_\chi &\supset rac{f_\pi^2}{4} \operatorname{Tr}[M_q \Sigma^\dagger + \Sigma M_q^\dagger] & ext{Generated by the} & \Sigma^{(x) = \exp\left(rac{2i\pi^a(x)T^a}{f_\pi}
ight)} & E(heta) &= m_\pi^2 f_\pi^2 \cos(heta). & \langle a
angle &= -\overline{ heta} f_a. & \langle a
angle &= -\overline{ heta} f_a. & V &= -m_\pi^2 f_\pi^2 \sqrt{1 - rac{4m_u m_d}{(m_u + m_d)^2} \sin^2\left(rac{a}{2f_a} + rac{\overline{ heta}}{2}
ight)}. & d_n \propto rac{a}{f_a} + \overline{ heta} = 0. & \end{aligned}$$

In memorial of Peccei

|99|

Expanding on small theta, we have

$$m_a = \frac{m_\pi f_\pi}{f/N} \sqrt{\frac{m_u m_d}{2(m_u + m_d)^2}} \approx 6 \,\mu \text{eV} \,\frac{10^{12} \,\text{GeV}}{f/N}.$$

The strong dynamics of QCD generates a potential for the axion, which relaxes it to the value that cancels the θ term, explaining why we do not see a nonzero neutron EDM. The axion mass is of order $m_{\pi}f_{\pi}/f$. The axion is very light and very weakly coupled when f is a UV scale.

Light axion, high breaking scale

PQ symmetry may also be anomalous under SU(2)

$$\mathcal{L} \supset \frac{a}{f_B} \frac{1}{32\pi^2} B\tilde{B} + \frac{a}{f_W} \frac{1}{32\pi^2} W\tilde{W}.$$

 $rac{\partial_{\mu}a}{f_Q}Q^{\dagger}\sigma^{\mu}Q.$

Quark couplings are there, or generated by the RG runing

KSVZ Axion, DFSZ

Original PQ break at the EW scale

Ruled out by various experiments

"Invisible" axion: Small PQ symmetry breaking

KSVZ axion

DFSZ axion

$$V_{
m PQV}(heta) = \ 2|c|M_{
m Pl}^4 \left(rac{f}{\sqrt{2}M_{
m Pl}}
ight)^n \cos\left(n heta+arphi
ight).$$

Axion quality problem:

Large explicit PQV terms.

Need many powers of suppression

Gravitational breaking of PQ symmetry.

Extra dimension (gauged PQ in the 5-th dim), string theory, etc

Axion cosmology

Misalignment

Axion evolution

 $\theta \equiv a/f_a$

 $\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\theta = 0$ "Friction" "Oscillation"

Hubble term

Axion cosmology

Axion mass at finite T

$$V \sim m_u m_d m_s T e^{-8\pi^2/g_3^2(T)} \cos\left(\frac{a}{f_a} + \overline{\theta}\right) \sim m_u m_d m_s \frac{\Lambda^9}{T^8} \cos\left(\frac{a}{f_a} + \overline{\theta}\right)$$

$$m_a(T)^2 \sim \frac{m_u m_d m_s}{f_a^2} \frac{\Lambda^9}{T^8}.$$
 Too light, non-thermal

$$a = \theta_0 f_a, \qquad H > m_a(T). \qquad \qquad H(T_c) = m_a(T_c).$$

$$a = \theta_0 f_a \sqrt{\frac{m_a(T_c)}{m_a(T)}} (\frac{R(T_c)}{R(T)})^{3/2} \cos m_a t, \qquad T < T_c.$$

Energy conservation

$$\begin{split} \rho_a &\sim \theta_0^2 \Lambda_{QCD}^4 \frac{m_a(T_c)}{m_a} \left(\frac{\Lambda_{QCD}}{T_c}\right)^3 &\sim \theta_0^2 \Lambda_{QCD}^4 \frac{f_a \Lambda_{QCD}}{T_c M_p} &\sim \rho_{DM} \sim \text{eV} \Lambda_{QCD}^3, \\ T_c &\sim \text{GeV and } f_a &\sim 10^{11} \text{ GeV}. \qquad \qquad f_a &\sim 10^{12} \text{ GeV} \\ \text{Lattice simulation suggests a slightly large f} \end{split}$$

12

Axion Cosmology

$$\Omega_a h^2 = 0.01 \theta_0^2 \left(\frac{f_a}{10^{11} \,\text{GeV}} \right)^{1.19}$$

To have different f_a

- Initial theta small for large f_a, or damp the E out of axion。
- theta ~ \pi for small f_a, or some other particles decay into axion

Except misalignment from post-inflation, the axion can also produced fro the decay of topological defects

Axion mini-cluster, axion star, etc.

Spectrum of Ultra-light Dark Matter

The Virial Theorem: the velocity of dark matter near Earth is approximately 10^-3 boosted by gravity.

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \cos(m_a t + \phi)$$

Frequency:
$$\omega_a \simeq \text{GHz} \; \frac{m_a}{10^{-6} \; \text{eV}}$$

Coherence:
$$\tau_a \simeq ms \; \frac{10^{-6} \; eV}{m_a}$$

Max Exp. Size:
$$\lambda_a \simeq 200 \text{ m} \frac{10^{-6} \text{ eV}}{m_a}$$

Axion DM as an example, same for other kinds (DPDM, etc)

$$\tau_a \sim 1/m_a \langle v_{\rm DM}^2 \rangle \sim Q_a/m_a \sim 10^6/m_a$$

Bandwidth of axion DM is 10^-6

Detector bandwidth < 10⁻⁶ accelerate the scan rate

$$\lambda_a \sim 1/m_a \sqrt{\langle v_{\rm DM}^2 \rangle} \sim 10^3/m_a$$

Momentum width 10⁻³

波动型暗物质在小尺度结构上 的不同

Nature Astronomy 7, 736 (2023)

Axion detection

当前暗物质组成未知,可能候选者质量范围跨越非常大

上天入地探测粒子型暗物质

波动型暗物质探测: 百花齐放

波动性暗物质

困扰物理学界的重点问题:暗物质是什么?

宇宙中约I/4的能量物质来源于未知的暗物质

Axion粒子探测 see Ning Zhou's talk

(波动型)超轻暗物质

量子力学:物质都有粒子性和波动性

超轻暗物质波长 在宏观尺度,宏 观上表现为波动 的背景场

 $m_a \sim \mathrm{GHz} \sim 10^{-6} \mathrm{eV}$

德布罗意波长达到 星系尺度(kpc)

依赖于天文观测(时 间,空间位置的测量) 有别于传统暗物质探 测(不再基于粒子散射) 发展空间巨大

类似于引力波的探测

提出新的量子探测实验

利用天文观测实验

Astro-particle detection

2018 射电天文学是当今物理学的热点领域。2010 ²⁰¹⁰

VVIIAF/则里丁田100 波背景辐射各向异

2020

EHT拍摄黑洞射 电照片

微波背景辐

射

Sir Martin Ryle Prize share: 1/2

Antony Hewish Prize share: 1/2

The Nobel Prize in Physics 1993 The Nobel Prize in Physics 2006

Russell A. Hulse Prize share: 1/2

Prize share: 1/2

John C. Mather Prize share: 1/2

Prize share: 1/2

未来大型射电天文学观测数据

24

Stellar cooling

- Compton scattering: $\gamma + e^- \rightarrow e^- + b$;
- e N bremsstrahlung: $e^- + N \rightarrow e^- + N + b$;
- e e bremsstrahlung: $e^- + e^- \rightarrow e^- + e^- + b$,

- N N bremsstrahlung: $N + N \rightarrow N + N + b$;
- pion-proton scattering: $\pi^- + p^+ \rightarrow n + b$, where N can be proton or neutron and p^+ is proton.

PTA: (波动型)超轻暗物质

脉冲星计时观测是在固定观测频率上,以原 子时为参考,获得一系列脉冲星脉冲到达时 间,并与脉冲星时间分析模型给出的预测值 相比较。

26

PTA: (波动型)超轻暗物质

暗物质(振荡的场)的引力势能,会改变周围的能量 动量张量,从而改变电磁脉冲过来的时间间隔

$$s(t) = \frac{\Psi_c}{\pi f} \sin(\alpha_e - \theta_p) \cos(2\pi f t + \alpha_e + \theta_p)$$

27

EHT极化探测轴子暗物质

视界望远镜极化数据探测轴子超轻暗物

2020年诺贝尔物理学奖

黑洞视界望远镜(EHT)

CAST

SN 1987 NGC1275

Galaxv M87

 $f_{2} = 10^{15} \text{ GeV}$

super star clusters

-11

¹² (13 (13 ()

, 14 .15 14 .15

-17

α 0.45

M87

log₁₀(c)

-2 + -21

如果存在超轻暗物质(轴 子),类似霍金辐射,旋转 的黑洞会辐射轴子,从而 在黑洞附近形成轴子云

黑洞还可以用来探测超轻暗物质(轴子)!

📜 CAST 📜 SN1987A 🔲 M87* 📕 Sgr A* Y.F. Chen, J. Shu, X. Xue, Q. Yuan, Y. Zhao, Phys. Rev. Lett. 124 (2020) no6, 061102

黑洞视界望远镜(EHT)极化 数据,探测限制轻(暗)极化 粒子

黑洞附近的电磁波穿过轴子云, 类似于双折射效应,极化角随 时间周期变化

-20 $\log_{10}(m_a/eV)$

Y-f. Chen, ... J. Shu., et al, Nature Astronomy (2022) 5, 592-598

Super-radiance slow down BH spin rotation. ref?

Table-top detection

Current status

Axon dark matter detection competition :

- Traditional resonant cavity: ADMX, CAPP, HAYSTACK
- LC circuit: DM Radio, ABRACADABRA
- Nuclear Magnetic Resonance: CASPER, Spin amplifier (USTC)
 ...
- The main experimental limits
 come from the resonant cavity,
 CAST, and stellar cooling.
 A huge parameter space

to be explored!

Inverse Primakoff Effect

$$\nabla \times \mathbf{B} \simeq \partial_t \mathbf{E} + \mathbf{J} + g_{a\gamma\gamma} \mathbf{B} \partial_t a$$

Axion dark matter induces an effective current under strong magnetic field.

$$J_{\rm eff}(t) \sim g_{a\gamma\gamma} B_0(t) \sqrt{\rho_{\rm DM}} \cos m_a t$$

Cavity with static B field

$$\left(\partial_t^2 + \frac{m_a}{Q_1}\partial_t + m_a^2\right)\mathbf{E}_1 \sim m_a \cos m_a t$$

Quantum amplifier to readout the signal.

$$Q_a \sim 10^6$$

 $m_a \sim \mathrm{GHz} \sim 10^{-6} \mathrm{eV}$

Signal power decreases with axion mass

e.g. ADMX, HAYSTACK

Resonant EM detection of axion dark matter

Cavity mode equation

1

Source: **a** (almost monochromatic)

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{a\gamma\gamma} \partial_t (\mathbf{B} \partial_t a)$$
Pump Mode: **B**
Signal Mode: **E**_n

`

Traditional resonant detection matches axion mass with the resonant frequency by using a static B field.

$$\omega_1 \simeq m_a \qquad \partial_t(\mathbf{B}) \simeq 0$$

$$\left(\partial_t^2 + \frac{m_a}{Q_1}\partial_t + m_a^2\right)\mathbf{E}_1 = g_{a\gamma\gamma}\mathbf{B}\sqrt{\rho_{\rm DM}}m_a\cos m_a t$$

SRF with AC B field

Signal Mode: E₁

Source: **a** (almost monochromatic)

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{a\gamma\gamma} \partial_t (\mathbf{B} \partial_t a)$$

Pump Mode: **B**₀

Oscillating **B**₀:

$$\omega_1 \simeq \omega_0 + m_a \qquad \partial_t(\mathbf{B}) \simeq i\omega_0 \mathbf{B}$$

Scanning the axion mass by tuning the differences between two quasi-degenerate modes

A.Berlin, R.T. D'Agnolo, et al, JHEP07(2020)no.07, 088.

Axion Dark Matter Detection Using SRF

Hard to scan for a broad mass window in traditional cavity!

 $\omega_1 \simeq m_a \qquad \partial_t(\mathbf{B}) \simeq 0$

A.Berlin, R.T. D'Agnolo, et al, JHEP07(2020)no.07, 088.

Broadband case

For ultra-light axion, $\omega_1 = \omega_0 + m_a \simeq \omega_0$

Two degenerate and transverse modes can reach the ultra-light region!

frequency = $m_a/2\pi$

A.Berlin, R.T. D'Agnolo, et al, [arXiv:2007.15656 [hep-ph]].

Axion search

TDR like

SHANHE collaboration

Using the existing I.3G cavity as a pathfinder

New designed cavity will be operated in the future.

LC Circuit with static B field

Scan the mass from 100 Hz to 100 MHz by tuning the capacitor C

```
e.g. DM radio, ADMX-SLIC
```


Assumptions: T=10 mK, Q=10⁶, 3.5 year integration time, quantum-limited readout

Broadband Detection

ABRACADABRA: no capacitor, simultaneous scan of broad frequencies using SQUID. [Y.Kahn, B. Safdi, J. Thaler 16']

Higher Frequency Electromagnetic Resonant Detection

1 Dielectric Haloscope: discontinuity of E-field leads to
 coherent emission of photons from each surface, up to 50 GHz. [A.Caldwell et al 17']

2.Plasma Haloscope: using tunable cryogenic plasma to match axion mass, up to 100 GHz. [M.Lawson et al 19']

3.Topological Insulator: quasiparticle in it mixing with E field
 becomes polariton whose frequency can be tuned by magnetic field, up to THz. [D.J.E.Marsh et al 19']

Birefringent effect

Axion induced birefringent effect

$$\Box A_{\pm} = \pm 2ig_{a\gamma} [\partial_z a \dot{A}_{\pm} - \dot{a} \partial_z A_{\pm}],$$

$$\omega_{\pm} \approx k \pm \frac{1}{2}g\left(\frac{\partial \varphi}{\partial t} + \nabla \varphi \cdot \frac{k}{k}\right)$$

different phase velocities for +/- helicities

For linearly polarized photons

$$\begin{aligned} \Delta \Theta &= g_{a\gamma} \Delta a(t_{\rm obs}, \mathbf{x}_{\rm obs}; t_{\rm emit}, \mathbf{x}_{\rm emit}) \\ &= g_{a\gamma} \int_{\rm emit}^{\rm obs} ds \; n^{\mu} \; \partial_{\mu} a \\ &= g_{a\gamma} [a(t_{\rm obs}, \mathbf{x}_{\rm obs}) - a(t_{\rm emit}, \mathbf{x}_{\rm emit})], \end{aligned}$$

Measure the change of the position angle:

Requires polarimetric measurements

GW Interferometers and Birefringent Cavity

Interferometer: using vertically polarized laser and measuring the horizontal component, resonant when baseline matches λ_c . [DeRocco, Hook 18]

Birefringent cavity: using mirror to accumulate the axion induced sideband. [Liu, Elwood et al 18']

42

Light Shining Through Walls [Redondo, Ringwald 10]

- Photons convert into axions in B field, pass through a wall and convert back into photons.
- Both optical and SRF cavity [Janish et al 19'].
- Not dependent on if axion is the major dark matter.

Cosmic axion backgrounds

Axion can also be served as the cosmic backgrounds.

Relativistic

T. Nitta et al. (ADMX), Phys. Rev. Lett. 131, 101002 (2023)

Anisotropic

The Cosmic Axion Background

Jeff A. Dror,^{1, 2, 3, *} Hitoshi Murayama,^{2, 3, 4, †} and Nicholas L. Rodd^{2, 3, ‡}

Nuclear Magnetic Resonance [Budker, Graham et al 13']

- CASPEr Electric: axion gluon coupling leads to oscillating EDM.
- CASPEr-Wind: axion nucleons coupling ~ ∇a · σ_N leads to precession of the spin, proportional to axion DM velocity (wind).

Larmor frequency $2 \mu B_{ext} = m_a$ leads to NMR-like resonant enhancement.

Axion-Induced Fifth Force [Moody, Wilczek, 84']

Monopole-Dipole axion exchange

Axion-mediated monopole-dipole interaction between nucleons:

46

Summary and outlook

Summary and outlook

- Axion is very theory motivated particle, even though its invisible property needs some care.
- Natural wave-like.
- Astro-particle and quantum search can be boomed in the future.

