TDR Editing Organization Tuesday CEPC TDR Meeting June 10, 2025

Joao Guimaraes

Outline

- Keeping track of modifications overall situation
 - Today using version 0.3.1 available at 07:07 am
- Length of chapters
- Introduction
- Symbol consistency and glossary
- My plan

CEPC Reference Detector

Technical Design Report

Version: 0.3.1 build: 2025-06-10 07:07:02+08:00

Keeping track of modifications

• Spreadsheet monitoring the status moved by Zhaoru to IHEP docs:

- https://docs.ihep.ac.cn/link/ARF4C648FCA57D4CF281A8E821A110229E
- 文件名: Status of TDR.xlsx
- 文件路径: AnyShare://ZHANG Zhaoru(zhangzr)/CEPC Det TDR/Status of TDR.xlsx

- Please fill in your input now, and keep it updated as we move along
 - Most people didn't update it this week.... Please do!
 - You have one chapter, but we need to check 16 chapters
 - After last final cut-off time, several people were not ready (still working). It is helpful to enter such information on the spreadsheet

Keeping track of modifications

Blue section of the spreadsheet is for chapter leaders

Chapter	Overall Complete	Chapter structure	Updated date	Tables			Figures	Те	ext	
			Ready for check	Unified format	Significant digits	Change to pdf	Unified Macro	Enlarge the font size	Symbols	Glossar
Executive summary	100%	100%		100%	100%		100%	100%	100%	
1 Introduction	100%	100%		100%	100%		100%	100%	100%	
2 Concept of CEPC Reference Detector	90%	100%		90%	90%	90%		90%		
3 MDI and Luminosity Measurement	90%	90%		100%	100%	100%	80%	70%	70%	
4 Vertex Detector	90%	100%		90%	95%	50%		70%	80%	
5 Silicon Trackers	100%	100%		100%		80%			90%	
6 Pixelated Time Projection Chamber	95%	100%		100%	100%	100%		80%	95%	95
7 Electromagnetic calorimeter	90%	90%		90%	90%	50%		80%		
8 Hadronic calorimeter	90%	100%		90%	90%	70%		80%	90%	
9 Muon Detector	95%	100%		100%		75%		80%		
10 Detector magnet system	95%	100%		95%	100%	100%	100%	100%	95%	95
11 Readout Electronics	90%	100%		100%	100%	60%		80%	100%	
12 Trigger and Data Acquisition	95%	100%	Jun. 5th	100%	100%	100%	100%	100%	100%	90
13 Offline software and computing	97%	100%	Jun. 5th	100%	100%	100%	100%	100%	95%	95
14 Mechanics and integration	80%	80%		100%	80%	100%		70%	90%	
15 Detector and physics performance	80%	80%		100%		70%			100%	

I will check today, chapter by chapter according to this table input

Keeping track of modifications

Yellow section of the spreadsheet is for chapter review editors (english) appointed by Jianchun

	Chapter	Review	Chapter Review Chapter		Chapter Leader(s)	Responsib	Responsible Ed		
Chapter	Edi	tors	Edi	itors	1	Introduction	Joao Costa / Gang Li	-	
	Name	Status	Name	Name Status		Concept of Ref-Detector	Haijun Yang / Mingyi Dong	Mingshui	1
Executive summary					3	MDI and Luminosity Measurements	Haoyu Shi	Manqi	
1 Introduction					4	Vertex Detector	Zhijun Liang / Jerome ?	Mingyi	
2 Concept of CEPC Reference Detector	Mingshui	80%	Mingshui	80%	5	Silicon Trackers	Qi Yan	Jingbo]
3 MDI and Luminosity Measurement	Manqi	60%	Manqi	60%	6	Gaseous Tracker	Huirong Qi / Nicola De Filippis	Mingyi	1
4 Vertex Detector	Mingyi	90%	Mingyi	90%	7	Electromagnetic Calorimeter	Yong Liu / Hwidong Yoo	Manqi	1
5 Silicon Trackers			Jingbo	100%	8	Hadron Calorimeter	Sen Qian	HeMiao	
6 Pixelated Time Projection Chamber	Mingyi	70%	Mingyi	70%	9	Muon Detector	Xiaolong Wang / Pavel Pakhlov	Jianchun	
7 Electromagnetic calorimeter	Manqi	50%	Manqi	50%	10	Superconducting Solenoid Magnet	Feipeng Ning	Haijun	JG
8 Hadronic calorimeter	Jianbei		Miao He/Jia	anbei	11	Readout Electronics	WeiWei	Zheng	1
9 Muon Detector	Weidong		Jianchun/M	liao He	12	Trigger and Data Acquisition	Fei Li	Zhena	1
10 Detector magnet system	Haijun		Haijun		13	Software and Computing	Weidong Li	Gang	1
11 Readout Electronics	Zheng	80%	Zheng	80%	14	Mechanics and Integration	Ouan li	lingho	+
12 Trigger and Data Acquisition	Zheng	85%	Zheng	85%	14			Maidana	+
13 Offline software and computing	Gang		Gang	100%	15	Detector and Physics Performance		vveidong	-
14 Mechanics and integration	Jingbo	80%	Jingbo	100%	16	Construction Cost	Miao He	-	─
15 Detector and physics performance	Weidong	85%	Weidong	100%	17	Future Plans	Gang Li / Miao He / JCW	-	
16 Timeline and Future Plans	Jianbei		(new assignments done during last meeting)						
17 Reference detector costing 18 Summary			Please indicate how far have you read and when you will be						fir

Length of Chapters

- Total length now: 646 pages
 - 30 pages longer than the goal
- Chapters that didn't reach goal indicated in red
 - Will check chapter in red in more gains can be made
 - Major outliers:
 - TPC: 14 pages more than goal
 - Muon: 11 pages more than goal
 - Mechanics: 6 pages more

	Page	Length	Goal length
Executive summary	1		1
1 Introduction	17	16	16
2 Concept of CEPC Reference Detector	30	13	15
3 MDI and Luminosity Measurement	70	40	35
4 Vertex Detector	120	50	40
5 Silicon Trackers	200	80	60
6 Pixelated Time Projection Chamber	264	64	40
7 Electromagnetic calorimeter	334	70	50
8 Hadronic calorimeter	389	55	50
9 Muon Detector	434	45	30
10 Detector magnet system	491	57	40
11 Readout Electronics	551	60	50
12 Trigger and Data Acquisition	604	53	45
13 Offline software and computing	660	56	45
14 Mechanics and integration	717	57	35
15 Detector and physics performance	779	62	50
16 Timeline and Future Plans	785	1	8
17 Reference detector costing	786	2	5
18 Summary	788		615

Introduction(s) -

 bad	\bigcirc
	\bigcirc

Chapter	
	Introduction
Executive summary	
1 Introduction	Yes
2 Concept of CEPC Reference Detector	Yes
3 MDI and Luminosity Measurement	Yes
4 Vertex Detector	No
5 Silicon Trackers	Yes
6 Pixelated Time Projection Chamber	Too long
7 Electromagnetic calorimeter	Yes
8 Hadronic calorimeter	Νο
9 Muon Detector	Yes
10 Detector magnet system	Yes
11 Readout Electronics	Yes
12 Trigger and Data Acquisition	Yes
13 Offline software and computing	Yes
14 Mechanics and integration	Incomplete
15 Detector and physics performance	Yes

Chapter 4 Vertex Detector

Introduction 2362 4.1

4897

The CEPC vertex detector is a crucial component of the tracking system, designed to provide excellent spatial resolution and ultra-low material budget for precision vertexing flavor tagging.

A high-granularity low-mass design based on Monolithic Active Pixel Sensors (MAPS) has been proposed and selected as the CEPC vertex detector baseline, in or-

Not final version?

Chapter 6 Pixelated Time Projection Chamber

The development of the pixelated readout Time Projection Chamber (TPC) detection 4898 technology is based on several fundamental R&D efforts within the High Energy Physics community, notably the TPC concept in International Linear Detector (ILD) and detector in Electron Ion Collider (EIC) project. The main goal of the tracking TPC 4901 detectors is to measure the trajectory and momentum of charged particles[1]. The CEPC tracker consists of a number of silicon trackers and a TPC[2, 3]. The most central ⁴⁹⁰⁴ detectors including of the silicon trackers described in Chapter 4 and Chapter 5, which

Too long, needs to be shorten

examples — Need changes

Chapter 8 Hadronic calorimeter

8.1 Overview 7324

Not final version?

Hadronic calorimeter (HCAL) is employed in the CEPC detector system to provide 7325 energy measurement of hadronic jets with excellent resolution and hermetic coverage. To fully exploit the potential of physics program for Higgs and electroweak physics, all 7327 possible final states from decays of intermediate vector bosons, Z, W and the Higgs boson need to be reconstructed and well identified with high sensitivity. In particular, to clearly identify hadronic final states of $H \to ZZ^* \to 4j$ and $H \to WW^* \to 4j$, the energy 7330 resolution of the calorimetry for hadronic jets needs to be pushed beyond today's limit. 7331 order to distinguish the hadronic decays of W and Z bosons, a 3-4% invariant mass resolution for two-jet system is required. Such a performance needs a jet energy resolution 7333 $30\%/\sqrt{E}$ at energies below 100 GeV as shown in Figure 8.1. This would be about a factor of two better than that of the LEP detectors and the currently operating LHC ⁷³³⁶ detectors, which is a very challenging performance to achieve.

and Z bosons.

14054

Chapter 14 Mechanics and integration

This chapter introduces the mechanical layout of the CEPC reference detector, details the boundaries and connections of each sub-detector. In consideration of future mainte-14057 nance and upgrades of each sub-detector, the interface design requirements, installation scheme of each sub-detector and the uniform installation tooling are given. The design of the installation layout of the underground experimental hall for the whole detector and the layout of the auxiliary hall for the ancillary facilities are given.

No mention of sections

Glossary

- Being led by Zhaoru and Tao Lin
- First version of glossary added at end of TDR, albeit without page numbers yet
- Tao Lin working to add it to all chapters via a script
- Excel spreadsheet to be provided for people to add more names

Glossary

AAI Authentication and Authorization Infrastructure AC Alternating Current AC-LGAD AC-coupled Low Gain Avalanche Detector ADC Analog-to-Digital Convert AFE Analog Front-End AHCAL Analog HCAL AI Artificial Intelligence ALDD Array Laser Diode Driver ASIC **ALP** Axion-Like Particle **ALPs** Axion-Like Particles **APD** Avalanche Photodiodes **APDs** Avalanche Photodiodes **APEP** Associated Proton Beam Experiment Platform **AR** Augmented Reality **ASIC** Application Specific Integrated Circuits ASICs Application-Specific Integrated Circuits **ASTC** Aluminum stabilized Stacked REBCO Tape Cable **ASU** Active Sensor Unit ATCA Advanced Telecommunications Computing Architecture ATIA Array Transimpedance Amplifier ASIC **BAU** Baryon Asymmetry of the Universe **BE** Back-end Electronics **BEE** Backend Electronics **BEPCII** Beijing Electron-Positron Collider **BESIII** Beijing Spectrometer **BGB** Beam Gas Brems **BGC** Beam Gas Coulomb **BGO** Bismuth Germanate **BMR** Boson Mass Resolution BOSS BES III Offline Software System **BPMs** Beam Position Monitors **BR** Branching Ratio BSC Beam Stay Clear **BSM** Beyond the Standard Model **BSO** Bismuth Silicate **BTH** Beam Thermal Photon

My plan

- Check chapter by chapter
 - Quick overview of the lengthy ones:
 - TPC
 - Muon
 - Mechanics
 - Check chapter 2: concept
 - Go chapter by chapter, following the status table on the spreadsheet (see page 4)
 - Focus on the ones that still need to reduce pages

Theend

Chapter Structure

Cł	nap	ter	X:	
X .	1	Ο	/erview	What are w
X .	2	De	etailed Design	
X .	2.	1	Detailed design	
X .	2.	2	Challenges and critical R&D	
X .	3	Ke	y Technologies to address challenges	
X .	4	R8	&D and prototypes	
X .	5	Si	mulation and Performance	
X .	6	AI	ternative Solutions	Can be eith (demonstra meet the re
X .	7	Su	Immary and Future Plan	
X .	8	(C	ost table and justification)	Eventually t

- Sections should not have more than 4 numbered subsection levels x.y.z.w

- If using AI, editors need to read the AI output and finalize the text themselves. Cannot blindly use AI output. Also, AI usage should be minimized to correct english, NOT write sections from scratch

- Captions should be long and describe plot, not just a title

Э	going to	build? Design	expected	performance	("requireme	nts")
	genigite					

ner backup or more advanced solution Ite backup solutions are in hand and that their possible selection st equirements)

to be moved to a common chapter

			_
L : I	I		
TII			
			1
			1
			-

Introduction(s)

Chapter 13 Offline software and computing

The development of the CEPC software (CEPCSW) [1] is based on several foundational HEP software packages, including the Gaudi [2] software framework for event processing, EDM4hep [3] for the event data model, DD4hep [4] for detector description, Geant4 [5] for simulation, and ROOT [6] for data analysis. A key aspect of this endeavor is the development of CEPC-specific software, designed to meet the experiment's unique requirements. The core software will be introduced in Section 13.1, while the applications for simulation, reconstruction, analysis, and visualization will be described in Sections 13.2, 13.3, and 13.4, respectively.

To tackle the growing complexity of data processing tasks, emerging technologies are being actively explored. Research and development efforts focus on areas such as concurrent computing, machine learning, and quantum computing, which will be discussed in Section 13.5.

Grid computing technology, successfully implemented in the LHC experiments, connects computing and storage resources distributed across laboratories worldwide, facilitating the processing and analysis of EB-level data. Leveraging this technology, we have established a distributed computing infrastructure (DCI) to support detector R&D activities. On this prototype, the latest Grid computing technologies are being investigated and evaluated to ensure robust support for the experiment's future operations. These aspects will be discussed in Sections 13.7 and 13.10.

In the current project, the software and computing team is responsible for providing the core software, including the framework, various services, data management, and computing systems. The development of detector-specific algorithmic code for simulation, calibration, and reconstruction is a shared responsibility between the software and computing team and the sub-detector teams. Close collaboration with the physics group ensures the smooth development of global event-reconstruction code and software tools for physics analysis.

Most people seem to have misunderstood the request Check the CDR and these chapters for good examples

Chapter 12 Trigger and Data Acquisition

While collision rates reach tens of megahertz, the actual Higgs production rate remains vanishingly small—a fundamental discrepancy that demands a trigger and data acquisition (TDAQ) system capable of identifying rare physics events within an overwhelming background of non-interesting processes. This system must achieve real-time event selection while preserving the integrity of critical physics signals.

This chapter presents the technical design of the CEPC reference detector's TDAQ system. Subsequent sections address critical topics including system requirements and overall architectural design as Section 1, hardware trigger implementations as Section 2, software-based high-level triggers as Section 3, trigger simulations and algorithms as Section 4, data acquisition infrastructure as Section 5, and integrated run control with online monitoring systems as Sections 6 and 7.

Chapter 7 Electromagnetic calorimeter

The CEPC electromagnetic calorimeter (ECAL) plays a critical role in precision measurements of Higgs and flavour physics. It is a high-granularity homogeneous calorimeter with dense scintillating crystals. Based on the Particle Flow Algorithms (PFA), it aims to achieve an unprecedented jet energy resolution and excellent electromagnetic (EM) performance, which will enable the accurate reconstruction of Higgs decaying into photons and jets as well as EM showers of meson decays involving with photons.

The primary objective of the ECAL is to identify and reconstruct EM showers, even in the presence of near-by particles, while also serving as the first section for hadronic showers. To ensure superior separation of near-by particle showers, the ECAL is highly segmented both longitudinally and transversely. Based on detailed simulation optimisations, the granularity of the longitudinal and transverse segmentations is at the level of X_0 (radiation length) and R_M (Moliere Radius), respectively. The ECAL design emphasises maximum possible hermeticity, modularity and scalability.

This chapter is organised as follows: Section 7.1 first introduces the ECAL, followed by the ECAL design in Section 7.2 and key technologies in Section 7.3. Dedicated R&D activities and performance studies will be discussed in Section 7.4 and Section 7.5. ECAL backup options will be listed in Section 7.6 and summary and prospects will be presented in Section 7.7.

Plot formats \rightarrow sample plots

- Templates with instructions at: https://latex.ihep.ac.cn/project/68347a429cc3eOdb27dacfc4
- Python code: Gitlab: <u>https://code.ihep.ac.cn/zhangyang98/cepc-style</u>
- ROOT style file for CEPC: ~zhangkl/cefs/plot/CEPCStyle.h

Most important: keep proportions of the text large compared to the plot

by Zhang Yang and Kaili

Plot formats \rightarrow sample plots

- More sample plots from python
 - Fonts and styling a little different between root and python

Label for plots: **CEPC** Ref-TDR

by Zhang Yang and Kaili Z

Symbols unification

- File with physics/math symbols to be used by all: cepcphysics.sty
- **Unit Symbols**:

 - Add a space between numbers and units, e.g., `1~mm`.
 - Use unit symbols exclusively, e.g., do not use "meters" or "microns".
- **Energy Units**:
 - Replace **GeV**, **TeV**, **MeV**, etc., with `\GeV`, `\TeV`, `\MeV`.
 - The `cepcphysics.sty` file defines these terms; reference them using $\) + the term.$
- **Particle Names**:
 - `cepcphysics.sty`).
 - Check other particles, such as $**pi^*$, $**K^*$, etc., and use the `.sty` file definitions, `\` + the term.
- **Variable Names**:
 - Replace **p_T**, **E_T**, **Missing E_T**, etc., with the definitions from the `.sty` file.
 - Add your own symbols to the file and let Zhaoru and others know

• Being led by Zhaoru and Tao Lin

• Unit symbols should be written in **non-italic** font, especially when they appear in equations. Use `\mathrm{}` for units in equations.

• **H**, **Z**, **W** should be written in **uppercase italics**. Use `\Hboson`, `\Zboson`, etc., to replace them (refer to the definitions in

Keeping track of modifications **Green** section is for Joao's feedback

	_	0000								
Chapter		Overall structure								
	Introduction	Introduction Quality) CC	Overall omplete	Chapter Structure	Page	Length	Tables to fix	Figures to fix	References
Executive summary						14	2			
1 Introduction	Yes	Needs references to sections			NA	16	13			
2 Concept of CEPC Reference Detector	No	C	0	70%	NA	29	12	2.1,		Need mor
3 MDI and Luminosity Measurement	No	C	0	80%	80%	41	42	left justify f	Some lumi	cal figures ar
4 Vertex Detector	No	C	0	80%	80%	83	52	some table	some Figu	res are not q
5 Silicon Trackers	Yes	OK, but needs expansion to cover sections		90%	95%	135	41	The positio	r The positic	ons of some f
6 Pixelated Time Projection Chamber	Yes	Need to reorganize				176	119			
7 Electromagnetic calorimeter	Yes	Needs expansion of references to sections		80%	80%	295	70			
8 Hadronic calorimeter	No	C	0		90%	365	54			
9 Muon Detector	No	C	0	70%	50%	419	43			
10 Detector magnet system	Yes	Needs to expand to cover sections				462	57			
11 Readout Electronics	No	Use the introduction and remove the title, then it needs reference to sections		80%		519	60		fig11.4, 11	.5, 11.9, 11.1
12 Trigger and Data Acquisition	Yes	Perhaps too long, needs to expand to cover sections		90%		579	52			
13 Offline software and computing	Yes	Very good \rightarrow Excellent :-)				631	61			
14 Mechanics and integration	Yes	Needs to expand to cover sections				692	50			
15 Detector and physics performance	Yes	Use the introduction and remove the title, then it needs reference to sections		85%	90%	742	55		Figure 13,	Figure 14, F
16 Timeline and Future Plans						797	1			
17 Reference detector costing						798	2			
18 Summary						800				

loao

Check this section and get back to me if you need clarifications on something

