

LumiCal ref-TDR for 10⁻⁴ luminosity

Suen Hou On behalf of the CEPC LumiCal group:

2025.06.09 https://indico.ihep.ac.cn/event/26255/

Content

- 1. Luminosity & SM at LEP
- 2. QED Bhabha, generator & precision
- 3. Detecting Bhabha, CEPC LumiCal design

Si-wafer + LYSO for e^{\pm}/γ BHlumi Acceptance, detecting radiative Bhabha multiple scattering, EM shower

5. Precision Bhabha to 10⁻⁴

IP precision, by beam position monitoring (BPM) Multiple scattering, Bhabha event counting Survey of acceptance edge Beam-crossing 23 nsec, electronics and event overlap

6. Prototyping: LGAD, Electronics, LYSO SiPM

SM, LEP to CEPC

SM Z-lineshape *highest Xsec* $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ *QED* Luminosity *counting Bhabha* $e^+e^- \rightarrow e^+e^-$

LEP: 17 Million Z (4 IP) L = 4.3 10³¹/cm²s (E=46GeV) = 1x10³²/cm²s (E=100 GeV)

$N_v = 2.9840 \pm 0.0082$

 $M_{z} = 91187.5 \pm 2.1 \text{ MeV} \qquad 2.3 \times 10^{-5}$ $G_{z} = 2495.2 \pm 2.3 \text{ MeV} \qquad 1\%$ $N_{v} = 2.9840 \pm 0.0082$ Precision luminosity 3.4×10^{-4}

CEPC Z-pole : 2x10¹² events L~ 2x10³⁶/cm²s (Z-pole) **dL/L < 10⁻⁴**

Bhabha generator

BHLUMI 4.04 S. Jadach [CPC 101 (1997) 229]

2020 systematic 0.037% [PLB 803 (2020) 135319]

Hardronic correction to reach 0.01%

Framework of YFS exponentiation $e^+e^- \rightarrow e^+e^-n\gamma$

predict ny Poisson photons

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\rm acc}}{\sigma^{\rm vis}} \quad \sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2} \right)$$

LEP luminosity achieved

QED Bhabha generator, BHLUMI, the LEP built

BHLUMI uses framework of YFS exponentiation

BHLUMI 4.04 S. Jadach [CPC 101 (1997) 229] 2020 systematic 0.037% [PLB 803 (2020) 135319]

ReneSANCe,

a recent NLO generator [CPC 256 (2020) 107455]

100

80

601

40

20¹

1.02

0.99

RATIO

σ (nb)

Bhabha detection

TASSO 3% [ZPC 37, 1988, 171] L3 (ISR) 1% [PLB 439, 1998, 183]

Bhabha event counting to 10⁻⁴

a pair of back-back electrons,

precision ϑ of e,e(γ) in fiducial region

 $\delta L/L \sim 2 \delta \vartheta / \vartheta_{min}$

 $\delta L/L = 10^{-4}$

at $z = \pm 1000 \text{ mm}$, $\vartheta_{min} = 20 \text{ mRad}$ $\Rightarrow \delta \vartheta = 1 \mu Rad$, or $dr = 1 \mu m$

error due to offset on Z

$$\rightarrow$$
 50 μm on Z eq. dr = $\delta z \times \vartheta = 1$ μm

Luminosity systematics due to event counting in/out fiducial edge \rightarrow offset on the mean of θ_{min}

Bhabha $e^+e^- \rightarrow e^+e^-(n\gamma)$ at CEPC

LEP Luminosity template

BHLUMI demo.f cuts

- **ACC 0** CMS 10 mRad < $\theta(e^{\pm})$ < 80 mRad
- ACC 1 .and. s'(P2,Q2)/s(P1,Q1) >0.5

Beam crossing, 33 mRad

- ➔ Boost in x direct
 - e⁺, e[−] offset by 33 mRad

10 M events generated for 10 – 80 mRad,

 $\theta(e^{\pm})$ distributed from 7 mRad

events with 0 photos Show δ back-back distribution

CEPC LumiCal design

➤ L=2x10³⁶/cm²s¹ @Z-pole,

- Ø 20 mm racetrack,
 beam-crossing 33 mRad
- O IP bunch :
- $\sigma_x \sigma_y \sigma_z = 6 \mu m$, 35 nm, 9 mm • Bunch crossing: 23 ns

before Flange z = 560~700 mm

 $\circ~$ Low-mass beampipe window:

Be 1mm thick

traversing @22 mRad traversing L= 45 mm, = 0.13 X_0 (Be), 0.50 X_0 (Al)

- o **Two Si-wafers** for e^{\pm} impact θ
- o 2X₀ LYSO = 23 mm

behind Bellow z= 900~1100 mm

- \circ Flange+Bellow : ~60 mm, 4.3 X₀
- o 13X₀ LYSO 150 mm

LumiCal acceptance, racetrack beampipe

LumiCal acceptance at |z|=1000mm, with RaceTrack pipe r=10mm

ONE <i>e</i> ⁺ or <i>e</i> ⁻ detected		e ⁺ , e ⁻ back-to-back detected		
θ>25 mRad	θ>25mR & y >25mm	θ>25 mRad	θ>25mR & y >25mm	
133.5 nb	81.8 nb	85.4 nb	78.0 nb	

Front 2X₀ LYSO, on radiative e,γ

Bhabha hits on LYSO, |y|>12mm

Incident particles are e^{\pm} ,(γ)

- GEANT sum dE/dx in each LYSO bars 3x3mm², 23 mm long, 2X₀
- **Deviation to e**^{\pm} **truth** (impact hit >E_b/2) mostly < 0.2mm
- **Hit distributions in a Bar** distributed due to Bhabha θ , w./w.o. photon

2X_o LYSO

Detecting photons in $e^+e^- \rightarrow e^+e^-(n\gamma)$

Bhabha events in LumiCal acceptance e⁺,e⁻,γ : |y|>12 mm at LYSO front face ±z=647mm

±z Hemispheres	BHLUMI generated	& P2,Q2 y >12mm	
e [±]	60.3 %	3.87 %	
e [±] γ	39.7 %*	3.16 %	

*ISR 20.3%, FSR 19.4%

Detectable Bhabha, e⁺,e⁻,γ: |y|>12 mm

±z Hemispheres	P2,Q2 y >12mm	& E(γ)>0.1GeV y(γ) >12mm	
e [±]	55.1 %	14.7 %	
$e^\pm \gamma$	44.9 %	ISR 0.89 % FSR 13.8 % FSR 2.96%*	

*FSR $\Omega(e^{\pm},\gamma) > 5 \text{ mRad}$

0

20

 $x(e^{\pm}), |z|=647 \text{ (mm)}$

60 80 100

-100-80 -60 -40 -20

GEANT LumiCal electron shower

LumiCal electron LYSO, 5% resolution

Bhabha electron θ (set by 2 points) : IP - Si-det hit

Requirement: $1 \mu Rad$ on mean of θ

- **1. IP by BPM** (beam position monitor) on beam current x,y by BPM, z by timing
- 2. LumiCal Si-wafer position mounted on Flanges reference to "beam center" at Flanges
 - → 1. construction survey to sub-micron
 2. monitoring on Flanges z position

Survey/monitoring, for Beam IP position

Beam Probe Monitor BPM , IP x, y to 1 μm

CEPC WS2023 Jun He

Electron hits on 1st Si-wafer

1 mm Be thin pipe window 33 mm = $0.09 X_0$ traversing @ 30mR

IP $(\sigma_x, \sigma_z) = (6, 380 \ \mu m)$

50 GeV e⁺, e⁻

@ ($\vartheta = \pm 30 \text{ mRad}, \varphi = 1.0, 1.0 + \pi \text{ Rad}$) Si wafer @z=560mm

 $\circ |\mathbf{x}| < 6.0 \text{ mm } \sigma(\vartheta) = 54 \ \mu \text{R}$ (1mm Be) $\circ |x| > 6.0 \text{ mm } \sigma(\vartheta) = 95 \mu R$ (1m Al pipe) o back-back Op.Ang $\sigma(\Omega) = 137 \,\mu R$

$e\pm$ GEANT hit – gen. |x|>6 hit – gen. |x|<6

window

LumiCal detector/electronics options

Si-wafers for electron impact position

Strip detector 50 or 100 μm pitch, 2D x,y
AC LGAD, 2D long coupling layer
Readout: (LGAD) tracker readout, fast and pileup ID

Calorimetry, LYSO rad-hard bars

- \circ 2 X₀ (3x3x23mm3) position, e/ γ etc
- o 13 X0 (10x10x150 mm3) Ebeam electron ID
- **Readout:** SiPM + ECAL front-end, trigger and pileup ID

LumiCal trigger

- Single side, long LYSO E> Ebeam/2
- Coincidence +z,-z E> Ebeam/2, event rate @L=10³⁶ 0.003 /b.c. but Pileup ~10⁻⁴ shall be identified

Bhabha event pile-up rate @Z-pole

Multiple Scattering, test beam

Purple Mountain Observatory Si-strip station

- Cosmic ray Muon, > 1 GeV filtered
- ο 6 sets (x,y) 200 µm pitch, VA readout

Diamond fast beam monitor

- Beam monitoring
 Bhabha electrons of
 ~10 mRad (CMS)
 ~25 mRad (LAB 33 mRad beam crossing)
- front of Quadrupole |z|= 855~1110 mm
 diamond slab, on sides of beampipe

0 (mRad)

 o differing event rates on +z, -z sides for IP offset

Diamond Slab

X

10cm

50 GeV electron on diamond

- 50 GeV electrons at CMS 9 ~ 12 mRad, Lab 25.5 ~ 28.5 mRad
- 3 mm thick Cu beampipe (~300 mm traversing)
- o dE/step of charged tracks (>100 keV) in diamond

Diamond slab covering 8~15 mRad X-sec order of ~100 nb

Producing diamond pads

- Two diamond sensor successfully fabricated
- Pitch of 1.0 mm on 10 mm imes 10 mm
- Pitch of 1.35 mm on 6 mm \times 6 mm diamond

QED Bhabha needs NNLO on hadronics to 10⁻⁴ Detecting Bhabha to better than 10⁻⁴:

- \circ detect e/ γ :
- \circ Si-det on electron θ:
- o monitoring IP:
- monitoring LumiCal:
- identify radiative Bhabha deviation multi. scatt. ~50 μ Rad mean-on-error on Bhabha counting BPM on electron beams to 1 μ m survey to beam-pipe centers on flanges Δz of flanges on +,-z side < 50 μ m/1.4m

Backup

Multi Scattering GUSTEP hepui033:~/work/g3_fdet/lumica22023

z cm

2023.04.23 Update to full LumiCal Read Bhlumi events

LYSO bars z= 647-670mm of LumiCal before flange 2023

27

19 Silicon layersTotal Depth 22 X0**18 Tungsten layers**(14 cm)

Each detector layer divided into 16 overlapping wedges **Sensitive radius: 6.2 – 14.2 cm**, corresponding to **scattering angle** of **25 – 58 mrad** from the beam line

G.Abbiendi

Radiative Bhabha expt results

(only @LEP)

30

Challenge: QED $\alpha^2 L^2$ shall be measured

Jiading Gong Renjie Ma

photons Differ very much Comparison

Trial3 : th1= 0.01rad, th2= 0.1rad

BHLUMI E(γ)>5MeV

Event final states	BHLUMI generated	
e⁺e⁻	36.4%	
e⁺(e⁻γ) or (e⁺γ)e⁻	47.8%	
(e⁺γ)(e⁻γ) <i>,</i>	15.8%	

Giovanni Abbiendi INFN – Sezione di Bologna

Introduction

Small-angle Bhabha scattering:

- ➤ virtues
- > new OPAL analysis (PR407)
- crucial experimental issues
- theoretical uncertainties
- results
- Existing measurements (s, t channel)
 - comparison with L3 result
- Conclusions
- 40th Rencontres de Moriond *Electroweak Interactions and Unified Theories*, La Thuile, 5-12.3 2005

Small-angle Bhabha scattering

an almost **pure QED** process. Differential cross section can be written as:

experimentally: high data statistics, very high purity

This process and method advocated by Arbuzov et al., Eur.Phys.J.C 34(2004)267

Small-angle Bhabha scattering

BHLUMI MC (S.Jadach et al.) calculates the photonic radiative corrections up to $O(\alpha^2 L^2)$ where $L = ln (|t| / m_e^2) - 1$ is the Large Logarithm Higher order terms partially included through YFS exponentiation Many existing calculations have been widely cross-checked with BHLUMI to decrease the theoretical error on the determination of Luminosity at LEP, reduced down to 0.054% (0.040% due to Vacuum Polarization)

Canonical coefficients						
		$ heta_{min}=30\mathrm{mrad}$		$ heta_{min}=60\mathrm{mrad}$		
		LEP1	LEP2	LEP1	LEP2	
$\mathcal{O}(\alpha L)$	$\frac{lpha}{\pi}4L$	137×10^{-3}	$152{ imes}10^{-3}$	150×10 ⁻³	165×10 ⁻³	
$\mathcal{O}(\alpha)$	$2\frac{1}{2}\frac{lpha}{\pi}$	$2.3 imes 10^{-3}$	$2.3 imes 10^{-3}$	2.3×10 ⁻³	2.3×10 ⁻³	
$\mathcal{O}(lpha^2 L^2)$	$\frac{1}{2}\left(\frac{lpha}{\pi}4L\right)^2$	9.4×10 ⁻³	11×10 ⁻³	11×10^{-3}	14×10^{-3}	
$\mathcal{O}(\alpha^2 L)$	$\frac{\alpha}{\pi}\left(\frac{\alpha}{\pi}4L\right)$	0.31×10 ⁻³	0.35×10^{-3}	0.35×10^{-3}	0.38×10 ⁻³	
$\mathcal{O}(lpha^3 L^3)$	$\frac{1}{3!}\left(\frac{\alpha}{\pi}4L\right)^3$	0.42×10^{-3}	0.58×10 ⁻³	0.57×10^{-3}	0.74×10^{-3}	

Size of the photonic radiative corrections (w.r.t. Born = 1)

First incomplete terms $O(\alpha^2 L)$ $O(\alpha^3 L^3)$

multiple scattering, against 10⁻⁴

- **1. BHLUMI** scattered e^+ , e^- **Multi. Scatt. smearing 100 µRad** $\theta' = \theta \cdot \sigma (100\mu R), \quad \varphi' = \varphi \cdot \sigma (100\mu R)$
- 2. $\delta N/N$ due to $\sigma(100\mu R)$ smearing δN = deviation due to Multi.Scatt. effect is Gaussian, Symmetric at θ_{min} = 25 mRad, slope of Bbhabha in neiboring 100 μ Rad bins to 25mR $\delta N(@25mR)/N(25-80 mR) < 10^{-4}$

 θ Rad (50 μ R bin)

e⁺, e⁻ back-back, calibrate survey, if narrow

- Bunch size $\sigma_x = 6 \mu m$, $\sigma_v = .035 \mu m_z = 9 mm$ Ο → IP spot, 33mRad Xing $\sigma_{x} = 6 \ \mu m, \ \sigma_{z} = 380 \ \mu m$
- $Z \rightarrow e^+$, e^- at ϑ = 30 mRad smearing at @z=560mm smeared width $\sigma(\vartheta) = 24 \mu Rad$ back-to-back $\sigma(\Omega) = 21 \mu Rad$

36

e⁺, e[−] back-back

BHLUMI scattered e⁺, e⁻

 $R > R_{b,pipe}$

C)

 ϑ , φ smeared 100 μR

 $R > R_{b,pipe} \times M.S.$ 5= 88.6±0.2 μRad

GEANT LYSO @BES III

BES III forward, between beam pipes

- Electron impact position analysis
- Position by Center-of-Gravity
- Calibrated for correction

LYSO dE/dx

GEANT 1 GeV electron passing 1.45 cm Cu beam pipe materials

Prototyping, forward LYSO @BES III

BES III forward, between beam pipes, stack total length 120mm

• LYSO crystals 3x5 bars (9x10mm² frontface)

