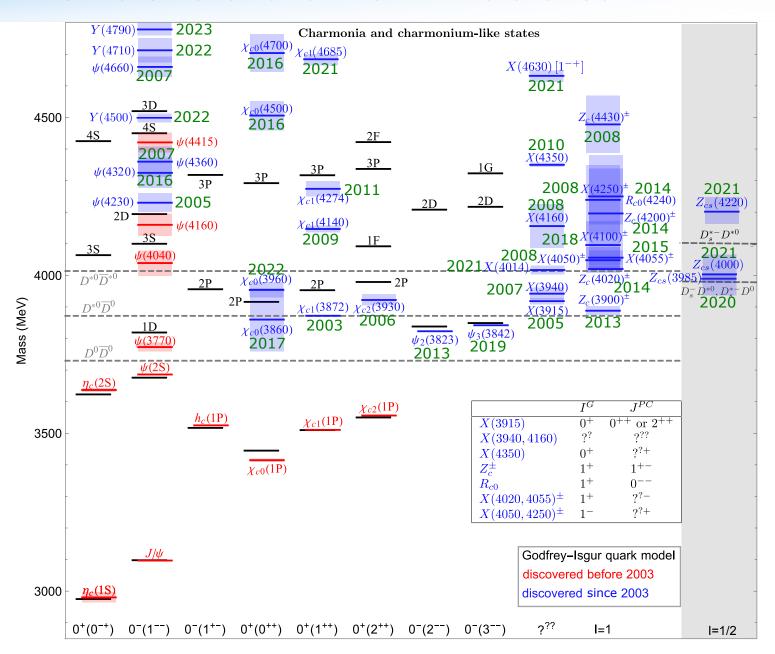
第七届粒子物理天问论坛

BONNER ANDRES CHINESE MALE

武汉, 2025.09.18-22


Classification of Coupled-Channel Near-Threshold Structures

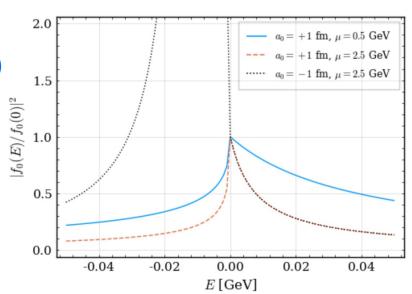
Feng-Kun Guo (郭奉坤) Institute of Theoretical Physics, Chinese Academy of Sciences

X.-K. Dong, FKG, B.-S. Zou, PRL 126, 152001 (2021)V. Baru, FKG, C. Hanhart, A. Nefediev, PRD 109, L111501 (2024)Zhen-Hua Zhang, FKG, PLB 863 (2025) 139387

Charmonia and charomium-like states

Effective range expansion

$$f_0^{-1}(k) = \frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}\left(\frac{k^4}{\beta^4}\right)$$


 a_0 : S-wave scattering length; negative: repulsion or attraction w/ a bound state

positive: attraction w/o bound state

Very close to threshold, then scattering length approximation: $f_0^{-1}(E)=rac{1}{a_0}-i\sqrt{2\mu E_1}$

$$|f_0(E)|^2 = \begin{cases} \frac{1}{1/a_0^2 + 2\mu E} & \text{for } E \ge 0\\ \frac{1}{(1/a_0 + \sqrt{-2\mu E})^2} & \text{for } E < 0 \end{cases}$$

- Cusp at threshold (E=0)
- Maximal at threshold for positive a_0 (attraction)
- Half-maximum width: $\frac{2}{\mu a_0^2}$; virtual state pole at $E_{\rm virtual} = -1/(2\mu a_0^2)$ Example of virtual state: 1S_0 NN system
- Strong interaction, a_0 becomes negative, pole below threshold, peak below threshold

Near-threshold structures

X.-K. Dong, FKG, B.-S. Zou, PRL126,152001(2021)

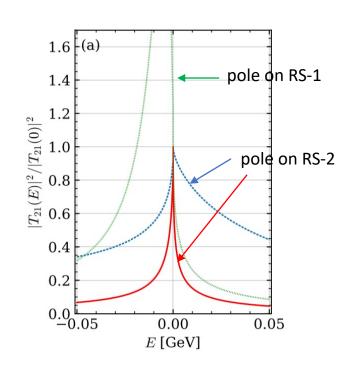
- Full threshold structure needs to be measured in a lower channel ⇒ coupled channels
- Consider a two-channel system, construct a "nonrelativistic" effective field theory (NREFT)
 - \triangleright Energy region around the higher threshold, Σ_2
 - \triangleright Expansion in powers of $E = \sqrt{s} \Sigma_2$
 - Momentum in the lower channel can also be expanded

$$V_{11}^{\Lambda} = V_{11}^{\Lambda} = V_{11}^{\Lambda} = V_{11}^{\Lambda} = V_{12}^{\Lambda} = V_{12}^{\Lambda} = V_{21}^{\Lambda} = V_{$$

$$T(E) = 8\pi\Sigma_{2} \begin{pmatrix} -\frac{1}{a_{11}} + ik_{1} & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - \sqrt{-2\mu_{2}E - i\epsilon} \end{pmatrix}^{-1} = -\frac{8\pi\Sigma_{2}}{\det} \begin{pmatrix} \frac{1}{a_{22}} + \sqrt{-2\mu_{2}E - i\epsilon} & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \frac{1}{a_{11}} - ik_{1} \end{pmatrix}$$
For invertible V

Effective scattering length with open-channel effects becomes complex, $\text{Im} \frac{1}{a_{22,\text{eff}}} \leq 0$

$$T_{22}(E) = -\frac{8\pi}{\Sigma_2} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1}$$
$$\frac{1}{a_{22,\text{eff}}} = \frac{1}{a_{22}} - \frac{a_{11}}{a_{12}^2 (1 + a_{11}^2 k_1^2)} - i\frac{a_{11}^2 k_1}{a_{12}^2 (1 + a_{11}^2 k_1^2)}.$$


Near-threshold structures

Full threshold structure needs to be measured in a lower channel ⇒ coupled channels

$$T_{21}(E) = \frac{-8\pi\Sigma_2}{a_{12}(1/a_{11} - ik_1)} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1}.$$

$$\left\{ \begin{aligned}
|T_{21}(E)|^2 &\propto |T_{22}(E)|^2 &\propto \leq 0 \text{ due to unitarity} \\
&\left\{ \left[\left(\operatorname{Re} \frac{1}{a_{22,\text{eff}}} \right)^2 + \left(\operatorname{Im} \frac{1}{a_{22,\text{eff}}} \right) - \sqrt{2\mu E} \right)^2 \right]^{-1} & \text{for } E \geq 0 \\
&\left[\left(\operatorname{Im} \frac{1}{a_{22,\text{eff}}} \right)^2 + \left(\operatorname{Re} \frac{1}{a_{22,\text{eff}}} + \sqrt{-2\mu E} \right)^2 \right]^{-1} & \text{for } E < 0
\end{aligned}$$

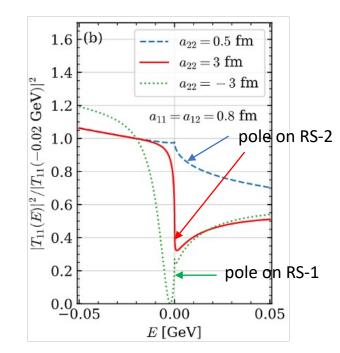
- ightharpoonup Large $|a_{22,eff}|$ means a near-threshold pole
- Maximal at threshold for positive ${\rm Re}(a_{22,{\rm eff}})$ (attraction), FWHM $\propto 1/\mu$, "virtual" state pole
- Peaking at pole for negative $Re(a_{22,eff})$:

 "bound" state pole

$$\frac{1}{\mu} \left(\frac{4}{|a_0|^2} - \sum_{x} x \sqrt{\frac{3}{|a_0|^2} + x^2} \right),\,$$

the sum runs over $x = \text{Im}(1/a_0)$ and $\text{Re}(1/a_0)$

Near-threshold structures



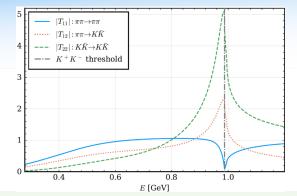
X.-K. Dong, FKG, B.-S. Zou, PRL 126, 152001 (2021)

An amplitude with a pole can also produce a dip coupled channel T-matrix element 1: lower ch.; 2: higher ch.

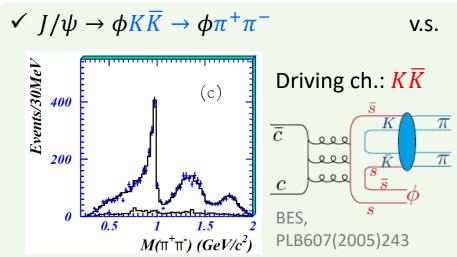
$$T_{11}(E) = \frac{-8\pi\Sigma_2 \left(\frac{1}{a_{22}} - i\sqrt{2\mu_2 E}\right)}{\left(\frac{1}{a_{11}} - i k_1\right) \left[\frac{1}{a_{22,eff}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]}$$

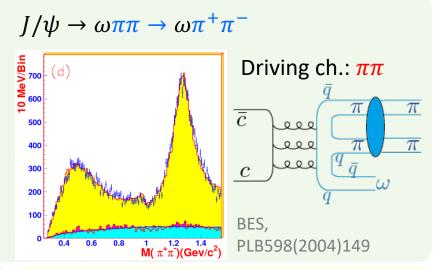
- One pole and one zero
- Universality for large scattering length: For strongly interacting channel-2 (large a_{22}), there must be a dip around threshold (zero close to threshold)
- It can be rewritten in an interference form: V. Baru, FKG, C. Hanhart, A. Nefediev, PRD 109, L111501 (2024)

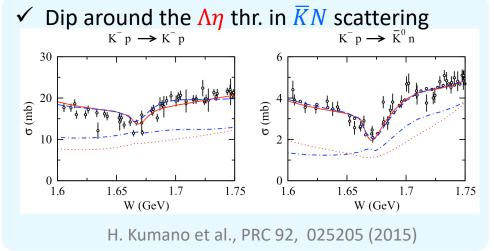
$$T_{11}(E) = -8\pi E_2^{\rm thr} \left(\frac{1}{a_{11}^{-1} - ik_1} + \frac{a_{12}^{-2}(a_{11}^{-1} - ik_1)^{-2}}{a_{22,\rm eff}^{-1} - ik_2} \right) \quad \text{coupled-channel amp. in a 2-potential form}$$

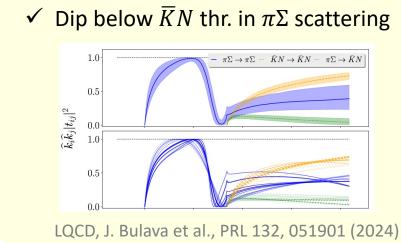

background pole term The interfering phase is fixed by unitarity!

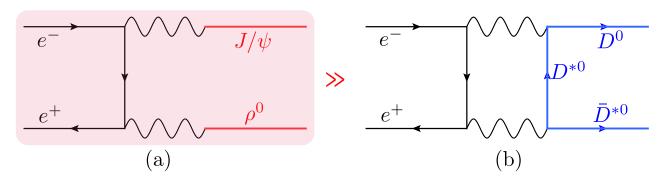
Strong interaction can lead to highly nontrivial near-threshold structures!


Peak versus dip


 \checkmark T-matrix for $\pi\pi$ and $K\overline{K}$ coupled channels


with the T-matrix from L.-Y. Dai, M. R. Pennington, PRD90(2014)036004



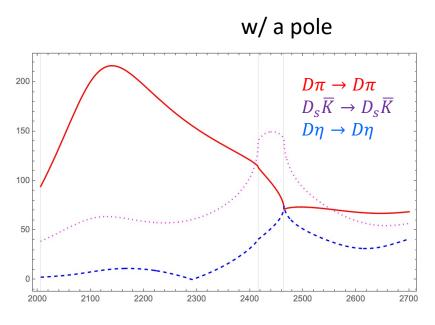


Peak versus dip

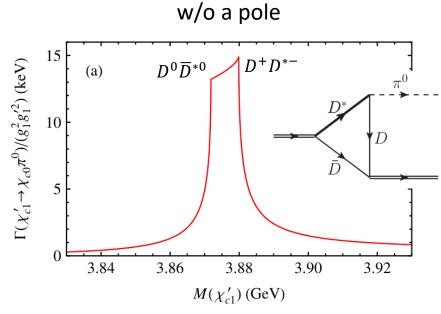
• Direct production of X(3872) in $e^+e^- \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-$

V. Baru, FKG, C. Hanhart, A. Nefediev, PRD 109, L111501 (2024)

- It is reasonable to assume that the X(3872) roots in the amplitude of $J/\psi\rho \rightarrow J/\psi\rho$
 - ightharpoonup Channel-1: $J/\psi \rho^0$; channel-2: $D\overline{D}^*$
 - ightharpoonup Production amplitude: $\mathcal{A}(\sqrt{s}) \propto T_{11}(E)$



All fits lead to a large, negative (bound state) DD^* single-channel scattering length!


• Expect a dip around $D^*\overline{D}^*$ thr., too, corresponding to the X_2 , spin partner of X(3872)

With more channels: some theory curves

Calculated using UCHPT w/ parameters fixed in L. Liu et al., PRD87 (2013) 014508;

FKG, Hanhart, Meißner, G. Li, Q. Zhao, PRD83 (2011) 034013

- \square Thresholds are dense, close to one another \Rightarrow more complicated line shapes
- Some nearby thresholds are from channels related to each other by symmetries: isospin, SU(3), heavy quark spin
- Two nonrelativistic channel system related by some symmetry

Two NR channels: RGE analysis

V. Lensky, M.C. Birse, EPJA 47 (2011) 142

Coupled-channel EFT for contact-range S-wave interactions

$$\begin{split} \mathsf{T}(p,\delta) &= \mathsf{V}(p,\delta) + \mathsf{V}(p,\delta) \mathsf{J}(p,\delta) \mathsf{T}_{(p,\delta)}, \\ J_i(p,\delta) &= 2 M_i \int \frac{\mathrm{d}^3 \vec{q}}{2\pi^3} \frac{1}{p_i^2 - q^2 + \mathrm{i}\,\epsilon} = -\frac{M_i}{2\pi} \, (\mu + \mathrm{i}\, p_i). \end{split}$$

 δ : threshold difference

 M_i : reduced mass in channel-i

 μ : PDS scale

• Renormalization group equations: $\frac{\partial V}{\partial \mu} = -V \frac{\partial J}{\partial \mu} V$. $\Rightarrow \mu \frac{\partial \hat{V}}{\partial \mu} = \hat{p} \frac{\partial \hat{V}}{\partial \hat{p}} + \hat{\delta} \frac{\partial \hat{V}}{\partial \hat{\delta}} + \hat{V} + \hat{V}^2$.

$$\hat{p} = p/\mu, \quad \hat{\delta} = \delta/\mu, \quad \hat{V} = \frac{\mu}{2\pi} \, \mathsf{M}^{1/2} \, \mathsf{V} \, \mathsf{M}^{1/2},$$

• Fixed point (FP) solutions:

 \blacksquare Trivial one: weak interacting limit: $\hat{V}_0 = 0$

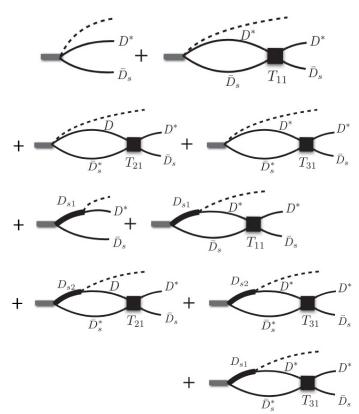
 \blacksquare Two bound/virtual states at threshold: $\hat{V}_2 = -\mathbb{I}_{2\times 2}$

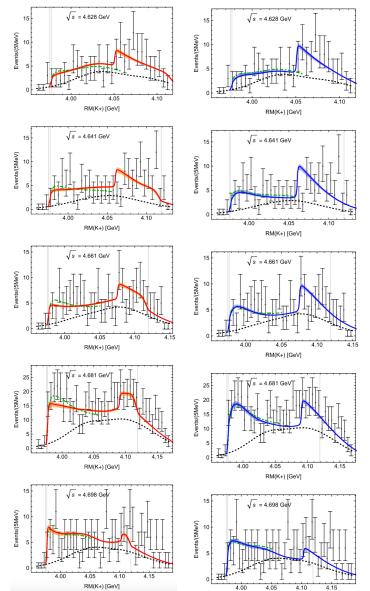
One bound state at threshold coupled with both channels:

$$\hat{\mathbf{V}}_1 = \begin{pmatrix} -c & \pm\sqrt{c(1-c)} \\ \pm\sqrt{c(1-c)} & -(1-c) \end{pmatrix}$$

V is not invertible in this case

$$\mathbf{T} = 2\pi \mathbf{M}^{-1/2} \mathbf{R} \begin{pmatrix} -\frac{1}{a_{11}} + ip_{11} & \frac{1}{a_{12}} + ip_{12} \\ \frac{1}{a_{12}} + ip_{12} & -\frac{1}{a_{22}} + ip_{22} \end{pmatrix}^{-1} \mathbf{R}^T \mathbf{M}^{-1/2}$$


Example: Z_{cs}



- \bullet $Z_{cs}(3985)$ as a $(D_s^- D^{*0} + D_s^{*-} D^0)$ molecular state V. Baru et al., PRD 105, 034014 (2022)
 - ☐ Fit to BESIII data in the full range
 - ☐ Scenarios: two

or one Z_{cs} (strong ch. coupling)

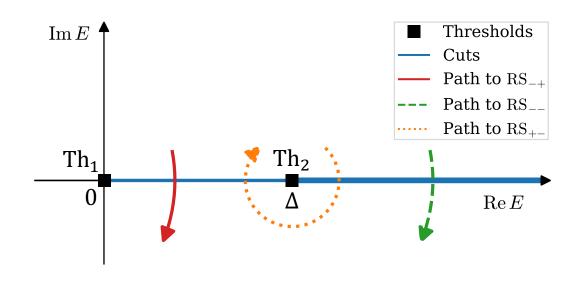
 \blacksquare Both $D_{s2}\overline{D}_s^*D^{(*)}$ and $D_{s1}\overline{D}_s^{(*)}D^*$ triangles

RM(K+) [GeV]

Riemann sheets

Z.-H. Zhang, FKG, PLB 863 (2025) 139387

- Will understand various possible line shapes through pole locations
- For two channels, 4 Riemann sheets (RSs)

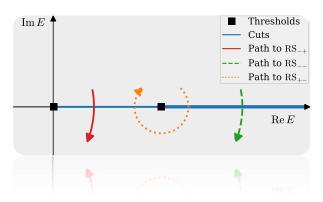

$$\square$$
 RS₊₊ (RS-1): Im $p_1 > 0$, Im $p_2 > 0$

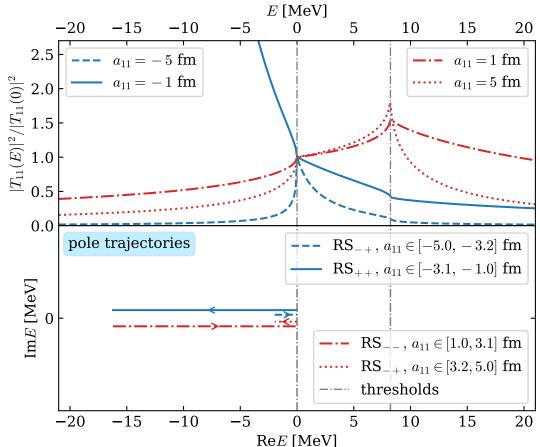
$$\square$$
 RS₋₊ (RS-2): Im $p_1 < 0$, Im $p_2 > 0$

$$\blacksquare$$
 RS_ _ (RS-3): Im $p_1 < 0$, Im $p_2 < 0$

$$\square$$
 RS_{+ -} (RS-4): Im $p_1 > 0$, Im $p_2 < 0$

- Physical region: upper edge of cut on RS₊₊
 - Paths from the physical region to various unphysical RSs:


Single-pole cases



- ullet From now on, we consider the two channels related by some symmetry, $a_{22}=a_{11}$
- Start from the 1-pole FP, $a_{11}=-\infty$, and the consider evolution of line shape and pole by varying a_{11}
 - Pole equation:

$$\frac{2}{a_{11}} - i r_1 p_1 - i r_2 p_2 = 0,$$

$$r_i = \pm \text{ controls RS}$$

Here we take masses of $D^0 \overline{D}^{*0}$ and $D^+ D^{*-}$ as those for channel-1 and channel-2

Two-channel cases

- Again consider symmetry-related channels for simplicity
 - Pole equation

$$\left(\frac{1}{a_{11}} - ir_1 p_1\right) \left(\frac{1}{a_{11}} - ir_2 p_2\right) - \frac{1}{a_{12}^2} = 0$$

- lacktriangle Can be rewritten as an order-4 polynomial equation in ω
 - ➤ 4 solutions, thus 4 poles

- $p_1 = \sqrt{\frac{\mu_1 \Delta}{2}} \left(\omega + \frac{1}{\omega} \right), \quad p_2 = \sqrt{\frac{\mu_2 \Delta}{2}} \left(\omega \frac{1}{\omega} \right)$
 - M. Kato, Annals Phys. 31, 130 (1965)

- > But not all independent. Only 2 independent ones:
 - One bound or virtual state pole + its shadow pole
 - One complex conjugate pair
- ullet Vary a_{11} (single-channel interaction strength) and a_{12} (channel coupling parameter), check the correspondence between the line shapes and pole locations in various RSs

Two-channel cases (B): $a_{11} < 0$ Here, $\delta \equiv \sqrt{2\mu_2\Delta}$, Spole: shadow pole B2: $a_{11}\delta \in (-1,0), |a_{12}|\delta \gg 1$ B1: $a_{11}\delta \ll -1$, $|a_{12}|\delta \gg 1$ --- pole-2 on RS_+ pole-1 on RS++ pole-2 on RS++ --- thresholds Spole-1 on RS+ - thresholds 14 mE [MeV] $|T_{11}(E)|^2/|T_{11}(0)|^2 \\ 8 \\ 6 \\ 9$ $|T_{11}(E)|^2/|T_{11}(0)|^2$ $a_{11} = -1$ fm, $a_{12} = 5$ fm thresholds $a_{11} \in [-5, -1]$ fm $a_{12} = 5 \text{ fm}$ 10 20 -20 -10 E [MeV] E [MeV] E [MeV]E [MeV] --- pole-2 on RS_ pole-1 on RS++ pole-1 on RS___ pole-2 on RS_ Spole-1 on RS+ --- thresholds thresholds pole-2 on RS++ Spole-1 on RS_ Spole-1 on RS+ ImE [MeV] mE [MeV] $B4 \rightarrow B1$: $a_{11} = -5 \text{ fm}$ $a_{12} = [0.9, 5]$ fm $a_{12} \in [5.0, 0.9]$ fm -15 -15-10ReE[MeV] $a_{11} = 1$ fm, $a_{12} = 0.9$ fm $a_{11} = -5$ fm, $a_{12} = 0.9$ fm 12 $a_{11} = -1$ fm, $a_{12} = 1.2$ fm thresholds thresholds 10 10 $T_{11}(E)|^2/|T_{11}(0)|^2$ $T_{11}(E)|^2/|T_{11}(0)|^2$ $|T_{21}(E)|^2/|T_{21}(0)|$ pole-1 on RS++ --- pole-2 on RS_ Spole-1 on RS+. thresholds Spole-1 on RS_

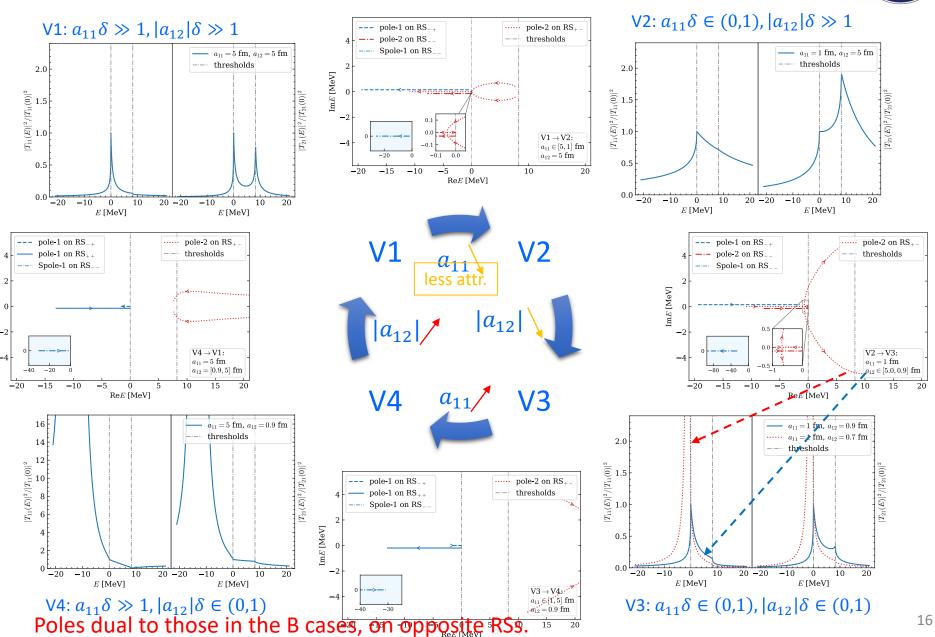
 $egin{aligned} {\rm B3} & \rightarrow {\rm B4}\colon \ a_{11} \in [-1,-1] \ a_{12} = 0.9 \ {\rm fm} \end{aligned}$

-20 -15 -10

ReE[MeV]

10 20 -20 -10 0

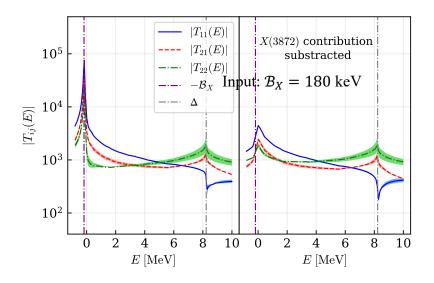
B4: $a_{11}\delta \ll -1$, $|a_{12}|\delta \in (0,1)$


B3: $a_{11}\delta \in (-1,0)$, $|a_{12}|\delta \in (0,1)$

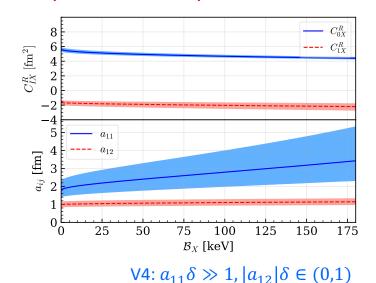
10 20 -20 -10

Two-channel cases (V): $a_{11} > 0$

 $\operatorname{Im} E\left[\operatorname{MeV}\right]$



Two-channel cases: $a_{11} > 0$



- Example: X(3872) and W_{c1}^0 (another pole for $J^{PC}=1^{++}$ in $D^0\overline{D}^{*0}-D^+D^{*-}$ coupled channel systems, isovector as it has two charged partners) Z.-H. Zhang et al., JHEP 08 (2024) 130
 - $> W_{c1}^0$ in $D^0 \overline{D}^{*0} D^+ D^{*-}$ scattering amplitudes

⇒ X(3872) is a bound state unavoidably! Shape sensitive the poles rel. to thresholds, not that to total mass.

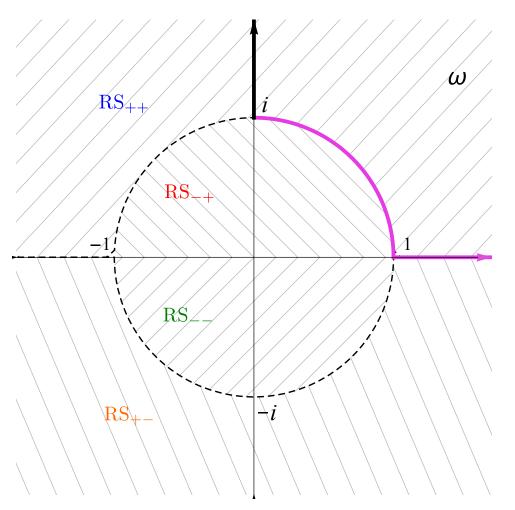
 $> W_{c1}^0$ in $D^0 \overline{D}^{*0} - D^+ D^{*-}$ scattering amplitudes corresponds to case V4

For a full analysis consider both X(3872) and W_{c1} simultaneously, T. Ji et al., arXiv:2502.04458

Summary

- Universal threshold dip for large $|a_{22}|$ in 2-channel system
- Correspondence between coupled-channel line shapes and poles; pole trajectories can understood from evolving the interaction strength and channel coupling from RG fixed points

Thank you for your attention!


Riemann sheets

ullet Conformal mapping of all 4 FSs to a single ω plane

M. Kato, Annals Phys. 31, 130 (1965)

$$p_1 = \sqrt{\frac{\mu_1 \Delta}{2}} \left(\omega + \frac{1}{\omega} \right), \quad p_2 = \sqrt{\frac{\mu_2 \Delta}{2}} \left(\omega - \frac{1}{\omega} \right)$$

Threshold-1: $\omega = \pm i$

Threshold-2: $\omega = \pm 1$