

锦屏中微子实验研究进展

李进京

邮箱: lijinjing@hnu.edu.cn

湖南大学物理与微电子科学学院

代表锦屏中微子合作组

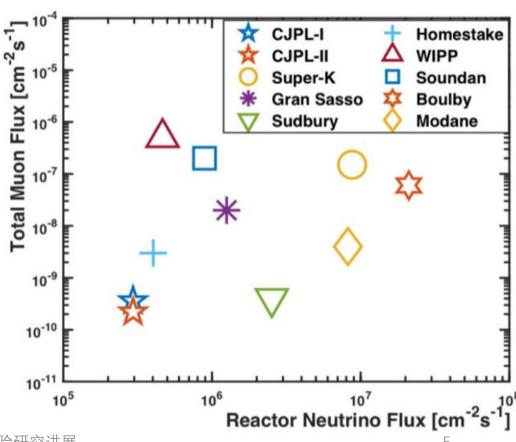
2025年9月20日于武汉,第七届粒子物理天问论坛

- ・简介
 - ・中国锦屏地下实验室
 - ・锦屏中微子实验
- ・一吨原型机
- ・五百吨探测器
- ・总结

锦屏中微子实验简介

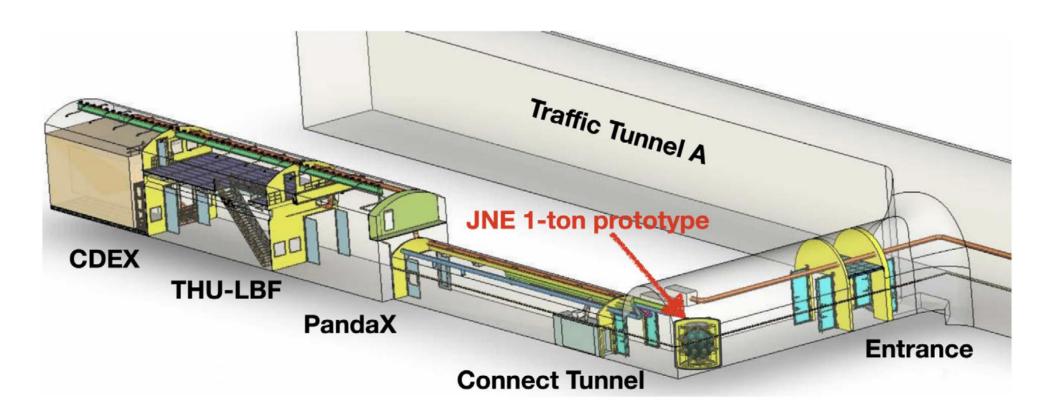


具有国际实验室中最低的宇宙线本底和反应堆本底



中国锦屏地下实验室 CJPL

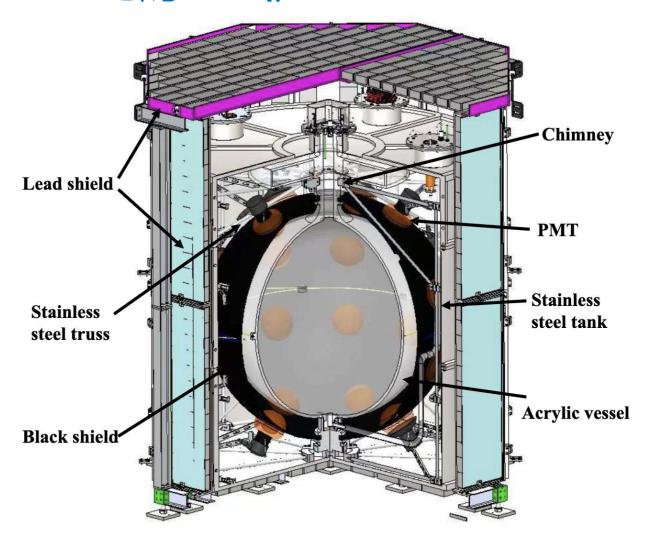
具有国际实验室中最低的宇宙线本底和反应堆本底


锦屏D2厅基坑岩石样本

- 周围岩石以大理岩为主
- 主要岩石放射性核素含量低于北京地表 正常环境的约几十分之一到几百分之一

CJPL一期

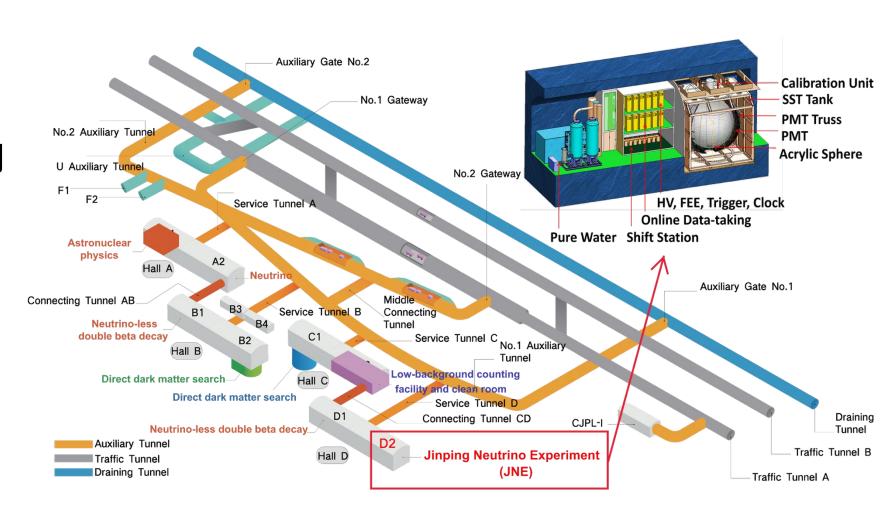
· 锦屏中微子一吨原型机自2017年开始在CJPL-I运行采数


- ・中心亚克力球装载1吨慢液闪
- ・测试硬件
 - ・包括电子学和PMT等等
- ・测试慢液闪性能
- ・实地测量本底
 - ・宇宙线、天然放射性

• ...

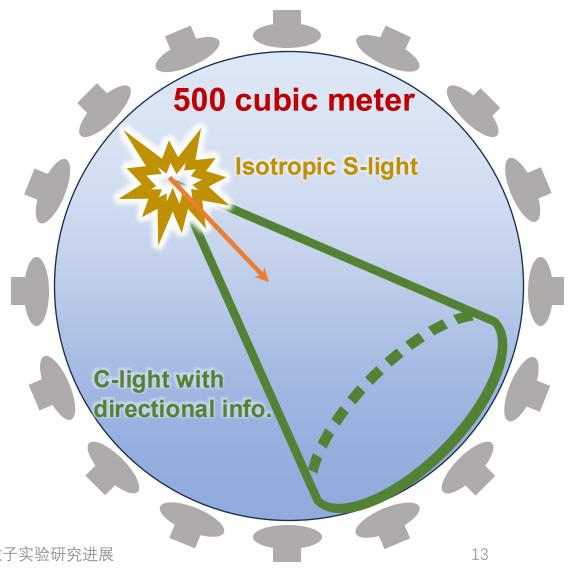
一吨原型机

- ・中心亚克力球装载1吨慢液闪
- ・测试硬件
 - ・包括电子学和PMT等等
- ・测试慢液闪性能
- ・实地测量本底
 - ・宇宙线、天然放射性


CJPL二期

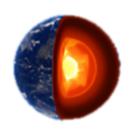
CJPL整体布局

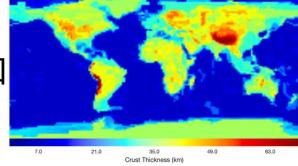
- CJPL-I
 - ・2010.12投入使用
 - · 4000立方米空间
- CJPL-II
 - 2023.12交付
 - ・33万立方米
- · 国际最大最深实 验室


锦屏中微子五百吨探测器规划

锦屏中微子实验的最大特色

- 使用慢液闪作为靶物质
 - · "慢" → 区分切伦科夫光和闪烁光
 - ・同时重建粒子的能量和方向
 - ・达到极低本底的目标
- 对物理课题的帮助
 - ・粒子鉴別 (切伦科夫光强度)
 - ・利用太阳角剔除太阳中微子信号中 的天然放射性本底
 - ·获得超新星中微子的方向
 - ·获得地球中微子的方向





- 太阳中微子观测站
 - 极低宇生本底,通过太阳角排除天然放射性本底
 - ・真空-物质振荡过渡
 - · CNO中微子精确测量,高低金属丰度...

- ・地球中微子
 - 临近青藏高原,提供地质迁移研究窗口
 - · 流强测量, U/Th比, 放射性产热贡献

・超新星中微子

时间规划

百吨探测器结构设计

逐事例方向重建与粒子鉴别

FADC和读出电子学设计与测试

• 8-inch MCP-PMT研发

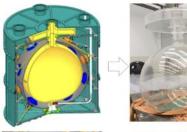
百吨探测器安装与采数

Letter of Intent

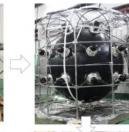
→ ArXiv:1602.01733

2015

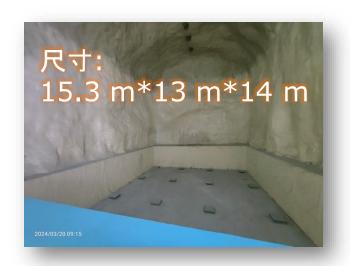
2017

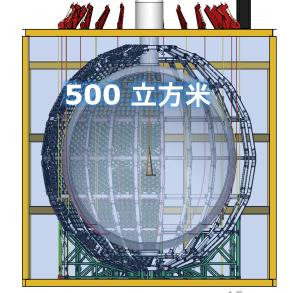

2023

2024


2026

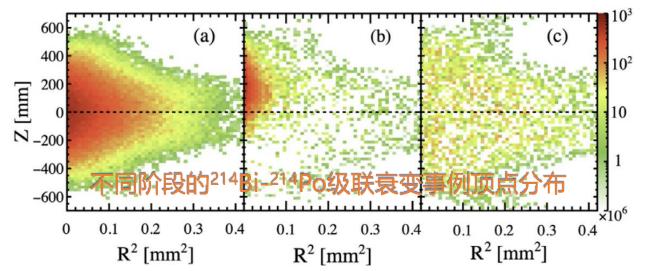
百吨探测器建造

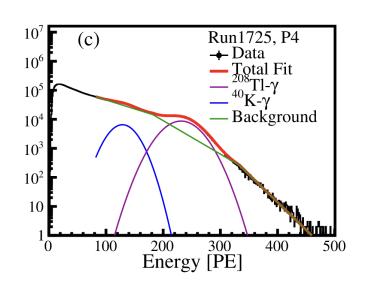




李进京(湖南大学) 锦屏中微子实验研究进展

一吨原型机研究进展

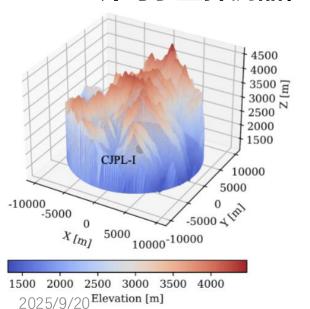


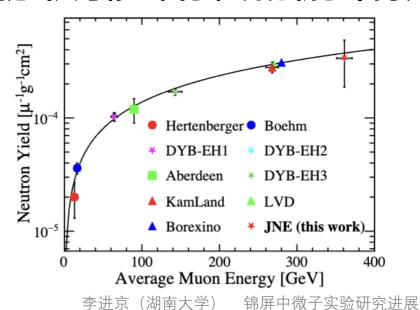


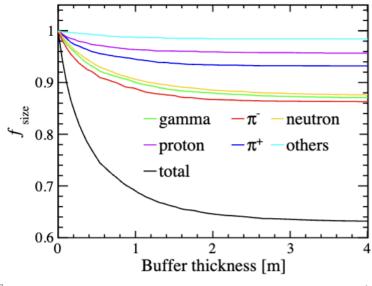
详见期刊论文

NIM-A 1054 (2023) 168400

- · 在无外源情况下利用暗噪声和天然放射性完成PMT刻度,和事例重建
- · 利用²¹⁴Bi-²¹⁴Po的β-α级联衰变监测氡气泄漏,安装氮气系统
- · 利用β-α, γ等信号测量PMT和液闪的放射性污染水平
 - PMT: 232 Th \rightarrow (1.12±0.32)×10⁻⁶ g/g; 40 K \rightarrow (4.67±1.35)×10⁻⁸ g/g
 - 液闪: ²³⁸U→(1.28±0.16)×10⁻¹² g/g; ²³²Th→<(2.49±0.50)×10⁻¹³ g/g







一吨原型机:宇宙线缪子及其本底

- ・使用1178天数据对缪子通量和缪致中子产额展开详细研究
- ・ 缪子通量: (3.56±0.16_{stat}±0.10_{svst})×10⁻¹⁰ cm⁻² s⁻¹
 - · ~ 0.4个缪子每天
- · 提供国际上在液闪中缪子平均能量 (~360 GeV) 最高的缪致中子产额点: (3.37±1.41±0.31)×10⁻⁴ μ⁻¹g⁻¹cm²,
 - 针对小型探测器,提出尺寸修正因子,并分析了不同次级粒子的贡献


Phys. Rev. D 110, 112017 (2024)

一吨原型机:宇宙线缪子流强预测

- Muon Puzzle:
 - ・ 基于现有QCD模型对大气簇射模拟得到的缪子通量与测量相比存在明显缺失 (≥100 PeV)
- · 物理研究: 锦屏山体屏蔽提高了测量到的"原初"缪子能量: 3 TeV-0.1 PeV
 - · 目前观测到40%的流强偏差,可以限制QCD和大气模型,间接研究Muon Puzzle

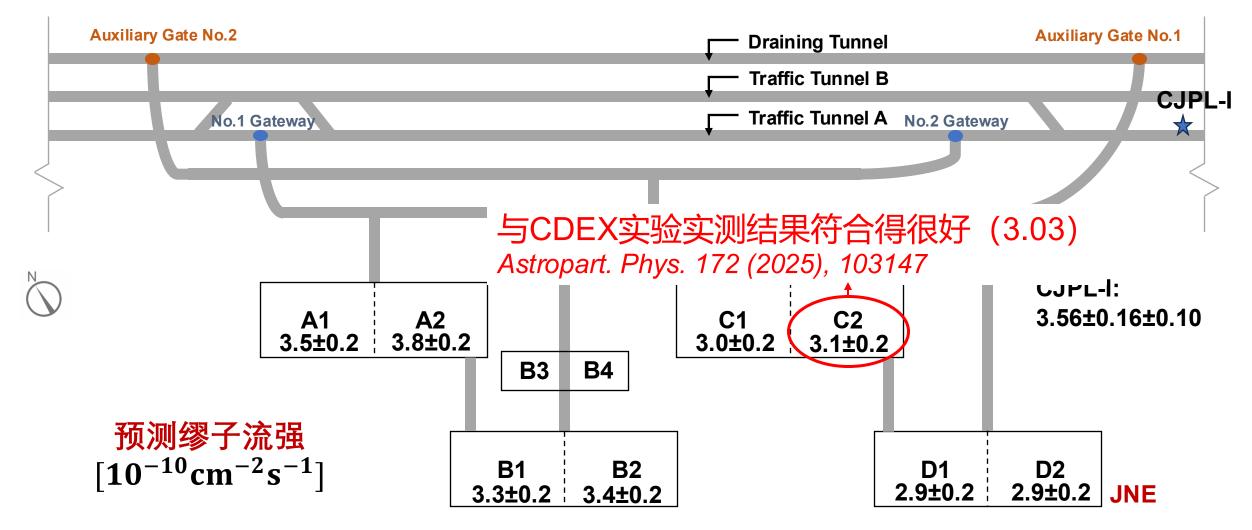

误差研究

	Uncertainty [%]
Statistics	4.2
Systematics	2.2
Seasonal variation	0.5
Detector position	1.6
	Systematics Seasonal variation

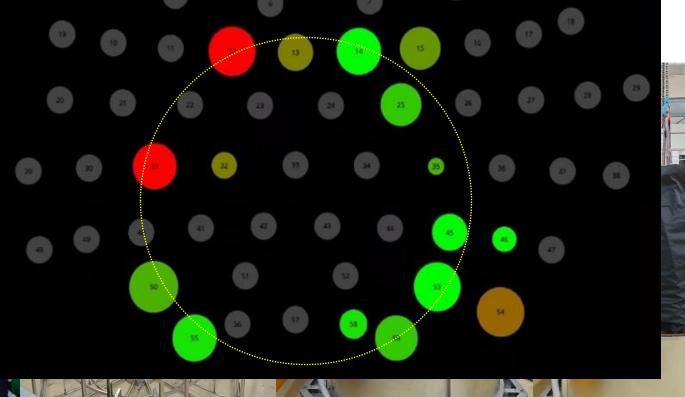
和常用QCD模型结果比较

Model	Flux ratio	Excess significance
SIYBLL-2.3d	1.44 ± 0.07	6.0σ
EPOS-LHC	$1.38 {\pm} 0.07$	5.5σ
QGSJET-II-04	1.51 ± 0.08	6.7σ

在角分布上的比较无明显趋势



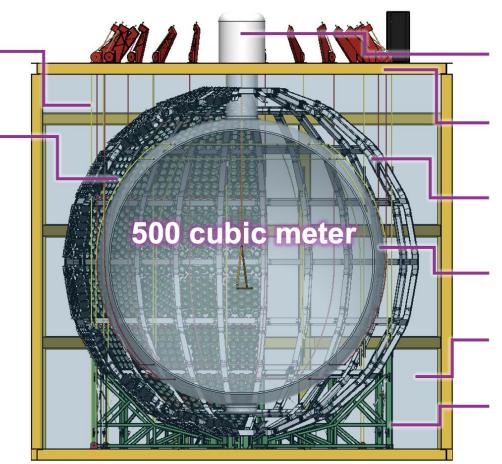
文章内审中,已在ICRC和TAUP汇报


一吨原型机:宇宙线缪子流强预测

一吨原型机升级

Cherenkov light

- ・主要升组
- ・作为百
- ・目前以


五百吨探测器研究进展

五百吨探测器概念图

绳索系统

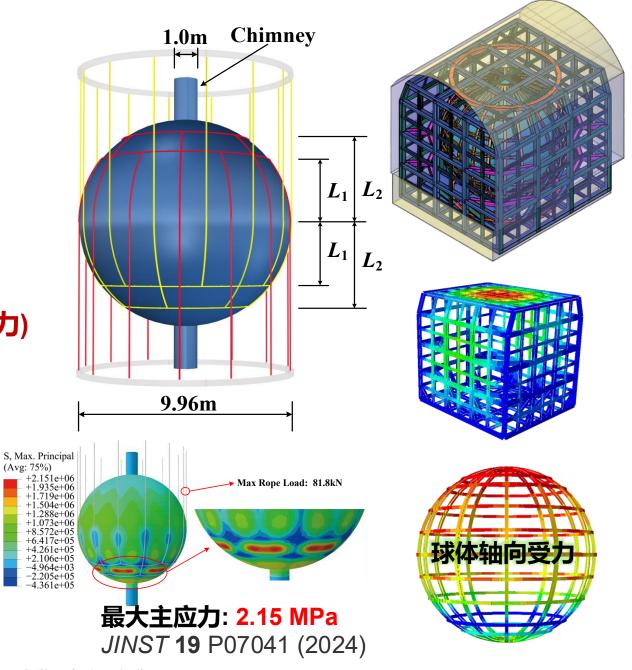
8-inch MCP-PMT+光收集器 ~4000支, ~50% 覆盖率

刻度装置

不锈钢桶(SST) 14.5 m *12.9 m *13.2 m

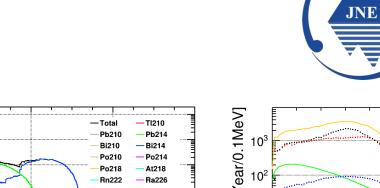
不锈钢PMT支撑架 内径: 12.16 m

亚克力容器 内径: 9.96 m, 厚度: 5 cm

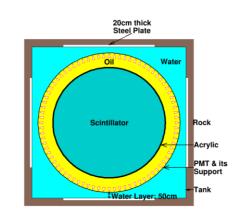

屏蔽材料 水,铅

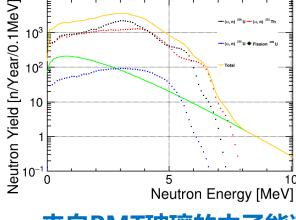
不锈钢支撑结构

中心探测器

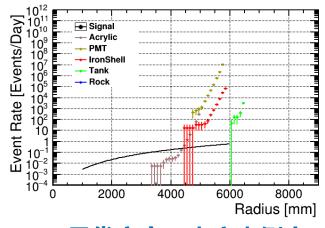

- · 9.96 m 直径球形亚克力容器, 500 立方米
 - 可更换靶介质,水,液闪,掺杂
- ・ 绳索支撑亚克力球
 - · 与水相比的密度变化: ±20% (重力或者浮力)
 - · 低本底材料,高强度,低蠕变
- 不绣钢架和亚克力球的力学分析已经完成

放射性本底


- ·天然放射性衰变: β, γ
- ・中子本底
 - · (α, n)和²³⁸U自裂变
- ・研究策略
 - ・输入本底能谱→在不同屏蔽方 案下模拟 > 本底事例率 > 确定 最优屏蔽方案
- ・最优方案
 - ・50 cm 水层
 - 7 m×7 m×20 cm 钢板
 - 使用掺硼聚乙烯封装PMT



-Pa234


β, γ Energy [MeV]

最优屏蔽方案结构图

来自PMT玻璃的中子能谱

最优方案下本底事例率

γ Yield [Arbitrary Unit]

)

慢液闪 (LAB+PPO+bis-MSB)

• 角度分辨和能量分辨

· 角度:切伦科夫光,具有方向性,

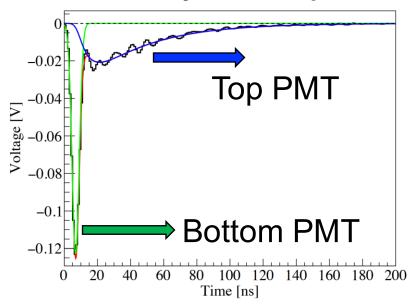
· 能量:闪烁光为主, 各向同性,

· 减少闪烁光干扰 → 重建方向

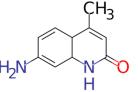
• 调整闪烁光发光时间 (油基液闪)

Coincidence scintillators

Coincidence scintillators


Acrylic container Liquid scintillator

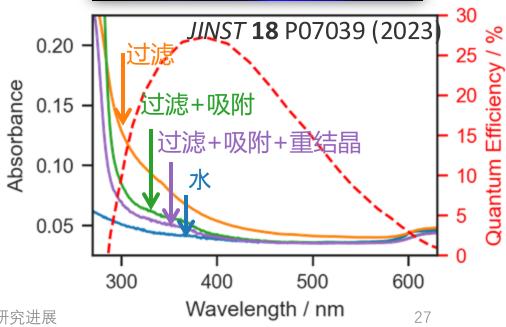
Anti-coincidence scintillators


李洪京(湖南大学)

瞬发, 产额低 发光慢, 产额高

> 详情参见: NIM-A 830 (2016) Astroparticle Physics 109 (2019) 33–40

C-124

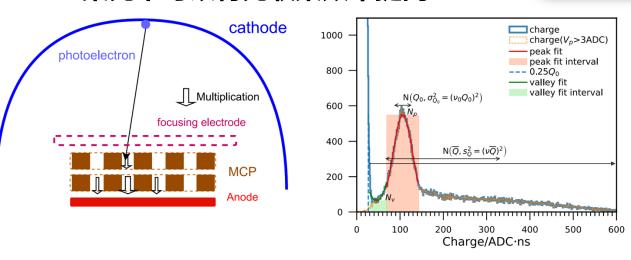


LiCl方案

- · LiCI水溶液 + C-124作为探测介质
- 对中微子: $\nu_e + {}^7\mathrm{Li} \rightarrow {}^7\mathrm{Be} + e^-(+\gamma)$
 - ・对低能太阳中微子具有较高截面
 - · 对太阳®B中微子总截面是v-e弹性散射的约60倍
- 对反中微子: 反贝塔衰变
 - ・ ³⁵CI高中子俘获截面 (43 barn)
 - ・释放高能量gamma: ~8.6 MeV
- ・高天然丰度
 - ⁷Li: 92%, ³⁵CI: 76%
- ・高溶解度: 100 g 水可溶80 g LiCl
- · 430 nm处的光衰减长度可以达到50 m

MCP-PMT和电子学

 \rightarrow U/Th: <4×10⁻⁸ g/g, K-40: <4×10⁻⁹ g/g

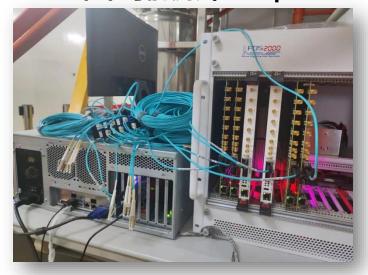

▶ 高量子效率: ~30%

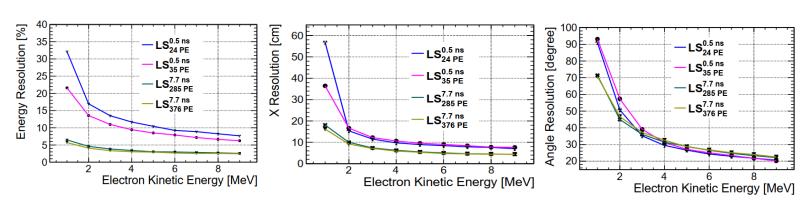
> 镀膜: 提升探测效率和MCP寿命

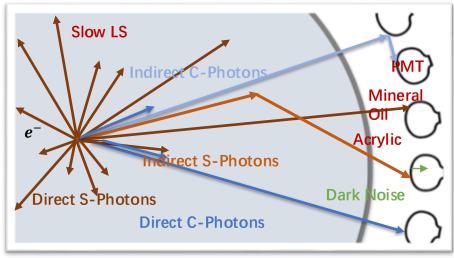
> TTS: <1.8 ns

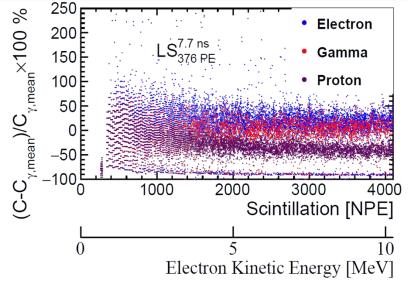
➤ 600 支MCP-PMT已经生产完成

> 集光罩可以将光收集效率提高~40%




- > 14 bit, 1 GSps, 800 mW/ch
- > 数据传输带宽与之前CAEN相比
 - ➤ 提升3个量级到128 Gbps
 - ➤ 触发率上限随之提升到~193.5 k
- > 在一吨原型机中测试
 - > 与CEAN读出对比
 - ▶ 未来可能测试5 GSps/12 bit电子学


参见: NIM-A 1055 (2023) 168506, NIM-A 1080 (2025) 170755



- 利用慢液闪重建切伦科夫光和闪烁光
- 逐事例的方向、能量和位置重建
- · 切伦科夫光发光能力:
 - e>γ>p≈α, 粒子鉴别
 - · 参见: JINST 18 (2023) 02, P02004

Jinping Sim. & Ana. Package (JSAP)

・ JSAP 使用 Geant4 和 GDML 来导入和 构建各种探测器几何结构,例如球形探测 器和圆柱形探测器

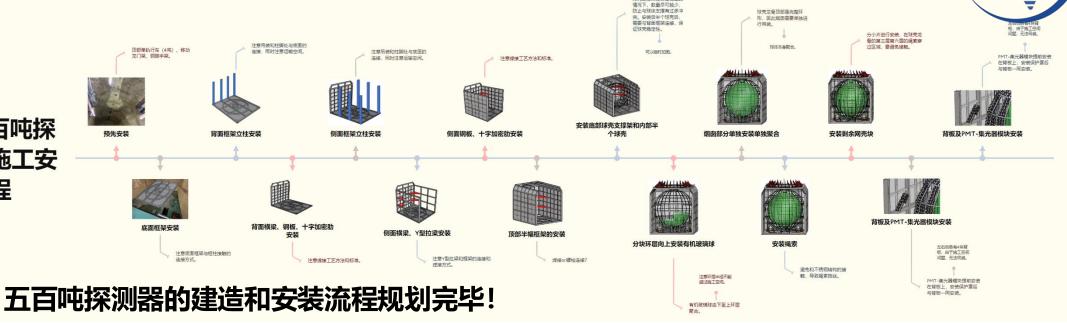
- 包含电子学与触发模拟,能够输出波形
- 采用如下所示流式触发模拟

模拟 重建 **JSAP** 事例显示 物理分析 电子学模拟模块:添加 波形 暗噪声、预触发、脉 输出文件 冲整形和触发,得到

事件发生器模块: 混合所有本底和 信号的主顶点

主顶点

探测器模拟模块: 物理过程模拟, 最终 得到PMT击中信息


PMT击中

最终波形

时间分段循环

PMT击中信息缓冲区

2024年3月结构设计和施工方案研讨会 2024年10月施工方案研讨会

JNE百吨探

测器施工安

装流程

2024年11月厂家现场勘察

JNE百吨探 测器

这就是建造JNE百

吨探测器的方法。

完

2025/9/20 李讲京(湖南大学) 锦屏中微子实验研究进展 31

五百吨探测器规划

2027 2028 2038

Phase I Phase II Phase II

・ 靶材料: 水

・ 主要目标:

• 检查探测器运行情况

• 靶材料:

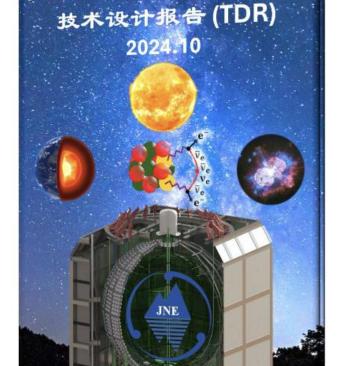
LiCI 水溶液(水基) 慢液闪(油基)

- ・主要目的:
 - ・太阳、地球和超新星中微子
 - 靶材料:

掺Nd 液闪

・主要目的: 0vββ研究

五百吨探测器CDR和TDR


深地兆电子伏能区太阳中微子观测站概念设计报告

--中微子"清心"计划

2024年8月19日:完成了锦屏中微子探测器概念设计报告 (CDR) 初稿,并通过了科学 评审。

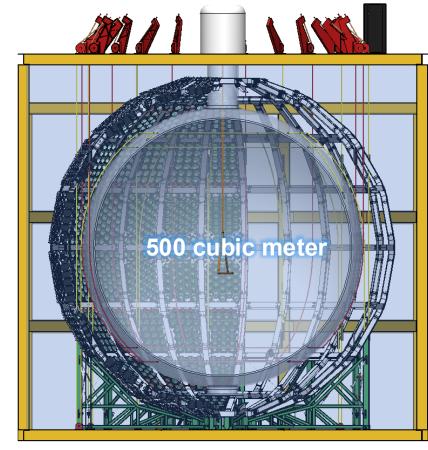
2024年10月18日:完成了锦 屏中微子探测器技术设计报告 (TDR) 初稿,并通过了技术 评审。

清华大学 北京工业大学 山东大学 南开大学 合肥工业大学 中山大学

JNE-中微子"清心"计划

JNE-500 TDR

中国科学院大学



- 五百吨太阳中微子观测站预计在2026-2027建成
- 使用新型8-inch MCP-PMT
 - 高时间分辨, 高量子效率
- 清华自研高性能电子学在设计和测试中
- · 探索氯化锂水溶液探测方案
- ・基于慢液闪开发重建算法
 - 实现方向重建和粒子鉴别,实现极低本底

锦屏中微子实验研究进展

- 探测器设计和安装已规划完成
- http://jinping.hep.tsinghua.edu.cn

谢谢!

BACKUP

Geo-neutrino

- Energy resolution: 500 PE/MeV, 4.4%/Sqrt[Evis]
- SlowLS, IBD, neutron capture on hydrogen

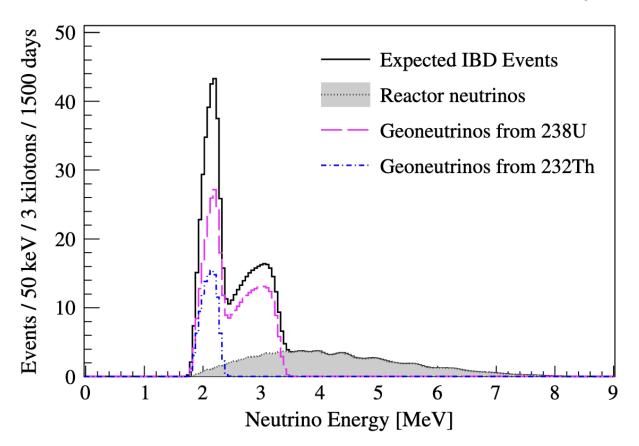
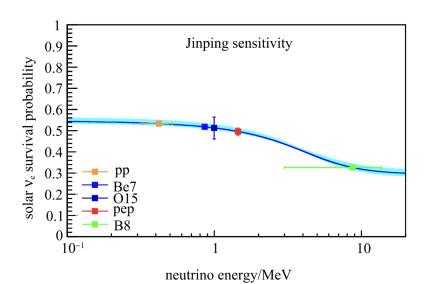


TABLE V. Summary of predicted geoneutrino event rates in TNU at Jinping.

Geo $\bar{\nu}_e$ (TNU)	Crust	Mantle	BSE
Гһ	10.6 ± 0.8	2.1 ± 0.5	12.7 ± 1.0
U	38.4 ± 6.6	8.3 ± 2.3	46.7 ± 6.7
$\Gamma h + U$	49.0 ± 7.3	10.4 ± 2.7	59.4 ± 7.6


TABLE VI. Geoneutrino and reactor neutrino event rates and total events with an exposure of 3 kt \times 1,500 days at Jinping.

	C	Geoneutrino		Reactor	
	²³⁸ U	²³² Th	Total	FER	SER
Event Rate (TNU) Total Events	46.7 414.5	12.7 113.6	59.4 527.3	27.8 246.8	6.8 60.4

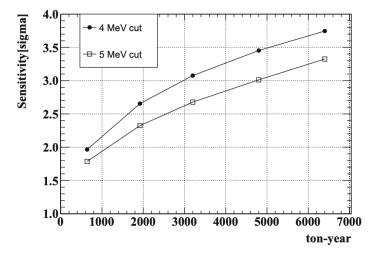

Sensitivity

Table 11. Expected event rates for the supernova relic neutrinos and the corresponding backgrounds with $E_{\rm vis}$ in the range around 10–30 MeV. For the signal, the ranges of several models' predictions are printed. Background rates are calculated assuming a liquid scintillator target, and the atmospheric CC and NC background rates in parentheses are the results with a slow liquid scintillator target.

event rate	$\frac{1}{\text{kton-year}}$	$\frac{1}{10 \text{ kton-year}}$	$\frac{1}{20 \text{ kton-year}}$
signal	0.05 – 0.66	0.5 – 6.6	1–13
accidental	0	0	0
reactor	0	0	0
fast neutron	0.7×10^{-3}	7×10^{-3}	14×10^{-3}
$^9 { m Li}/^8 { m He}$	1×10^{-3}	10×10^{-3}	20×10^{-3}
atmos. CC	0.2 (0.1)	2 (1)	4(2)
atmos. NC	0.2 (0.1)	2 (1)	4 (2)
total bkg.	0.4 (0.2)	4(2)	8 (4)

surements [74, 75, 77]. Bottom plot: We assume a 2000-ton target mass, 1500-day exposure, a resolution of 500 PE/MeV, and the low metallicity hypothesis. The five points with error bars are the simulation results for pp, ⁷Be, pep, ¹⁵O and ⁸B, in which the central values are set to the true ones, the y-error bars include both statistical and systematic uncertainties and the x-error bars correspond to the range of energy measurement, while the ¹⁵O x-error is omitted for a clear view.

Fig. 11 The sensitivity of rejecting no upturn effect versus the exposure. More detector resolution and signal selection information can be seen in Sect. 4.1