

Rare B Decays at LHCb: Highlights of Recent Results

Liang Sun (Wuhan U.) 2025/09/20

Outline

 $b \xrightarrow{W} V_{ts}^*(V_{td}^*) s(d)$ $t \xrightarrow{\gamma}$

- LHCb experiment in Runs 1-2
- Recent results on
 - Radiative B decay $B^0 \rightarrow \rho^0(770)\gamma$
 - LFU tests in FCNC decays: $B^+ \to K^+ e^+ e^-$, $B^0 \to K^{*0} e^+ e^-$, $B^0_s \to K^{*0} e^+ e^-$

- $B^0 \to K \pi \tau^+ \tau^-, B_s^0 \to K K \tau^+ \tau^-$
- LFV decay $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$
- Charmless baryonic B decays: $B^0 \to K_S^0 p \bar{p}$, $B^+ \to \overline{\Lambda} p \bar{p} p$, etc.
- Summary & outlook

LHCb detector in Runs 1-2

By design: study CP-violating processes and rare b-hadron decays

- can profit from the large bb and cc cross-sections and from the larger production at high pseudorapidity
- $\sigma(pp \to b\bar{b}X) = 144 \pm 1 \pm 21 \,\mu \mathrm{b}$ at 13 TeV in the LHCb acceptance $\Rightarrow \sim 25\%$ of the total inside LHCb [Phys.Rev.Lett. 118, 052002]
- $\sigma(pp \to c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

LHCb detector in Runs 1-2

By design: study CP-violating processes and rare b-hadron decays

- Particle detection in the forward region (down to the beam-pipe)
- Excellent resolution for localization of decay vertices (Vertex Locator)
 → Excellent time resolution, enough to resolve B_s B_s oscillation
- Excellent momentum resolution ($\sigma(m_B)\sim 25$ MeV for 2-body decays)
- Excellent particle identification to distinguish p, K[±], π[±], μ[±]
- Excellent leptonic and hadronic triggers

m the large $b\bar{b}$ and ons and from the tion at high

 $(\mu b) = 144 \pm 1 \pm 21 \, \mu \mathrm{b}$ the LHCb acceptance

 $\Rightarrow \sim 25\%$ of the total inside LHCb [Phys.Rev.Lett. 118, 052002]

• $\sigma(pp \to c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

FCNC b decays

Radiative decays

NP might manifest in the loops

Leptonic Decays

Effective Field Theory approach

$$\mathcal{H}_{SM}$$
 \longrightarrow $\mathcal{H}_{eff} = -\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i (C_i^{SM} + C_i^{NP}) \mathcal{O}_i$ + chiral flipped

Wilson Coefficients: Ci

- Perturbative, short distance physics
- Describes heavy SM+NP effects

Operators: O;

- → Non-perturbative, long distance physics
- → Strong interactions, difficult to calculate

O7 EM

O₉ Vector dilepton

 \mathcal{O}_{10} Axial-vector dilepton

Observables in FCNC b decays

Physics depends on $q^2 = m^2_{\parallel}$:

- Resonances (e.g. J/ψ, φ)
- Photon pole at low q²
- Vector or axial vector current

 $d\Gamma/dq^2$

Radiative $B^0 \to \rho^0(770)\gamma$ decays

- Using full 9 fb⁻¹ Runs1-2 data
- Normalization channel $B^0 \to K^{*0} \gamma$

 $\frac{\mathcal{B}(B^0 \to \rho^0(\pi^+\pi^-)\gamma)}{\mathcal{B}(B^0 \to K^{*0}(K^+\pi^-)\gamma)} \propto |V_{td}/V_{ts}|^2$

Offering independent & direct constraint on |Vtd/Vts|

$$egin{aligned} rac{\mathcal{B}(B^0 o
ho (770)^0 \gamma)}{\mathcal{B}(B^0 o K^* (892)^0 \gamma)} = 0.0189 \pm 0.0007 \pm 0.0005, \ ext{(stat.)} \end{aligned}$$

Radiative $B^0 \to \rho^0(770)\gamma$ decays

Combining with the known branching fraction for the $B^0 \to K^{*0} \gamma$

$$\mathcal{B}(B^0\!\to\rho^0\gamma) = (7.9\pm0.3\pm0.2\pm0.2)\times 10^{-7}$$
 (Stat.) (Sys.) (BF norm.)

Most precise measurement to date

- Assuming $\rho^0 \to \pi^+\pi^-$ decay dominates the dipion spectrum in [630,920] MeV/ c^2
- Assuming $K^{*0} \rightarrow K^+\pi^-$ decay dominates the $K^+\pi^-$ spectrum in [795.5,995.5] MeV/ c^2
- Contribution from wide resonances at higher masses or from nonresonant are neglected

Good agreement with the current world average but with lower uncertainty

LFU tests in b $\rightarrow sl^+l^-$ decays

- FCNC processes highly suppressed in SM
- NP may manifest in the loops and cause LFU violation
- LFU tests use

$$q^2=m(\ell^+\ell^-)^2$$

 $egin{aligned} R_{m{X}} &= rac{q_{ ext{max}}^2}{\int\limits_{dq^2}^{d\mathcal{B}\left(B_q
ightarrow X_s \mu^+ \mu^ight)} dq^2}{q_{ ext{min}}^2} = 1 \pm \mathcal{O}(1\,\%) \ \int\limits_{q_{ ext{min}}^2}^{d\mathcal{B}\left(B_q
ightarrow X_s e^+ e^ight)} dq^2 \end{aligned}$

 Cancellation of hadronic uncertainties in the ratio => precise prediction of R_X

R(K^(*)) measurements @ LHCb

- Electrons & muons behave quite differently in the LHCb detector
- Lower efficiencies & worse resolution (energy loss) for electrons
- Double-ratio of branching fractions:

$$R_X = \frac{\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{\mathcal{B}(B_q \to X_s J/\psi(\mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B_q \to X_s J/\psi(e^+ e^-))}{\mathcal{B}(B_q \to X_s e^+ e^-)} \stackrel{\text{Top}}{=} \left[\frac{1}{2} \right]$$

- Most of systematic uncertainties cancel to 1st order
- LFU in $J/\psi \rightarrow l^+ l^-$ well established at ‰ level [BESIII, PRD 88, 032007 (2013)]
- Validated in ψ(2S) mode

R(K) result at high q²

- First LHCb result at high q² region above $\psi(2S)$ (q² > 14.3 GeV²)
- Full Runs1-2 9 fb⁻¹ analysis

$$R_K = \frac{N(K^+ \mu^+ \mu^-)}{N(K^+ e^+ e^-)} \cdot \frac{\varepsilon(K^+ e^+ e^-)}{\varepsilon(K^+ \mu^+ \mu^-)} \cdot \frac{1}{r_{J/\psi}}$$

Most precise to date:

$$R_K(q^2 > 14.3 \text{ GeV}^2/c^4) = 1.08^{+0.11}_{-0.09}{}^{+0.04}_{-0.09}$$

Compatible with the SM

LFU in angular analysis of B $\rightarrow K^{*0}e^{+}e^{-}$

- First angular analysis at central q² region
- Full Runs1-2 9 fb⁻¹ analysis with 5D unbinned weighted fit
- LFU quantities derived by comparing e^+e^- to $\mu^+\mu^-$ results in [PRL 132 (2024) 131801]

Results are all consistent with LFU conservation hypothesis

R(K $\pi\pi$): LFU in B \rightarrow K $\pi\pi l^+ l^-$

- First LFU test in this channel, inclusive $K\pi\pi$ system
- In central q^2 region: 1.0 < q^2 < 7.0 GeV²
- First observation of $B^+ \to K^+ \pi^+ \pi^- e^+ e^-$
- Cross-checks: $r_{J/\psi} = 1.033 \pm 0.017, R_{\psi(2S)} = 1.040 \pm 0.030$

 $\mathcal{N}(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-) = 731 \pm 31$

$$R_{K\pi\pi}^{-1} \equiv \frac{\frac{\mathcal{N}}{\varepsilon}(B^+ \to K^+\pi^+\pi^-e^+e^-)}{\frac{\mathcal{N}}{\varepsilon}[B^+ \to K^+\pi^+\pi^-J/\psi\ (\to e^+e^-)]} \bigg/ \frac{\frac{\mathcal{N}}{\varepsilon}(B^+ \to K^+\pi^+\pi^-\mu^+\mu^-)}{\frac{\mathcal{N}}{\varepsilon}[B^+ \to K^+\pi^+\pi^-J/\psi\ (\to \mu^+\mu^-)]}$$

$$R_{K\pi\pi}^{-1} = 1.31_{-0.17}^{+0.18} \text{(stat)}_{-0.09}^{+0.12} \text{(syst)}$$

Compatible with the SM

$\mathsf{R}(\phi)$: LFU in $\mathsf{B}^0_s \to \phi l^+ l^-$

- First LFU test for B_s^0 decays
- In three q² regions: [0.1, 1.1], [1.1, 6.0], [15, 19] GeV²
- Cross-checks: $r_{J/\psi} = 0.997 \pm 0.013, R_{\psi(2S)} = 1.010 \pm 0.026$
- Results in agreement with SM:

$q^2 \left[\text{GeV}^2 / c^4 \right]$	R_ϕ^{-1}
$0.1 < q^2 < 1.1$	$1.57^{+0.28}_{-0.25}\pm0.05$
$1.1 < q^2 < 6.0$ $15.0 < q^2 < 19.0$	$0.91^{+0.20}_{-0.19} \pm 0.05$
$\frac{15.0 < q < 19.0}{}$	$\frac{0.60_{-0.23} \pm 0.10}{}$

$$R_{\phi} = \left(\frac{\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi(\to \mu^+ \mu^-)\phi)}\right) \middle/ \left(\frac{\mathcal{B}(B_s^0 \to \phi e^+ e^-)}{\mathcal{B}(B_s^0 \to J/\psi(\to e^+ e^-)\phi)}\right)$$

Summary of LHCb FCNC LFU results

Legacy Runs1-2 $B^0 \to K^{*0} \mu^+ \mu^-$ measurement

- 5D (3 decay angles, m_B , $m_{K\pi}$) unbinned ML fit in bins of q^2
 - Improved selection, more observables (CPV, dBF)
 - Finer q² binning
 - Lepton mass accounted for
 - Full suite of S-wave and P-/S-wave interference observables
 - 2x statistics
 - Data split into B^0 and $\overline{B}{}^0$, and fit simultaneously

Legacy Runs1-2 $B^0 \to K^{*0} \mu^+ \mu^-$ measurement

- ➤ Results in P_5' excellent agreement with both CMS and previous LHCb
- The forward-backward asymmetry, A_{FB} , also now shows marked disagreement with improved statistics
- \blacktriangleright Deviations of 2.6 and 2.7 σ in 4-6 and 6-8 GeV² bins

The branching fraction is consistently below SM predictions

Legacy Runs1-2 $B^0 \to K^{*0} \mu^+ \mu^-$ measurement

 Two different theory packages are used, which take different approaches, e.g. different non-local form factors

$$\Delta Re(C_9) = -0.93^{+0.18}_{-0.16}$$

Significance: 4.1σ

$$\Delta Re(C_9) = -0.94^{+0.22}_{-0.22}$$

Significance: 4.0σ

Search for
$$B^0 \to K^+ \pi^- \tau^+ \tau^- \& B_s^0 \to K^+ K^- \tau^+ \tau^-$$

- Using Run2 5.4 fb⁻¹ data
- Reconstructing taus with muonic channel
- Decays are searched in bins of dihadron masses

Search for
$$B^0 \to K^+ \pi^- \tau^+ \tau^- \& B_S^0 \to K^+ K^- \tau^+ \tau^-$$

- Using Run2 5.4 fb⁻¹ data
- Reconstructing taus with muonic channel
- Decays are searched in bins of dihadron masses
- No signal founds, upper limits are set:

Upper limit on the shift Δ in the $C_{9(10)}^{\tau\tau}$ Wilson coefficient at 90% and 95% CL.

Confidence level	$B^0 \to K^+\pi^-\tau^+\tau^-$	$B_s^0 \to K^+ K^- \tau^+ \tau^-$	
90%	1.6×10^{2}	2.4×10^{2}	
95%	1.8×10^{2}	$2.8 imes 10^2$ LHCb Prelimin	ary

Search for LFV decay $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$

- Lepton Flavour Violating decays would be enabled/enhanced by leptoquarks or Z' models
- New search for the lepton-flavour-violating decays $B^0 o K^{*0} au^\pm e^\mp$ at LHCb
 - first direct LFV search at LHCb with $e\tau$ combination (Run2 data)
 - New Physics models predict branching ratio up to 10^{-6} for this decay
 - 3-prong τ hadronic decay ⇒ decay vertex available, kinematic constraints with dedicated Decay Tree Fit gives much improved resolution!
 - $B^0 \to D^- D_s^+ (D^- \to K\pi\pi, D_s^+ \to KK\pi)$ used as normalisation and control channel, and 3 multivariate discriminators to suppress background:
 - topologies of the signal decays and the combinatorial background
 - Isolation (simulation + Same Sign data)
 - Charm vs τ-lepton rejection
 - Limits on two decay channels at 90%(95%) CL:

$$\mathcal{B}(B^0 \to K^{*0}\tau^-e^+) < 5.9(7.1) \times 10^{-6}$$

 $\mathcal{B}(B^0 \to K^{*0}\tau^+e^-) < 4.9(5.9) \times 10^{-6}$

$B_{(s)}^0 \to K_S^0 p \overline{p}$ BF measurements

- BF($B^0 \to K_S p \bar{p}$) more precise and consistent with world average value $(2.66 \pm 0.32) \cdot 10^{-6}$ [PDG].
- $B_s^0 o K_S p \bar{p}$ discovery at 5.6σ .

	$B^0 \to K_S \pi^+ \pi^-$	$B^0 \to K_S p\bar{p}$	$B_s^0 \to K_S p\bar{p}$
Yield	32145 ± 230	1791 ± 52	66 ± 12

$$\mathcal{B}(B^0 \to K^0 p \overline{p}) = (2.82 \pm 0.08 \pm 0.12 \pm 0.10) \times 10^{-6},$$

 $\mathcal{B}(B_s^0 \to K^0 p \overline{p}) = (9.14 \pm 1.69 \pm 0.90 \pm 0.33 \pm 0.20) \times 10^{-7}$

Study of $B^+ \to \overline{\Lambda} p \overline{p} p$

- Counterpart of recently observed decay $B^0 o p\bar{p}p\bar{p}$ [PRL131(2023)091901]
- $B^+ \to \bar{\Lambda}^0 p \bar{p} p$ is dominated by $b \to s$ transition[*] at loop level, and $b \to u$ transition at tree level are color suppressed
- Prediction of $\mathcal{B}(B^+ \to \bar{\Lambda}^0 p \bar{p} p) = (7.4^{+0.6}_{-0.2} \pm 0.03^{+3.6}_{-2.6}) \times 10^{-7} [*]$
- Explore the mass spectra (double threshold effect) and extend the study of baryonium-like bound states such as the X(1835) and X(2085)

Study of $B^+ \to \overline{\Lambda} p \overline{p} p$

The signal yield is $N(B^+ \to \bar{\Lambda}^0 p \bar{p} p) = 78 \pm 12$, with a significance greater than 5 standard deviations

LHCb measurement : $\mathcal{B}(B^+ \to \bar{\Lambda}^0 p \bar{p} p) = (2.08 \pm 0.34 \pm 0.12 \pm 0.26) \times 10^{-7}$

Theory prediction : $\mathcal{B}(B^+ \to \bar{\Lambda}^0 p \bar{p} p) = (7.4^{+0.6}_{-0.2} \pm 0.03^{+3.6}_{-2.6}) \times 10^{-7}$

Study of $B^+ \to \overline{\Lambda} p \overline{p} p$

The background-subtracted invariant-mass spectra of $\bar{\Lambda} p$ and $\bar{p} p$, exhibit clear **threshold enhancement** near both the baryonantibaryon mass thresholds: Figure 1: $m(\bar{\Lambda} p_1) < m(\bar{\Lambda} p_2)$

Figure 2: $m(\bar{p}p_1) < m(\bar{p}p_2)$

Search for $B^+ \to \overline{\Lambda} p \mu^+ \mu^-$: Work-in-progress

- ▶ Essentially a $b \rightarrow s\ell^+\ell^-$ process
- ightharpoonup EWP baryonic decays, sensitive to both NP and $\bar{\Lambda}^0 p$ threshold enhancement effects
- ► SM based prediction puts BF of $B^+ \to \bar{\Lambda}^0 p \mu^+ \mu^-$ at about 1.08×10^{-7} [J. Phys.G 41 (2014) 065002]
- ▶ BABAR measured $\mathcal{B}(\mathsf{B}^+ \to \bar{\Lambda}^0 p \nu \bar{\nu}) < 3.0 \times 10^{-5}$ [PRD 100 (2019) 111101], given expected BF of 7.9 $\times 10^{-7}$. However a recent paper claimed that the prediction on $B^+ \to \bar{\Lambda}^0 p \nu \bar{\nu}$ should be 20x smaller [EPJC 83 (2023) 4, 300].
- ► Threshold enhancement effects, observed significantly near the $\bar{\Lambda}^0 p$ invariant mass threshold, play a crucial role in four-body baryonic B decays, as confirmed by Belle's study of $B^+ \to \bar{\Lambda}^0 p \pi^+ \pi^-$ [PRD 80 (2009) 111103(R)].

Stay tuned for our results!

Summary

- Studies on rare b decays are key to searches for BSM
- Many first searches, LFU tests, and angular analyses, esp. with electron channels
- So far, no surprises, but tensions still persist (C₉?)
- Studies in four-body baryonic decays ongoing, stay tuned!
- Now a new detector and improved hadron trigger: higher efficiency per fb⁻¹
- And we will have Run4 and Upgrade-II!
 - 50 fb⁻¹ by 2033, > 300 fb⁻¹ by 2041

b-hadron p_T [GeV/c]

Backup Slides

LHCb-Upgrade I

Luminosity x5 wrt Run2
5.5 visible interactions/crossing
Higher track multiplicity from ~<70> to ~<180>)

No more hardware trigger (full detector readout at 40 MHz) Tracking & PID detectors modified/replaced Higher granularity

In January 2023, a loss of control of the LHC primary vacuum system

- ⇒ plastic deformation of the RF foil separating VELO from LHC.
- ⇒ significant impact on 2023 physics programme

2022 – 2023 : commissioning and understanding the new detector

2024: a lot of data!

1fb⁻¹ collected during October 2024

LHCb_TDR_023

Observable	Current LHC	b Upgr	ade I	Upgrade II
	(up to $9 \mathrm{fb}^{-1}$	(23fb^{-1})	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests				
$\gamma \ (B \to DK, \ etc.)$	4° [9, 10)] 1.5°	1°	0.35°
$\phi_s \; \left(B_s^0 o J/\psi \phi ight)$	$32 \mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% [29, 3		2%	1%
$a_{\rm sl}^d \ (B^0 o D^- \mu^+ u_\mu)$	$36 \times 10^{-4} [34]$		5×10^{-4}	2×10^{-4}
$a_{\rm sl}^{s} \ (B_s^0 o D_s^- \mu^+ u_\mu)$	$33 \times 10^{-4} [35]$	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm				
$\Delta A_{CP} \ (D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	29×10^{-5} [5]		8×10^{-5}	3.3×10^{-5}
$A_{\Gamma} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$	$11 \times 10^{-5} [38]$	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x \ (D^0 \to K_{\rm S}^0 \pi^+ \pi^-)$	$18 \times 10^{-5} [37]$	6.3×10^{-5}	4.1×10^{-5}	1.6×10^{-5}
Rare Decays				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	69% [40, 4	1] 41%	27%	11%
$S_{\mu\mu} \left(B_s^0 o \mu^+ \mu^- \right)$		8 7 - 8 7	25 28	0.2
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$A_{\rm T}^{ m Im} \; (B^0 o K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\overline{\Delta}\Gamma}(B_s^0 \to \phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	0.033
$S_{\phi\gamma}(B_s^0 \to \phi\gamma)$	0.32 [51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12 [61]	0.034	0.022	0.009
$R(D^*) \ (B^0 \to D^{*-}\ell^+\nu_\ell)$	0.026 [62, 6]	4] 0.007	0.005	0.002

Bremsstrahlung emission is significant for electrons

⇒ Use of a recovery algorithm

Before the magnet

- electron can be swept out (=lost!)
- · kinematics are "wrong"

After the magnet

not an issue

In both cases E/p is correct

Nuclei

LFU ratio: Experimental strategy

- R_X are measured as double ratios, to mitigate e/μ reconstruction differences

$$R_{X} = \underbrace{\frac{\mathcal{N}_{B \to X \mu^{+} \mu^{-}}}{\mathcal{N}_{B \to X J / \psi(\to \mu^{+} \mu^{-})}} \cdot \frac{\mathcal{N}_{B \to X J / \psi(\to e^{+} e^{-})}}{\mathcal{N}_{B \to X e^{+} e^{-}}} \cdot \underbrace{\frac{\epsilon_{B \to X J / \psi(\to \mu^{+} \mu^{-})}}{\epsilon_{B \to X \mu^{+} \mu^{-}}} \cdot \frac{\epsilon_{B \to X J / \psi(\to e^{+} e^{-})}}{\epsilon_{B \to X J / \psi(\to e^{+} e^{-})}}}$$

$$\cdot \frac{\epsilon_{B \to XJ/\psi(\to \mu^+\mu^-)}}{\epsilon_{B \to X\mu^+\mu^-}} \cdot \frac{\epsilon_{B \to Xe^+e^-}}{\epsilon_{B \to XJ/\psi(\to e^+e^-)}}$$

- Yields: unbinned maximum-likelihood fits to the B invariant mass
- Efficiencies: simulation corrected for well-known MC/data differences

- Resonant channels also used for checks/data driven studies
 - J/ψ and $\psi(2S)$ satisfy LFU, not mediated by $b \to s\ell\ell$

•
$$r_{J/\psi} = \frac{\mathscr{B}(B \to XJ/\psi(\to \mu\mu))}{\mathscr{B}(B \to XJ/\psi(\to ee))} \equiv 1$$
 Sensitive to e, μ differences

$$* R_{\psi(2S)} = \frac{\mathcal{B}(B \to X(\psi(2S) \to \mu\mu))}{\mathcal{B}(B \to X(J/\psi \to \mu\mu))} \cdot \frac{\mathcal{B}(B \to X(J/\psi \to ee))}{\mathcal{B}(B \to X(\psi(2S) \to ee))} \equiv 1$$

Efficiency related systematics cancel in double ratio

Wilson Coefficients global fits

