Z pole ee→µµ forward-backward asymmetry at CEPC

Shuo Han¹, Jiawei Wan², Lei Zhang² 1 IHEP, 2 Nanjing University

Introduction

- The ee→µµ channel at Z pole is the simplest channel at CEPC, and can be utilized to verify the basic performance of CEPC software
- The measurement forward-backward asymmetry of $ee \rightarrow Z/\gamma^* \rightarrow \mu\mu$ provides a precise verification of the weak mixing angle
- LEP measured $A_{FB}(\mu) = 0.0163 \pm 0.0014$

2

The simulated events

- $ee \rightarrow \mu\mu$ events are simulated with Whizard+Phythia at LO and Z pole energy.
 - \circ The interference between Z and $\gamma*has$ been included
 - The ISR and FSR have been included
- The $A_{FB}(\mu)$ is 0.0161 ± 0.0010 by simulating 1M events
 - Compatible with LEP result at Z pole

```
The nominal results are with five 0.2M samples
91.0216(Z mass - 1.4 \sigma)
91.1248 (Z mass - 0.53 \sigma)
91.1876(Z mass)
91.2504 (Z mass + 0.53 \sigma)
91.3536 (Z mass + 1.4 \sigma)
```

Where σ = 0.13% of Z mass, representing the beam energy spread in accelerator TDR

The event selection and cutflow

- Selections
 - PFOs are required to pass pT > 1 GeV, $cos(\theta) < 0.99$
 - A pair of PFOs passing muon ID (Geliang's XGBoost "Best" WP), and with opposite charge
 - \circ The di-muon mass should be within Z mass ± 10 GeV
 - The $|\cos(\theta)| > 0.05$ for μ -, to reduce the confusion of forward / backward events
 - This is cut is only for counting method
- Performance
 - Signal efficiency ~ 88.5% , no mis-identified muons and no charge flipping with 1M events
 - \circ Background contamination: negligible, impact on $A_{_{FB}}(\mu)$ is at the level of 10^{-6}

The calculation of $A_{FB}(\mu)$ - counting method

- The forward / backward events are judged by the θ_{CM} of μ -, where θ_{CM} is the θ recomputed at the center-of-mass frame
- $\Delta \theta_{CM}$ is a function of both energy and angular resolution of PFO
- The observed $A_{FB}(\mu)$ with PFO is corrected back to full phase-space

MCP-PFO costheta at center-of-mass

Discussion of uncertainties

- The statistical uncertainty
 - Nominal: assuming 1.35×10^9 muon pairs (4×10¹⁰ Z bosons) expected during the one-month low-luminosity Z running in the first year of ZH operation, the stat un. is 3.1×10^{-5}
 - Assuming 1.38×10^{11} muon pairs (4.1×10^{12} Z bosons) expected during 2 years of Z pole data taking, the statistical uncertainty of $A_{FB}(\mu)$ is 3×10^{-6}
- The systematic uncertainties
 - Energy spread: result assuming gaussian distribution of Ecm with a 0.13% energy spread, compared with the result of no energy spread, this uncertainty is 2×10^{-5}
 - Over-estimation since there's only 1-5% energy spread uncertainty (the uncertainty will be reduced to 10⁻⁷ level)
 - However, we miss a 0.5 MeV energy shift, the impact is 4.5×10⁻⁵
 - Will update today
 - Acceptance and Resolution: result by perform event selections and counting with MC particles instead of PFO, this uncertainty is 9×10^{-6}
 - No lepton energy scale uncertainty yet (should be much smaller than PFO/MCP difference)
 - The uncertainty from mis-identification and backgrounds are < 1 $\times 10^{-6}$

Result of counting method

- This analysis measures the forward-backward asymmetry with $Z \rightarrow \mu + \mu -$ events at Z pole, $A_{FB}(\mu)$.
- The result of measurement is 0.016078±0.000031 (stat.) ±0.000046 (syst.) based on the dataset corresponding to the one-month low-luminosity Z running in the first year of ZH operation
- The CEPC result improves the precision of LEP result ($A_{FB}(\mu) = 0.0163 \pm 0.0014$) by 2 magnitudes.

Fitting the costheta distribution

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta \quad \sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta \quad (9)$$

and $\cos\theta$ is the angle of the outgoing fermion measured relative to the incident electron direction. The experiments determine A_{FB} from fits to the angular distribution which can be written as

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} \left(1 + \cos^2\theta \right) + A_{FB} \cos\theta \qquad (10)$$

- Set costheta function = [0]*(1 + [1]*x + x*x), where [1] = 8/3 * A_FB
- Tested with a toy with 10⁹ events, based on the 1M MC sample in analysis
 - Input AFB = 0.016736
 - Fitted AFB = 0.016732±0.0000296
 - Counting AFB = 0.016736 ± 0.0000316
- The results are consistent, however, the statistic error didn't' significantly reduced and it's hard to estimate systematics with fitting method, so it's only a verification

