Approval: Search for Higgs boson invisible decays at CEPC

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences Geliang Liu (刘格良)

Jun. 13th, 2025

Outlines

- Introduction
- > Samples
- > Key property
- Event selection
 - Baseline selection
 - Kinematic selection
- Multivariate-analysis discriminant
- > Results

> Conclusion and future improvements

Introduction

Higgs boson production

- Higgs strahlung: $ee \rightarrow Z^* \rightarrow ZH$ (dominant)
- W fusion: $ee \rightarrow v_e v_e H$ (sub-dominant)

> Higgs boson invisible decays

- $ee \rightarrow Z(\rightarrow ee/\mu\mu/qq)H(\rightarrow invisible)$
- In the SM: $H \rightarrow ZZ^* \rightarrow 4v$
 - BR(H→4v)=0.105%
- BSM: H→sparticles / dark matter / LLPs, ...

Tests of detector performances

- The overall validity of the particle flow (PF) algorithm
- Enough detector coverage
- Reconstruction of missing kinematics

Previous studies

At the LHC

Experiments	Data	Expected results	Publication
ATLAS	13 TeV; 139 fb-1	UL on BR(H→inv): 10%	JHEP08(2022)104
CMS	13 TeV; 139 fb-1	UL on BR(H→inv): 10%	PRD 105 (2022) 092007

Future electron-positron colliders

Experiments	Data	Expected results	Publication
ILC	250, 350, 500 GeV; 250, 350, 500 fb-1	UL on BR(H→inv): 0.26%	arXiv:1909.07537
FCC-ee	240+365 GeV; 10.8, 3 ab-1	3.9 σ on BR(H→ZZ→4v)	Presentation
CEPC (CDR)	240 GeV; 5.6 ab-1	UL on BR(H→inv): 0.26%	<u>Chinese Phys. C 44 123001</u>

Will proceed the analysis with the full simulation of CEPC ref-detector for TDR !

Samples

Samples produced with CEPCSW 25.3.6

Experiments	Processes	Location at Ixlogin	Events
Signal	Z(→ee/µµ/qq)H(→4v)	/cefs/higgs/liugeliang/CEPC/2025 03/Production/Hinvi	100k per final state
4-fermion backgrounds	single-Z, single-W, Z-or-W, ZZ, WW, ZZ- or-WW (41 final states in total)	/cefs/higgs/zhangkl/Production/2 5036/4fermions	400k per final state
2-fermion backgrounds	ee, μμ, ττ, qq	/cefs/higgs/zhangkl/Production/2 5036/E240_e1e1(e2e2, e3e3, qq)	100k – 400 k per final state
ZH	Ζ(→ee/μμ/ττ/vv/qq) H(→incl)	/cefs/higgs/zhangkl/Production/2 5036/E240_*HX	1M per sample

Key property ≻ Missing mass

- $p^{visible} = \sum_{i}^{PFO} p_i$
 - $p^{\text{missing}} = p^{\text{total}} p^{\text{visible}}$, $p^{\text{total}} = (0, 0, 0, 240 \text{ GeV})$

Great discrimination thanks to full reconstruction of missing information and good detector resolution

Event selection

Baseline selection

- Selection criteria to have the very preselection of signals.
- Remain diagonal by selecting successively.
- 2µ channel:
 - Exactly two PFOs passing the BEST muon ID, with |cosθ|<0.99
 - Opposite charge.
 - $M_{\mu\mu} \in [40, 120] \text{ GeV}$

- 2e channel:
 - Exactly two PFOs passing the BEST electron ID, with |cosθ|<0.99
 - Opposite charge.
 - $M_{ee} \in [40, 120]$ GeV

• 2q channel:

- Due to the exclusive ee-kt jet clustering algorithm, dijet kinematics are equal to visible kinematics.
- $M^{visible} \in [30, 130] \text{ GeV}$
- $p^{visible} \in [10, 80] \text{ GeV}$

Event selection

Kinematic selection

- Further suppress backgrounds while keeping a high signal efficiency
- 2mu channel:
 - $E_{recoil} > 125 \text{ GeV}$
 - $M_{recoil} > 110 \text{ GeV}$
 - $M_{\text{missing}} \in (110, 150) \text{ GeV}$
 - $E_{visible} \in (80, 120) \text{ GeV}$
 - $M_{visible} < 120 \text{ GeV}$
 - $P_{visible} \in (20, 70) \text{ GeV}$
 - $E_{neutral} < 60 \text{ GeV}$
 - $N_{charged} < 7$
 - $N_{neutral} < 10$
 - $|D_0| < 0.05 \text{ mm}$
 - $|Z_0| < 0.1 \text{ mm}$

- 2e channel:
 - $E_{recoil} > 125 \text{ GeV}$
 - $M_{recoil} > 120 \text{ GeV}$
 - $M_{\text{missing}} \in (50, 160) \text{ GeV}$
 - $E_{visible} \in (80, 190) \text{ GeV}$
 - $M_{visible} < 160 \text{ GeV}$
 - $P_{visible} \in (20, 70) \text{ GeV}$
 - $E_{neutral} < 90 \text{ GeV}$
 - $N_{charged} < 7$
 - $N_{neutral} < 15$
 - $|D_0| < 0.1 \text{ mm}$
 - $|Z_0| < 0.1 \text{ mm}$

• 2q channel:

- $M_{\text{missing}} \in (100, 170) \text{ GeV}$
- $E_{visible} \in (70,130) \text{ GeV}$
- $P_{visible} \in (20, 70) \text{ GeV}$
- $E_{charged} \in (15,100) \text{ GeV}$
- $E_{neutral} \in (5,90) \text{ GeV}$
- $N_{charged} > 5$
- $N_{neutral} > 10$
- Jet $N_{charged} > 0$
- Jet $N_{neutral} > 2$

Selection cutflow

р	rocess	signal	2(µ/e/q)+2v	2f	visible H	others
2μ 2ε 2q	total yield	1.44E+02	5.68E+06	1.78E+09	4.07E+06	3.79E+08
	Baseline sel	96.11%	32.01%	2.35%	2.55%	0.88%
	Kinematic sel	97.97%	19.78%	3.40%	0.44%	5.31%
	selected	1.35E+02	3.59E+05	1.42E+06	4.55E+02	1.78E+05
2e	total yield	1.49E+02	5.57E+06	1.78E+09	4.07E+06	3.79E+08
	Baseline sel	83.75%	41.68%	1.03%	1.96%	1.60%
	Kinematic sel	95.34%	23.04%	3.35%	2.19%	5.77%
	selected	1.19E+02	5.35E+05	6.13E+05	1.75E+03	3.49E+05
2q	total yield	2.90E+03	7.39E+06	1.78E+09	4.07E+06	3.77E+08
	Baseline sel	98.97%	66.07%	9.24%	19.76%	8.35%
	Kinematic sel	95.41%	38.05%	37.29%	37.82%	12.87%
	selected	2.74E+03	1.86E+06	6.13E+07	3.04E+05	4.05E+06

Machine learning algorithm

XGBoost model trained in each channel to distinguish signal v.s. background

Input features

- 2mu channel:
 - $E_{uu}, M_{uu}, P_{uu}, P_{uu}$
 - M_{recoil}
 - E_{visible}, M_{visible}, P_{visible}, P^T_{visible}
 - M_{missing}
 - $\Delta \phi_{\mu\mu}, \Delta R_{\mu\mu}$
 - $D_0^{\mu_1}, D_0^{\mu_2}, Z_0^{\mu_1}, Z_0^{\mu_2}$
 - N_{charged}, N_{neutral}, E_{neutral}

- 2e channel:
 - Same as 2mu, except changing μ to

е

- 2q channel:
 - E_{visible}, M_{visible}, P_{visible}, P^T_{visible}
 - M_{missing}
 - $\Delta \phi_{ii}, \Delta R_{ii}$
 - N_{charged}, N_{neutral}
 - $N_{charged}^{j_1}, N_{charged}^{j_2}$
 - $ECF_2^{j_1}, ECF_2^{j_2}$ (energy correlation function)
 - $\left(\frac{\tau 3}{\tau}\right)^{j_1}$, $\left(\frac{\tau 3}{\tau}\right)^{j_2}$ (N-subjettiness)

More input features than kinematic selections

Some features not efficient enough but can provide discrimination.

Important features: missing mass

- The **signal** distributed around 125 GeV ($BR(H \rightarrow invisible)$ set to be 1).
- 2(μ/e/q)+2v distributed around 91 GeV.
- Other backgrounds distributed around 0 or flatly.

Important features: visible energy

- The **signal** distributed around 105 GeV.
- 2(μ/e/q)+2v distributed around 120 GeV.
- Other backgrounds mostly distributed flatly.

Important features: visible pt

- The **signal** distributed around 50 GeV.
- $2(\mu/e/q)+2v$ distributed flatly.
- **2f** distributed around 0: mostly in high $|\cos\theta|$ region.

Important features: number of charged PFOs

• The signal has different signatures in different channels.

Important features: ΔΦ(II / jj)

• **2f** distributed around 3.14: mostly back-to-back.

ML-based discriminant

XGBoost score distributions

Main backgrounds contaminating with signals: 2(μ/e/q)+2v

Statistical inferences

- Statistical analyses are performed with the CMS <u>combine</u> tool.
- > Parameter of interest: BR($H \rightarrow$ invisible)
- > Discriminating variable: XGBoost score
 - Binned likelihood fits & asymptotic formulae
- > No systematic considered yet
 - Systematic uncertainties < 1%, dominated by statistical uncertainties
- Two scenarios:
 - SM H→invisible as a signal: expected uncertainty and statistical significance
 - BSM H→invisible as a signal, while the SM one is a background: expected upper limits at 95% confidence level.

Statistical-only results

	5.6 ab-1				20 ab-1		
channel	uncertainty (SM)	CDR uncertainty	significance (SM)	UL (BSM)	uncertainty (SM)	significance (SM)	UL (BSM)
2μ	-80.4%/+84.3%	222%	1.25σ	0.179%	-43.1%/+44.1%	2.36σ	0.093%
2e	-100.0%/+124.4%	428%	0.86σ	0.266%	-62.6%/+64.9%	1.62σ	0.137%
2q	-57.6%/+57.8%	90%	1.74σ	0.121%	-30.5%/+30.6%	3.28σ	0.064%
combine	-43.7%/+44.7%	82%	2.31σ	0.092%	-23.2%/+23.4%	4.36σ	0.049%
					Close t	o discoverv l	evel!

Much better sensitivities than the CDR studies !

• Thanks to the MVA algorithm

Conclusion and prospects

Preliminary searches for Higgs boson invisible decays are performed

- Full simulation of the CEPC reference detector
- Missing mass with good resolution as the key feature
- Much improved sensitivities thanks to the ML-based algorithm
- Strong proof of the overall detector performances

Future progress is expected

- Further tune the kinematic selection (i.e. cut on visible pt)
- Categorization based on jet flavor
- Inclusion of systematic uncertainties

Can we reach 5 σ ?

Thanks for your attention!

Backup

Input features: 2µ

Those shown in previous slides will not be shown again.

Input features: 2e

Those shown in previous slides will not be shown again.

Input features: 2q

Those shown in previous slides will not be shown again.

