

國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences



## Measurements of decay branching fractions of the Higgs boson to hadronic final states at the CEPC

<sup>1</sup>Yanping Huang, <sup>1</sup>Xiaotian Ma, <sup>1,2</sup>Zuofei Wu, Shuo Han

<sup>1</sup>Institute of High Energy Physics

<sup>2</sup>Nanjing University

#### Contents

- Introduction
- Simulation samples
- Event selection
- Particle Transformer
- Model performance
- Measurements of branching fractions
- Summary

#### Introduction

- ► This study focuses on the precise determination of the branching fractions of  $H \rightarrow b\bar{b}/c\bar{c}/gg/WW^*/ZZ^*/s\bar{s}$  in associated  $Z(\mu^+\mu^-)H$  production at the CEPC with a center-of-mass energy of 240 GeV and integrated luminosity of 20 ab <sup>-1</sup>.
- According to theoretical predictions, the branching fractions for the decay of a 125 GeV Higgs boson into  $b\bar{b}$ ,  $c\bar{c}$ , gg,  $WW^*$ ,  $ZZ^*$ , are 57.7%, 2.91%, 8.57%, 21.5%, 2.64%, respectively, and  $s\bar{s}$  will also be considered. **arXiv:1307.1347**
- For WW\* and ZZ\*, the dominant decay modes are hadronic, making it challenging to distinguish them. And this can be overcome by end-to-end ML method.
- The Particle Transformer is applied to separate all decay channels simultaneously with high accuracy.

| Sig         | $H \rightarrow b\overline{b}$ | $H \rightarrow c \overline{c}$ | $H \rightarrow gg$ | $H \rightarrow ZZ^*$ | $H \rightarrow WW^*$ | $H \rightarrow s \overline{s}$ |
|-------------|-------------------------------|--------------------------------|--------------------|----------------------|----------------------|--------------------------------|
| predictions | 57.7%                         | 2.91%                          | 8.57%              | 2.64%                | 21.5%                | $4.4 \times 10^{-4}$           |

## **Simulation samples**

- Using Whizard 1.95 and Pythia6 for the fragmentation and hadronization
- Signal process: Z decays to a pair of muons and H decays in pairs of bb/cc/gg/WW\*/ZZ\*/ ss, full simulation generated under Ref-TDR CEPCSW
- Backgrounds: processes with two-fermion and four-fermion final states, fast detector simulation using a Delphes-based software

| Signal | process |
|--------|---------|
|--------|---------|

|                             |                        | / (              |
|-----------------------------|------------------------|------------------|
| Process                     | Higgs decays           | Cross section/fb |
|                             | $H \to b \overline{b}$ | 3.91             |
|                             | $H \to c \overline{c}$ | 0.20             |
| ZH process                  | H  ightarrow gg        | 0.58             |
| $Z \rightarrow \mu^+ \mu^-$ | $H \to WW^*$           | 1.46             |
|                             | $H \to ZZ^*$           | 0.18             |
|                             |                        |                  |



#### Two-fermion background process

| Category    | Name               | Decay modes                                  | Cross section/fb |
|-------------|--------------------|----------------------------------------------|------------------|
|             |                    | $e^+e^- \to e^+e^-$                          | 24992.21         |
|             | $l\overline{l}$    | $e^+e^- \rightarrow \mu^+\mu^-$              | 4991.91          |
|             |                    | $e^+e^- \to \tau^+\tau^-$                    | 4432.18          |
|             |                    | $e^+e^- \rightarrow \nu_e \bar{\nu}_e$       | 45390.79         |
| Two-fermion | $ u \overline{ u}$ | $e^+e^- \rightarrow \nu_\mu \bar{\nu}_\mu$   | 4416.30          |
| hackground  |                    | $e^+e^- \rightarrow \nu_\tau \bar{\nu}_\tau$ | 4410.26          |
| background  |                    | $e^+e^- \rightarrow u\bar{u}$                | 10110.43         |
|             |                    | $e^+e^- \rightarrow d\bar{d}$                | 10010.07         |
|             | $q \overline{q}$   | $e^+e^- \rightarrow c\bar{c}$                | 10102.75         |
|             |                    | $e^+e^- \rightarrow s\bar{s}$                | 9924.40          |
|             |                    | $e^+e^- \rightarrow b\bar{b}$                | 9957.70          |

 $\blacktriangleright$  leptons (l), neutrinos (v), and quarks (q) **4** 

#### 2025/6/13

#### **Simulation samples**

| Four                       | -fermio         | n background pr                                                                                                                                     | ocess                   | e <sup>+</sup> (2)       | f(3)                                                                                                                                                           | e <sup>+</sup> (2)           | f(3)                             |
|----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|
| wit                        | nam<br>h lepton | es refer to final sta<br>is (1), hadrons (h),<br>eptons (sl).                                                                                       | ites<br>and semil       | e <sup>-</sup> (1)       | $\bar{f}(4)$<br>f(5)<br>$\bar{f}(6)$                                                                                                                           | e-(1)                        | $\bar{f}(4)$ $f(5)$ $\bar{f}(6)$ |
| Four-fermion<br>background | (77)            | $\begin{array}{c} Z \rightarrow c \bar{c}, Z \rightarrow d \bar{d} / b \bar{b} \\ Z Z \rightarrow d \bar{d} d \bar{d} \end{array}$                  | 98.97<br>233.46         | $(WW)_l$<br>$(WW)_{sl}$  | $WW \rightarrow 4 leptons$ $W \rightarrow \mu \bar{\nu}_{\mu}, W \rightarrow q\bar{q}$ $W \rightarrow \tau \bar{\nu}_{\tau}, W \rightarrow q\bar{q}$           | 403.66<br>2423.43<br>2423.56 | _                                |
|                            | (22)h           |                                                                                                                                                     | 85.68<br>98.56<br>15.56 | (07)                     | $\begin{array}{c} e^+e^-, Z \rightarrow e^+e^- \\ e^+e^-, Z \rightarrow \mu^+\mu^- \\ e^+e^-, Z \rightarrow \nu\nu \end{array}$                                | 78.49<br>845.81<br>28.94     |                                  |
|                            | $(ZZ)_l$        | $Z \to \tau^+ \tau^-, Z \to \tau^+ \tau^-$ $Z \to \mu^+ \mu^-, Z \to \nu_\mu \bar{\nu}_\mu$ $Z \to \tau^+ \tau^-, Z \to \mu^+ \mu^-$                | 4.61<br>19.38<br>18.65  | $(SZ)_l$                 | $\begin{array}{c} e^+e^-, Z \rightarrow \tau^+\tau^- \\ \nu^+\nu^-, Z \rightarrow \mu^+\mu^- \\ \nu^+\nu^-, Z \rightarrow \tau^+\tau^- \end{array}$            | 147.28<br>43.42<br>14.57     |                                  |
|                            |                 | $\frac{Z \to \tau^+ \tau^-, Z \to \nu_\tau \bar{\nu}_\tau}{Z \to \mu^+ \mu^-, Z \to d\bar{d}}$ $Z \to \mu^+ \mu^-, Z \to u\bar{u}$                  | 9.61<br>136.14<br>87.39 | $(SZ)_{sl}$              | $e^+e^-, Z \to d\bar{d}$ $e^+e^-, Z \to u\bar{u}$ $\nu^+\nu^-, Z \to d\bar{d}$                                                                                 | 125.83<br>190.21<br>90.03    |                                  |
|                            | $(ZZ)_{sl}$     | $Z \to \nu\bar{\nu}, Z \to u\bar{u}$ $Z \to \nu\bar{\nu}, Z \to u\bar{u}$ $Z \to \tau^+\tau^-, Z \to d\bar{d}$ $Z \to \tau^+\tau^-, Z \to u\bar{u}$ | 84.38<br>67.31          | $(SW)_l$                 | $\frac{\nu^+\nu^-, Z \to u\bar{u}}{e\nu_e, W \to \mu\nu_\mu}$ $\frac{e\nu_e, W \to \tau\nu_\tau}{e\nu_e, W \to \tau\nu_\tau}$                                  | 55.59<br>436.70<br>435.93    | _                                |
|                            | (WW).           | $\frac{2}{WW} \rightarrow uubd$ $WW \rightarrow ccbs$ $WW \rightarrow ccbs$                                                                         | 0.05 5.89 170.18        | $(SW)_{sl}$<br>$(mix)_h$ | $\begin{array}{c} e\nu_e, W \to qq \\ \hline ZZ/WW \to ccss \\ ZZ/WW \to uudd \end{array}$                                                                     | 1607.55<br>1610.32           | _                                |
|                            | (WW)h           | $WW \rightarrow ccas$<br>$WW \rightarrow cusd$<br>$WW \rightarrow uusd$                                                                             | 3478.89<br>170.45       | $(mix)_l$                | $\begin{array}{l} ZZ/WW \rightarrow \mu\mu\nu_{\mu}\nu_{\mu}\\ ZZ/WW \rightarrow \tau\tau\nu_{\tau}\nu_{\tau}\\ SZ/SW \rightarrow ee\nu_{e}\nu_{e}\end{array}$ | 221.10<br>211.18<br>249.48   | _                                |

#### **Event selection**

- > At least two muons with opposite charge. (muon ID @ BEST WP and E > 10 GeV)
  - > Choose the muon pair closest to the Z boson mass.
- > Isolation cut:  $E_{cone}^2 < 4E_{\mu} + 12.2 \text{GeV}$ 
  - >  $E_{\text{cone}}$  is the sum of energy within a cone ( $\cos\theta_{\text{cone}} > 0.98$ ) around the muon.
- >  $M_{\mu\mu}$  in Z-mass window [75 GeV, 105 GeV].
- >  $M_{\mu\mu}^{\text{recoil}}$  in *H*-mass window [110 GeV, 150 GeV].  $M_{\mu\mu}^{\text{recoil}} = \sqrt{(\sqrt{s} E_{\mu^+} E_{\mu^-})^2 (\overrightarrow{P_{\mu^+}} + \overrightarrow{P_{\mu^-}})^2}$
- >  $|\cos\theta_{\mu^+\mu^-}| < 0.996$ : to further reduce the two-fermion backgrounds.
- >  $N_{\text{charged}} > 7$ : to reduce the backgrounds.

| Process              | $H \rightarrow b\overline{b}$ | $H \rightarrow c \overline{c}$ | $H \rightarrow gg$ | $H \rightarrow ZZ^*$ | $H \rightarrow WW^*$ | $H \rightarrow s\overline{s}$ | $(ZZ)_{sl}$ |
|----------------------|-------------------------------|--------------------------------|--------------------|----------------------|----------------------|-------------------------------|-------------|
| Theo. N              | 78126                         | 3940                           | 11604              | 3575                 | 29111                | 60                            | 11129800    |
| Simu. N              | 495000                        | 494500                         | 371500             | 497250               | 497000               | 494250                        | 26499801    |
| Muon pair            | 96.9%                         | 96.7%                          | 96.7%              | 96.7%                | 96.7%                | 96.6%                         | 18.8%       |
| Isolation            | 90.3%                         | 90.3%                          | 90.5%              | 90.7%                | 90.4%                | 90.5%                         | 12.9%       |
| Z-mass               | 86.7%                         | 86.7%                          | 86.9%              | 87.1%                | 86.8%                | 86.8%                         | 9.1%        |
| H-mass               | 86.4%                         | 86.3%                          | 86.5%              | 86.7%                | 86.4%                | 86.5%                         | 1.5%        |
| $\cos \theta$        | 86.1%                         | 86.0%                          | 86.2%              | 86.4%                | 86.1%                | 86.2%                         | 1.5%        |
| N <sub>charged</sub> | 86.1%                         | 86.0%                          | 86.2%              | 86.4%                | 86.1%                | 86.1%                         | 1.5%        |

The cutflow selection efficiency

#### **Event selection**

•  $M_{\mu\mu}$  and  $M_{\mu\mu}^{\text{recoil}}$  distributions for signal and background events, following the muon pair and isolation selection criteria.



The signal is well preserved while background contributions are significantly suppressed.

2025/6/13

## **Particle Transformer**

- > A state-of-the-art deep learning model designed for particle physics.
- Transformer-Based architecture with particle feature embedding (edge) and class attention for jet-tagging and event classification...
- > Advantages:
  - More training parameters and complicated architecture.
  - End-to-End learning which eliminates the dependency on jet clustering and  $e/\gamma$  isolation.
  - Effective edge information.



#### maxt@ihep.ac.cn

#### **Particle Transformer**

- > Samples:
  - 300k for each category, (training: validation: test sets) = (8:1:1)
  - Signal:  $H \to b\bar{b}$ ,  $H \to c\bar{c}$ ,  $H \to gg$ ,  $H \to ZZ^*$ ,  $H \to WW^*$ ,  $H \to s\bar{s}$  [full sim]
  - Background:  $(ZZ)_{sl}$  [fast sim]
- Training variables:
  - Energy, momentum,  $\cos\theta$ ,  $\phi$ , PID,  $D_0$ ,  $Z_0$ , charge, ZTag-> particle features.
  - Pt, eta, phi, E -> edge features.
- Training parameters:
  - Pair Embedding: (64, 64, 64, 16), Feature Embedding: (128, 512, 128).
  - 8 particle attention layers and 2 class attention layers with both 8 heads.
  - Fully connected layer: GeLU activation function and RAdam optimizer.
  - Epoch: 60, Learning rate: 0.001, Batchsize: 512

#### **Model Performance**

- 1.0

- 0.8

- 0.6

-0.4

0.2

0.0



2025/6/13

➤ The sum of each row equals 1

- Reconstructed category refers to one with maximum score
  - ➤ Average accuracy: 82.2%

10

#### **Model Performance**



2025/6/13

maxt@ihep.ac.cn

11

### **Measurements of branching fractions**

- Use the migration matrix method
  - Can be unfolded to represent the generated number of signals
  - Calculated as follows:

$$\begin{bmatrix} N_{s1} \\ N_{s2} \\ \dots \\ N_{b1} \\ N_{b2} \\ \dots \end{bmatrix} = \left( M_{mig}^T M_s \right)^{-1} \times \begin{bmatrix} n_{s1} \\ n_{s2} \\ \dots \\ n_{b1} \\ n_{b2} \\ \dots \end{bmatrix}$$

- *n<sub>i</sub>* and *N<sub>i</sub>*: the expected and generated number of events of class *i*
- >  $M_s$ : a diagonal matrix containing the selection efficiencies
- >  $M_{mig}^T$ : the transposed migration matrix
- Use toyMC method to estimate statistical uncertainties
  - Sampling for 10k times according to Poisson distribution and Multinomial distribution

• Minimize 
$$\chi^2 = \sum_{i=0}^6 \frac{(Y_i - \eta_i)^2}{\sigma_i^2}$$
 then fit with gaussian function

#### **Statistical uncertainty**



maxt@ihep.ac.cn

- To account for detector-related effects, particularly those arising from vertex reconstruction and tracking, the spatial resolution of each track was conservatively smeared from 5 μm to 10 μm.
- By applying the previous ML model to MC samples generated with updated resolutions, the differences in branching fractions before and after the resolution change are considered as the systematic uncertainty.

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \sin^{3/2} \theta} \mu \text{m.}$$
smear
$$\sigma_{r\phi} = 10 \oplus \frac{10}{p(\text{GeV}) \sin^{3/2} \theta} \mu \text{m.}$$

| Sig                | $H \rightarrow b\overline{b}$ | $H \rightarrow c \overline{c}$ | $H \rightarrow gg$ | $H \rightarrow ZZ^*$ | $H \rightarrow WW^*$ | $H \rightarrow s \overline{s}$ |
|--------------------|-------------------------------|--------------------------------|--------------------|----------------------|----------------------|--------------------------------|
| Branching fraction | 57.7%                         | 2.91%                          | 8.57%              | 2.64%                | 21.5%                | $4.4 \times 10^{-4}$           |
| Rel. Syst. Un.     | 0.1%                          | 6.6%                           | 5.1%               | 13.2%                | 2.0%                 | 451.8%                         |

#### Results

Results of the measured Higgs branching fractions with relative statistical and systematic uncertainties:

| Sig                | $H \rightarrow b\overline{b}$ | $H \rightarrow c \overline{c}$ | $H \rightarrow gg$ | $H \rightarrow ZZ^*$ | $H \rightarrow WW^*$ | $H \rightarrow s \overline{s}$ |
|--------------------|-------------------------------|--------------------------------|--------------------|----------------------|----------------------|--------------------------------|
| Branching fraction | 57.7%                         | 2.91%                          | 8.57%              | 2.64%                | 21.5%                | $4.4 \times 10^{-4}$           |
| Rel. Stat. Un.     | 0.3%                          | 2.2%                           | 1.3%               | 7.8%                 | 1.2%                 | 98.8%                          |
| Rel. Syst. Un.     | 0.1%                          | 6.6%                           | 5.1%               | 13.2%                | 2.0%                 | 451.8%                         |

### Summary

- ★ The Higgs boson branching fractions into bb/cc/gg/ss and WW\*/ZZ\*, where the W or Z bosons decay hadronically, via the Z(µ<sup>+</sup>µ<sup>-</sup>)H process are studied using the Particle Transformer method at a center-of-mass energy of 240 GeV and a luminosity of 20 ab<sup>-1</sup> at the CEPC.
- ★ The relative statistical uncertainties of branching fractions of  $H \rightarrow b\bar{b}/c\bar{c}/gg/WW^*/ZZ^*/s\bar{s}$  processes are estimated to be 0.3%, 2.2%, 1.3%, 7.8%, 1.2% and 98.8%, respectively.
- > To account for detector-related effects, particularly those arising from vertex reconstruction and tracking, the spatial resolution of each track was conservatively smeared from 5  $\mu$ m to 10  $\mu$ m, and the relative systematic uncertainties are estimated to be 0.1%, 6.6%, 5.1%, 13.2%, 2.0% and 451.8%, respectively.

## Back up



2025/6/13

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV})\sin^{3/2}\theta} \mu \text{m}$$



$$\sigma_{r\phi} = 10 \oplus \frac{10}{p(\text{GeV})\sin^{3/2}\theta} \mu \text{m.}$$

#### The sum of each row equals 1







#### **Distributions of signal vs bkg**



in signal

in bkg

2025/6/13

### **Distributions of signal vs bkg**



#### **Mass distributions**



#### **13-classification results**

| Process                         | $b\overline{b}$ | $c\overline{c}$ | <i>gg</i> | $	au\overline{	au}$ | $WW^*$       | $ZZ^*$ | $s\overline{s}$ |
|---------------------------------|-----------------|-----------------|-----------|---------------------|--------------|--------|-----------------|
| Muon pair                       | 93.4%           | 93.1%           | 92.9%     | 94.3%               | 93.0%        | 93.1%  | 93.2%           |
| Isolation                       | 93.0%           | 93.3%           | 93.7%     | 94.6%               | 93.6%        | 93.8%  | 93.5%           |
| Z mass window                   | 96.1%           | 96.1%           | 96.1%     | 93.2%               | 96.0%        | 96.0%  | 96.0%           |
| H mass window                   | 99.6%           | 99.6%           | 99.6%     | 98.5%               | <b>99.6%</b> | 99.6%  | <b>99.6%</b>    |
| $ \cos\theta_{\mu\mu}  < 0.996$ | 99.6%           | <b>99.7%</b>    | 99.6%     | <b>99.7%</b>        | 99.6%        | 99.7%  | 99.7%           |
| Total eff.                      | 82.8%           | 82.9%           | 83.0%     | 81.6%               | 82.9%        | 83.2%  | 83.0%           |

Table 15.6: The cutflow selection efficiency for signal processes.

Relative efficiency and total efficiency for each survived channel

Table 15.7: The cutflow selection efficiency for background processes.

| Process                         | $(ZZ)_l$ | $(ZZ)_{sl}$ | $(WW)_l$ | и     | $(SZ)_l$ | $(mix)_l$ |
|---------------------------------|----------|-------------|----------|-------|----------|-----------|
| Muon pair                       | 46.1%    | 18.8%       | 11.0%    | 11.9% | 9.7%     | 29.3%     |
| Isolation                       | 77.4%    | 68.8%       | 98.0%    | 94.6% | 48.2%    | 96.1%     |
| Z mass window                   | 66.4%    | 70.4%       | 34.7%    | 41.8% | 28.3%    | 16.8%     |
| H mass window                   | 15.6%    | 16.3%       | 58.6%    | 6.6%  | 29.3%    | 41.1%     |
| $ \cos\theta_{\mu\mu}  < 0.996$ | 98.8%    | 99.5%       | 98.7%    | 90.3% | 99.0%    | 99.4%     |
| Total eff.                      | 3.7%     | 1.5%        | 2.2%     | 0.3%  | 0.4%     | 1.9%      |

| Rel. Syst. Un. |                      | 0.3    | 3%     | 24     | .8%    | 5.0            | )%                         | 0.04%                      |                 | 1.5%   |        | 66.0%            | D      |        |        |  |
|----------------|----------------------|--------|--------|--------|--------|----------------|----------------------------|----------------------------|-----------------|--------|--------|------------------|--------|--------|--------|--|
| R              | Rel. Stat. Un.       |        |        | 0.4    | 1%     | 6.             | 7%                         | 2.4                        | 4%              | 1.2    | 2%     | 1.               | 5%     | 18.6%  | C      |  |
| B              | R                    |        |        |        | 57.    | 7%             | 2.                         | 9%                         | 8.0             | 5%     | 6.3    | 3%               | 21     | .5%    | 2.6%   |  |
| D              | eca                  | ny ch  | nann   | els    | b      | $\overline{b}$ | 0                          | $c\overline{c}$            | g               | g      | au     | $\overline{	au}$ | W      | $W^*$  | $ZZ^*$ |  |
|                |                      | HDL    | HC     | 40,2   | HL     | Han            | خ <sup>رت</sup><br>Reconst | <sup>رچي</sup><br>ructed c | لللہ<br>ategory | TT's   | inner. | Ň                | SU     | Imixi  |        |  |
|                | (mix) <sub>/</sub> - | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%          | 0.00%                      | 0.00%                      | 1.30%           | 0.00%  | 5.10%  | 1.40%            | 7.50%  | 84.70% | 0.0    |  |
|                | (SZ) <sub>1</sub> -  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%          | 0.00%                      | 0.00%                      | 2.50%           | 0.00%  | 0.60%  | 1.10%            | 85.90% | 9.90%  |        |  |
|                | lī -                 | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%          | 0.00%                      | 0.00%                      | 0.00%           | 0.00%  | 0.10%  | 98.80%           | 0.20%  | 0.90%  | - 0.2  |  |
| ,              | (WW)ı -              | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%          | 0.00%                      | 0.00%                      | 0.00%           | 0.00%  | 92.00% | 0.20%            | 1.20%  | 6.60%  |        |  |
|                | (ZZ) <sub>si</sub> - | 0.20%  | 0.30%  | 0.00%  | 0.00%  | 0.00%          | 0.00%                      | 0.00%                      | 0.30%           | 99.20% | 0.00%  | 0.00%            | 0.00%  | 0.00%  |        |  |
| True           | (ZZ) <sub>1</sub> -  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%          | 0.30%                      | 0.00%                      | 72.80%          | 0.00%  | 0.40%  | 4.90%            | 14.60% | 7.00%  | - 0.4  |  |
| e proces       | Hss -                | 1.00%  | 2.20%  | 11.20% | 4.50%  | 7.70%          | 1.00%                      | 72.40%                     | 0.00%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  |        |  |
| s              | Ηττ -                | 0.10%  | 0.80%  | 0.10%  | 0.00%  | 0.00%          | 97.80%                     | 0.70%                      | 0.50%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  | - 0.6  |  |
|                | Hww-                 | 1.00%  | 4.30%  | 7.20%  | 16.80% | 64.80%         | 0.10%                      | 5.80%                      | 0.00%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  |        |  |
|                | Hzz -                | 8.70%  | 6.10%  | 9.40%  | 30.60% | 33.80%         | 0.20%                      | 11.20%                     | 0.00%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  |        |  |
|                | Hgg -                | 3.30%  | 4.20%  | 45.40% | 7.80%  | 18.00%         | 0.70%                      | 20.60%                     | 0.00%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  | - 0.8  |  |
|                | Hcc -                | 6.90%  | 63.10% | 5.50%  | 3.70%  | 7.90%          | 2.40%                      | 10.40%                     | 0.10%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  |        |  |
|                | Hbb -                | 70.20% | 16.20% | 2.20%  | 7.30%  | 2.10%          | 0.80%                      | 1.20%                      | 0.00%           | 0.00%  | 0.00%  | 0.00%            | 0.00%  | 0.00%  |        |  |

# 13-classification results

The branching fraction of  $H \rightarrow s\bar{s}$  is measured to be <1.2% @ 95% CL.