
CP violation searches in $D \rightarrow hh\pi^0$ decays @ CEPC

Shanzhen Chen Jinfei Wu, Shi Wang

13 June 2025

CEPC Tera-Z mode

- CEPC operation modes
 - 50 MW scenario
 - Z decay modes:

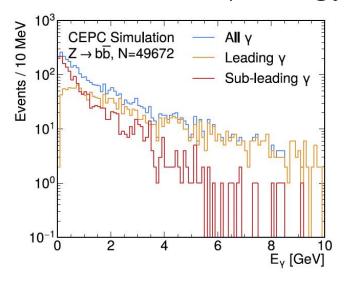
$$c\overline{c}$$
 (12.03 ± 0.21)% $b\overline{b}$ (15.12 ± 0.05)%

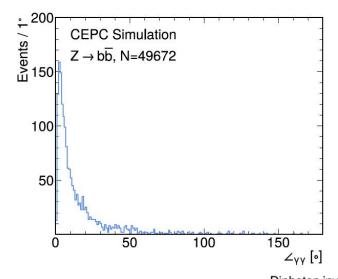
Operation mode	Z factory	WW threshold	Higgs factory	$tar{t}$
$\sqrt{s} \; (\text{GeV})$	91.2	160	240	360
Run time (year)	2	1	10	5
Instantaneous luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1}, \text{ per IP})$	191.7	26.7	8.3	0.83
Integrated luminosity $(ab^{-1}, 2 \text{ IPs})$	100	6.9	21.6	1
Event yields	4.1×10^{12}	2.1×10^{8}	4.3×10^6	0.6×10^6

- Heavy flavour particle yields
 - One of the largest heavy flavour samples from e^+e^- collider

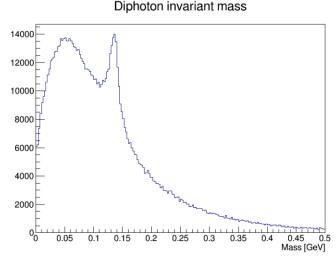
Particle	BESIII	Belle II (50 ${\rm ab}^{-1}$ on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
$B^0,ar{B}^0$	-	5.4×10^{10}	3×10^{13}	4.8×10^{11}
B^\pm	-	$5.7 imes 10^{10}$	3×10^{13}	4.8×10^{11}
$B_s^0,ar{B}_s^0$	-	$6.0 \times 10^8 $ (5 ab ⁻¹ on $\Upsilon(5S)$)	1×10^{13}	1.2×10^{11}
B_c^\pm	-	-	1×10^{11}	$7.2 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	-	-	2×10^{13}	1×10^{11}
D^0, \bar{D}^0	1.2×10^{8}	4.8×10^{10}	1.4×10^{15}	8.3×10^{11}
D^\pm	1.2×10^8	$4.8 imes 10^{10}$	6×10^{14}	4.9×10^{11}
D_s^\pm	1×10^7	$1.6 imes 10^{10}$	$2 imes 10^{14}$	1.8×10^{11}
Λ_c^\pm	0.3×10^7	1.6×10^{10}	2×10^{14}	6.2×10^{10}
$ au^+ au^-$	3.6×10^8	4.5×10^{10}		1.2×10^{11}
		·		

CP violation in Charm sector

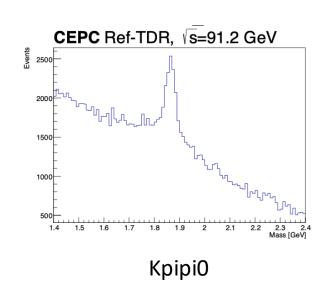

- CP violation in charm sector expected: 10⁻² to 10⁻³, much smaller than in b sector
 - Statistics matters in the searches of CP violation
- The only experimental observation of charm CP violation is from LHCb
 - $\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$, from two-body decays
- Multi-body decays can help to understand the source of CP violation
 - CP violation originates from interferences of at least two decay amplitudes, decay phase space can identify the interfering resonances
 - Some multi-body decays, i.e. $D \to hh\pi^0$ has larger branching fraction than two-body decays
- PID, p, E, ... of final state particles, Decay vertices, π^0 reconstruction

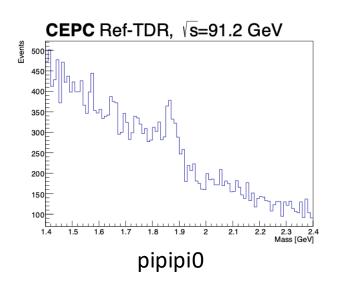

Reconstruct $D \rightarrow hh\pi^0$ decays at CEPC detector

- MC sample produced from $e^+e^- \rightarrow Z \rightarrow b\bar{b}$ at $\sqrt{s} = 91.2 \text{ GeV}$
 - /cefs/higgs/zhangkl/Production/25036/E91.2_eebb/Reco/rec_E91.2_eebb_*.ro ot
 - The version of CEPCSW is tdr.25.3.2
- Test with 160k collisions
 - Number of truth D^0 : 211231
 - Number of truth $D^0 \rightarrow K^-\pi^+\pi^0$: 23842
 - Number of truth $D^0 \rightarrow \pi^- \pi^+ \pi^0$: 3215


Step 1: π^0 reconstruction

• Truth distribution of γ energy and open angle between 2 γ 's

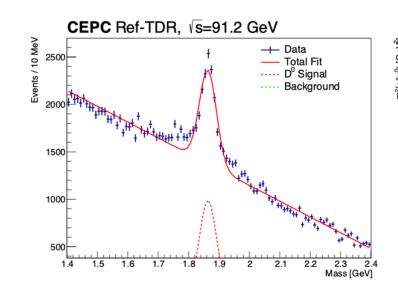

- Select one γ in PFOs with E > 0.5 GeV, then combine a second γ within 10 degrees of open angle
 - Select diphoton between 0.12 and 0.15 GeV as π^0 s

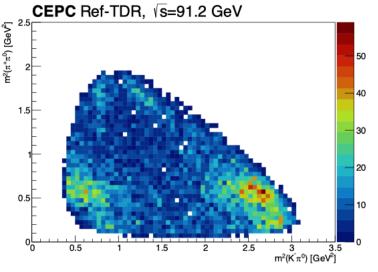


Step 2: combining π^0 with two other tracks

- Two tracks:
 - Select one K(pi) track and one pi track from PFOs using PID information
 - Combine them with π^0 candidates
- Constrain PFO objects with
 - Truth D0 vertex
 - Truth track direction & angle
 - Truth track momentum distributions

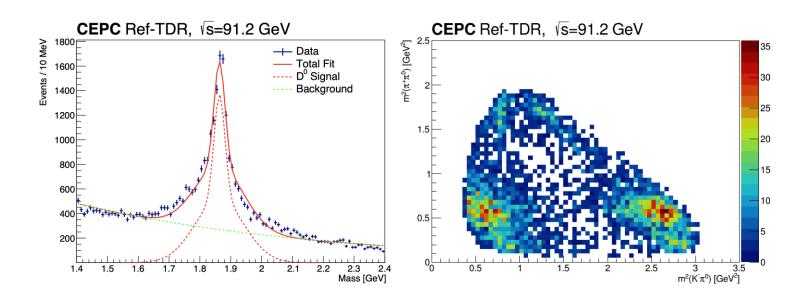
- Future optimizations:
 - MVA analysis
 - "DecayTreeFitter"





Step 3: fits and Dalitz plot

- Clear D0 peak
 - Purity $\sim 20\%$, eff $\sim 20\%$
- Clear K* and rho resonance structures in Dalitz plot


- Nuisance asymmetries not considered, systematics not considered
- Future step:
 - Fits to Dalitz plane,
 - Identify resonance fractions

A check: look at events with truth information

- Check Truth $D \to hh\pi^0$ tracks, only reconstruct PFO objects has similar momenta as Truth tracks
 - Ideally this purity should be achievable if we select cleverly
 - Purity $\sim 70\%$, eff $\sim 15\%$

CP violation prospects at **CEPC**

- CEPC generally do not have advantages in statistics for charm hadrons compare to LHCb
- However, CEPC can have much higher efficiency with π^0 s

Decays	$\mathrm{LHCb}\ (\ 6\ \mathrm{fb^{-1}})$	LHCb (300 fb^{-1})	CEPC (4 Tera Z)
D^{*+}	4.7×10^{12}	2.4×10^{14}	4.6×10^{11}
D^0 from D^{*+}	3.2×10^{12}	1.6×10^{14}	3.1×10^{11}
$D^{*+} \to (D^0 \to K^- K^+) \pi^+$	1.6×10^{10}	$6.5 imes 10^{11}$	1.3×10^{9}
$D^{*+} \to (D^0 \to \pi^- \pi^+) \pi^+$	4.6×10^{9}	$2.3 imes 10^{11}$	$4.5 imes 10^8$
$D^{*+} \to (D^0 \to K^- \pi^+) \pi^+$	1.6×10^{11}	6.3×10^{12}	1.2×10^{10}
$D^{*+} \to (D^0 \to \pi^- \pi^+ \pi^0) \pi^+$	4.8×10^{10}	2.4×10^{12}	$4.6 imes 10^9$
$D^{*+} \to (D^0 \to K^- \pi^+ \pi^0) \pi^+$	4.6×10^{11}	2.3×10^{13}	4.4×10^{10}
Reco. & Sel. $D^0 \to K^-K^+$	$5.8 \times 10^7 [147]$	2.9×10^{9}	1.3×10^{8}
Reco. & Sel. $D^0 \to \pi^- \pi^+$	$1.8 \times 10^7 [147]$	9×10^8	4.5×10^7
Reco. & Sel. $D^0 \to K^-\pi^+$	$5.2 \times 10^8 [147]$	$2.6 imes 10^{10}$	1.2×10^9
Reco. & Sel. $D^0 \to \pi^- \pi^+ \pi^0$	$2.5 \times 10^6 [148]$	1.2×10^8	4.6×10^8
Reco. & Sel. $D^0 \to K^-\pi^+\pi^0$	$1.9 \times 10^7 [148]$	9.6×10^8	4.4×10^{9}