Rb measurement in CEPC

Why measure Rb

- $R_b = rac{\Gamma(Z o bar{b})}{\Gamma(Z o ext{had})}$
- One of fundamental parameters in Standard Model
- Rb measurement is sensitive to new physics models (e.g. SUSY)
- Benchmark to reflect vertex detector performance

FIG. 1: One-loop Feynman diagrams of gluino correction to $Z\to \bar{b}b$

1601.07758

Method of Measurement

- Event topology: two back to back particle sprays
- Produce Z to qqbar events at Z pole
- Training the JOI model
- With total 1e12 events (1e11 for low Z), estimate the mean value of Rb and the error σ
- Flavor tagging
- Get Ri and σi (i = b, c, q) by solving the overdetermined simultaneous system of equations using LSM

Model performance

With H pole samples

Current results

	Error of Rb	Error of Rc	Error of Rc	Flavor tagging method
LEP+SLC	659	3015	-	-
FCCee	2.1(0.3)	-	-	-
Template fit	1.2	2.3	2.1	LCFIPlus
Double + single 3 categories	1.3	1.4	-	ParticleNet 1e11 events
Double + single 2 categories	0.52	-	-	ParT(PFOAna) 1e10 events
Double + single 3 categories	1.32	1.51	-	ParT(PFOAna) 1e10 events

Current results

- Result is better than previous work (with 1e11 toy MC events)
- By optimizing the confusion matrix will further reduce the error
- Model used in previous table is based on Higgs pole data, newest model will bring better results

Good enough, but still lots of room to improve

Systematic uncertainty

- In current analysis, the systematic uncertainty is not included yet.
- Based on previous template fit results. Following uncertainty will be included
 - \circ Hemisphere correlation
 - Gluon splitting
 - Charm modelling
 - This affect JOI performance

Error source	ΔR ^b (10⁻ ⁵)
Statistics	1
Tracking resolution	1
Charm modeling	3
Gluon spliting	1
Hemisphere correlation	6
Total	7

Eur. Phys. J. Plus 136, 1 (2021)

$\Delta R_{\rm b}$ from Internal Error S	ources			
MC statistics	0.00092			
Resolution	0.00056			
Vertex effects on $c_{\rm b}$	0.00125			
θ effects on $c_{\rm b}$	0.00006			
ϕ effects on $c_{\rm b}$	0.00021			
Total Internal	0.00166			
$\Delta R_{\rm b}$ from External Error Sources				
$R_{\rm c}$ uncertainty	-0.00094			
D ⁺ fraction	-0.00128			
D _s fraction	-0.00017			
Λ_c fraction	+0.00045			
D ⁺ lifetime	-0.00020			
D^0 lifetime	-0.00013			
D _s lifetime	-0.00012			
Λ_c lifetime	-0.00008			
D ⁺ 1-prong decay multiplicity	+0.00045			
D ⁺ 5-prong decay multiplicity	-0.00006			
D ⁰ 0-prong decay multiplicity	-0.00004			
D ⁰ 4-prong decay multiplicity	-0.00024			
D ⁰ 6-prong decay multiplicity	0.00000			
D _s 1-prong decay multiplicity	+0.00028			
D _s 5-prong decay multiplicity	+0.00055			
$D \rightarrow K_S^0$ multiplicity	-0.00025			
$< x_E(c) >$	-0.00086			
$g \rightarrow c\bar{c}$ in $c\bar{c}$ events	-0.00001			
$g \rightarrow bb$ in $c\bar{c}$ events	-0.00003			
K_s^0 and Λ production	-0.00176			
$g \to c\bar{c}$ in uds events	-0.00018			
$g \rightarrow bb$ in uds events	-0.00015			
B fragmentation $\langle x_E(\mathbf{b}) \rangle$	+0.00032			
B lifetimes	+0.00018			
B decay multiplicity	+0.00009			
Hard gluon fragmentation	0.00010			
Total External	0.00271			

Hemisphere correlation

• Key parameter in double tag equation

Single tag: $N_1 = 2N_Z \cdot (R_b \varepsilon_b + R_c \varepsilon_c + R_{uds} \varepsilon_{uds})$

Double tag: $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_c + R_{uds} \varepsilon_{uds}^2 C_{uds})$

- Need to be study with MC samples and a fixed tagging working point
- Since JOI can distinguish b and bbar, probably the correlation can be different.

$$C_i = rac{arepsilon_{i_1}arepsilon_{i_2}}{arepsilon_{i_{1,2}}^2}$$

Impact of Hemisphere correlation

- Recent FCCee study shows the *Cb* has dependence on PV resolution
 - CEPC would have similar performance as FCCee
 - High related to vertex detector performance

- A Rb (Rc) measurement at Z pole with JOI tagger is performed
- Using the double tag method
- Statistical uncertainty is quite similar to previous studies (template fit and ParTNet)
- Next Step: to evaluate systematic uncertainties.