

R&D for KLM upgrade

Ming-Kuan Yuan¹,

Shiming Zou¹, Jie Zhang², Xiaolong Wang¹ Fudan University¹, Institute of High Energy Physics² 51st B2GM KLM Parrel Session June. 13, 2025

1

Outline

• Last B2GM:

- Development of MPT2321 back-end system:
 - ➤ 1. Development of test system

- This B2GM:
 - Test of MPT2321 back-end system:
 - > 1. Single photon spectrum
 - > 2. Signal to noise ratio
 - > 3. TDC performance
 - ➤ 4. Power consumption

Motivation

- Front end test results
 - Time resolution of 1.35m-long GNKD scintillators is less than 70 ps.
 - > 2. Time resolution of new 50cm-long GNKD

scintillators is about 45 ps.

• The development of front end is almost done.

Back end electronics is needed !!!

• The development of Back-end electronics system based on MPT2321 chip is progressing.

MPT2321 chip

Time resolution as a function of scintillator position

GNKD_4 scintillator's central position time resolution test using dual-end read out scheme

The MPT2321 chip is a SiPM signal processing SoC chip designed for high-precision time-of-flight signal processing.

Features

- > 32 input channels
- > Automatically select the range of measurement signals
- > 50ps precision 20-bit TDC
- > 12bit ADC
- Complete on-chip signal processing
- Standard IIC Bus Control
- 8b10b encoding transmission
- > Multichannel LVDS data transmission
- > 12 Mcps transmission event rate
- > High integration, low power consumption
- > 200M data transmission rate
- > The maximum charge measurement dynamic range is 2.4 nC
- Minimum detectable signal range 4fC

MPT2321 chip

Setup of test system

5

Test Results - Charge inject linearity

- Measurement Method
 - > Inject Pulse through Charge inject board
- Injected Charge: $Q = \Delta V \times C$
- Capacitor of Charge inject board
 - High-Gain mode: 47pF
 - Low-Gain mode: 1nF

Charge Injection board

Test Results - Charge spectrum

- SiPM type: S13371-6050CQ-02
- Measurement Method
 - Green LED drove by pulse signal
 - Pulse signal
 - > Width: 10 ns
 - > Amplitude: 1.070 V
 - Using external trigger mode
 - Same frequency with LED

driver pulse

Waveform from AM_OUT

Test Results - Signal-to-noise ratio (SNR)

- Signal-to-noise ratio
 - Ratio of the gain and the standard deviation of the pedestal

Test Results - TDC performance

- Cable delay method
 - The difference of the length of two cable is 2m
 - Time difference
 - oscilloscope: 9.47 ns
 - MPT2321: 9.33 ns
- Time resolution: ~150 ps
- Frequency of TDC clock: 80MHz

Cable delay measured by oscilloscope

Test Results - Power consumption

- Measurement method
 - > The board is set in a thermostat
 - > Monitor the current of power supply interface
- The Power consumption is stable at -40 $^{\circ}$ C ~ 20 $^{\circ}$ C

Power consumption vs Temperature

Setup

Summary:

- $\checkmark\,$ Test of Basic performance of MPT2321
 - ✓ Charge inject linearity
 - ✓ Charge spectrum
 - $\checkmark\,$ Signal to noise ratio
 - \checkmark Power consumption

Plan:

□ Fix known bug of firmware (decode module)

Develop trigger logic

Thanks for your attention!!!

Backup

- Analog circuit
 - 12bits ADC module
 - > 50ps precision TDC
- Digital circuit
 - Control of chip status
 - Data processing,
 compression and output

Signal process procedure of MPT2321

Analog signal process

- Two Gain circuit
 - > Four mode for high gain
 - > Four mode for low gain
- Two threshold comparator
 - High-threshold comparator determine gain
 - Low-threshold comparator determine arrival time and trigger
- Event validity flag (Validation)
- TDC trigger signal (TRIG)
- Analog monitor (AM)

Signal process procedure of MPT2321

Digital signal process

- ADC and TDC data from each channel
 - ➤ 40 bits
- 8b10b encoder
 - > 40 bits to 50 bits
- LVDS data transmission
 - > Three transmission mode
 - > Maximum event rate: ~ 1/(60 Tsys)

Structure of MPT2321 test system

- MPT2321 test board
 - > 160 MHz Clock by SI5345
 - Important pin can be monitored through SMA interface
- FPGA
 - Communication Core: SiTCP
 - Configure MPT2321 through UDP
 - Decode, deformat and receive data through TCP
- PC
 - Configure script
 - DAQ script (Multithread)
 - Language: Python

IEEE transactions on nuclear science, 2008, 55(3): 1631-1637.

Optimization of configure parameter

- 基线调整
 - 调节SH_ped,高增益整形输出
 基线为300mV左右
 - 调节DIFF_ped,选择后N输出 基线为1.7V左右
 - 调节CM_ped,选择后P输出基线
 为300mV左右
- 扫描最优低阈值
- 扫描hold delay参数

采样点 ADC开启 达峰时间 增益选择输出 TRIG Validation 图 2.3 ADC 信号采样示意图

• 自动化脚本进行扫描

25

30

35

Optimization of configure parameter

● Hold delay扫描

