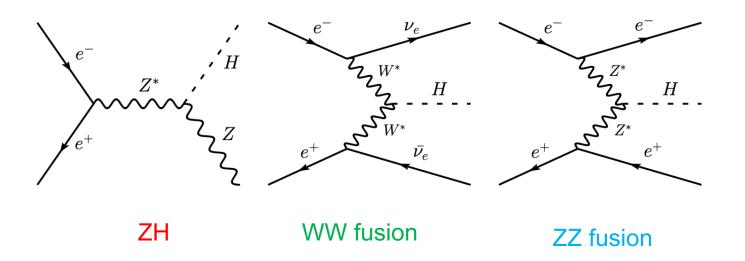


WW fusion measurement at the CEPC 360 GeV Runs

Hongbo Liao¹, Yingqi Hou¹, Taozhe Yu¹, Kaili Zhang¹, Gang Li²

Approval meeting of Physics Benchmarks for RefTDR

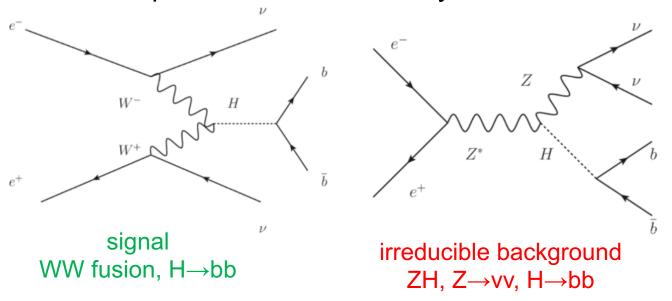

June 18th

Motivation

- In CEPC, Three are three main production of Higgs: ZH, WW fusion and ZZ fusion
- One indirect method to measure Higgs width is relate to ZH and WW fusion process
- Higgs width measured precision is relate to WW fusion, H→bb process

$$\Gamma_H/\Gamma_H^{ ext{SM}} = rac{\mu_{ZH}^2 \mu_{WW ext{fusion}, H o bb}}{\mu_{ZH, H o WW^*} \mu_{ZH, H o bb}}$$

 Γ_H^{SM} : Higgs width predicted by SM μ : the signal strength


- ➤ Measure the WW fusion @ 360GeV
 - Standalone 240 GeV 20 ab⁻¹ gives 1.5%, while 360 GeV 1 ab⁻¹ alone gives 3.3%
 - These 2 points are independent, combine these two mass point giving <1%
 - Adding one mass point would significantly improve the constrain

The Challenge

- The most challenge is how to measure the irreducible background: ZH, $Z\rightarrow vv$, $H\rightarrow bb$
- These two process have absolutely same final states and have interference term

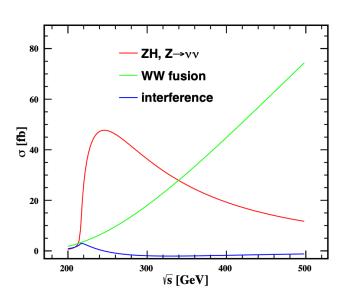


table: the fraction of ZH, WW fusion and Inter. in total

- In 360GeV, Inter./WW fusion is -5.8%
- So if we want to make Higgs width measured precision ~ 1%, the inter. can't be ignore

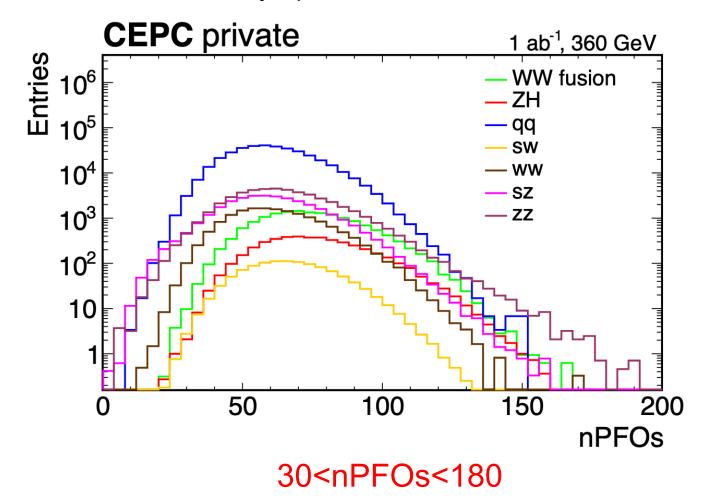
	$\sqrt{s}(GeV)$	ZH(%)	WW fusion(%s)	Inter.(%s)	Inter./WW fusion
	240	87.5	11.7	0.8	6.8%
נ	250	86.3	14.3	-0.6	-4.3%
	360	43.7	59.8	-3.5	-5.8%

Monte Carlo Sample

- ➤ Center of mass energy: 360 GeV
- ➤ Higgs sample
 - 100k, WW fusion, H→bb:
 - 100k , ZH, Z→vv, H→bb
 - Samples for interference can't not be generated by current software, but we can produce the inclusive vvH, H→bb sample, so the interference term can be calculate:

$$\sigma_{\rm interference} = \sigma_{\rm inclusive}{}_{\nu_e\nu_eH} - \sigma_{WW{\rm fusion}} - \sigma_{ZH\to\nu_e\nu_eH}$$

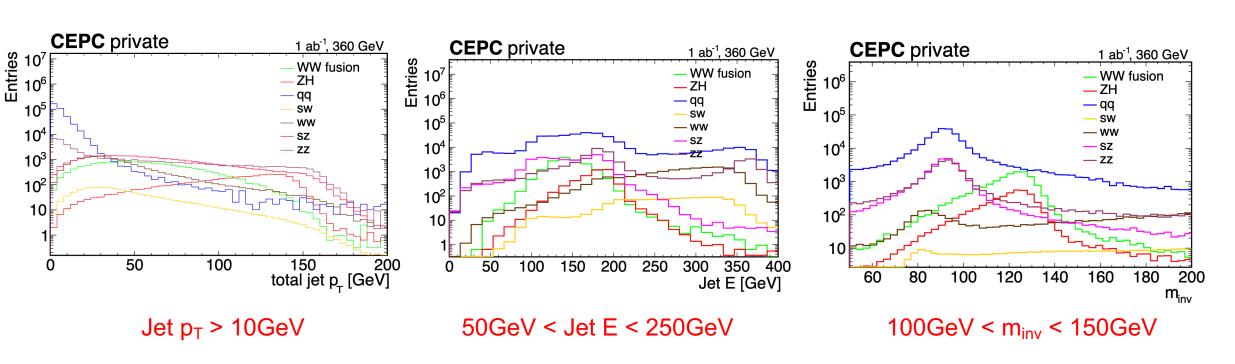
- ➤SM sample
 - Integral luminosity: 1 ab⁻¹
 - 2 fermions: ee→qq
 - 4 fermions: ww, sw, zz, sz
- ➤ All samples are fully simulated with latest CEPCSW



Selection(I)

➤ Number of particle flow objects distribution

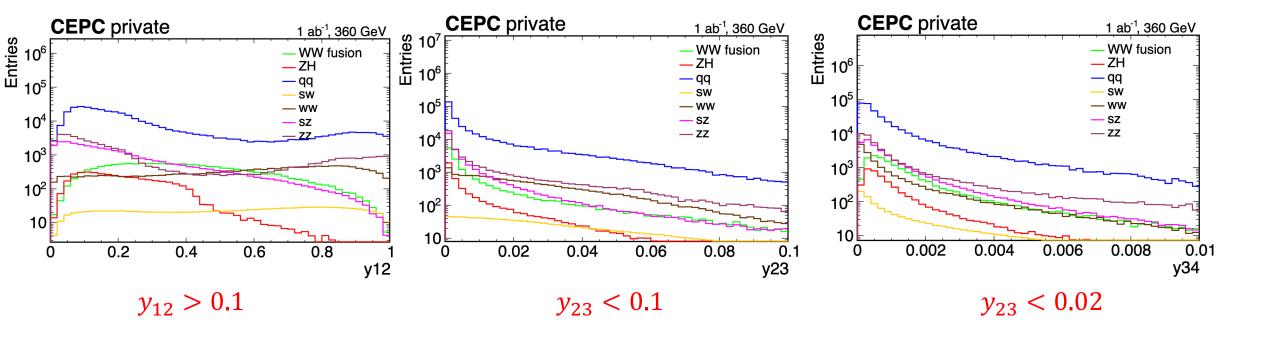
- Hadronic final state has more nPFOs than leptonic final state
- Cut: 30<nPFOs<180 to veto the fully leptonic final states



Selection(Ⅱ)

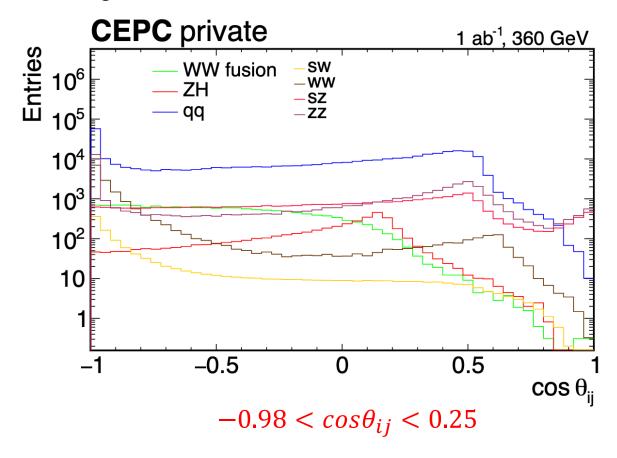
➤ Kinematic variable

- Sum of jets pt: >10 GeV
- Sum of jets energy:[50, 250]GeV
- jets invariant mass: [100, 150]GeV, Higgs mass window
 - ✓ can remove most of qq, W and Z background events



Selection(Ⅲ)

- $> y_{i(i+1)}$: a variable related to the jet reconstruction process
 - the "distance" between the two jets merged while reducing the number of jets from (i + 1) jets to i jets
 - A di-jet event usually has big y_{12} value and small y_{23} , y_{34} value



Selection(IV)

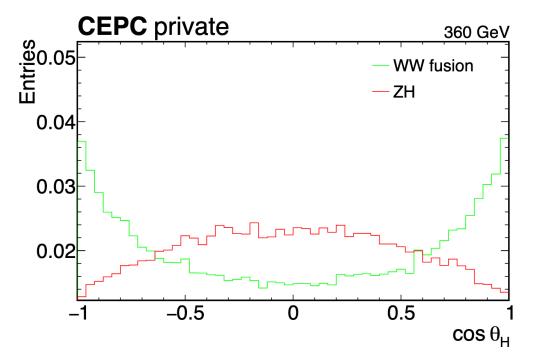
➤ The cosine of angle between two jets

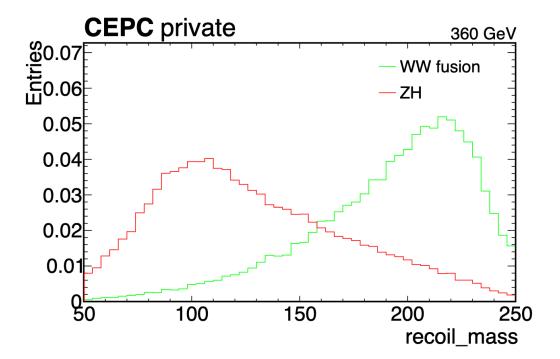
- $-0.98 < cos\theta_{ij} < 0.25$
- lower bound to veto remained qq events
- upper bound according to distribution

Cutflow

- WW fusion, H→bb and ZH process retain >50% efficiency after cut
- 2-fermion backgrounds are suppressed to 0.2%
- Other backgrounds become negligible

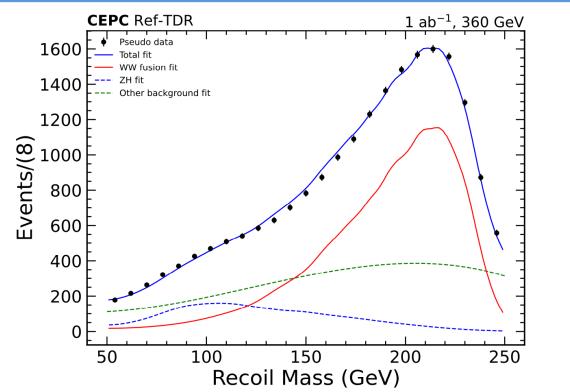
Process	WW fusion	ZH	qq	SW	WW	SZ	ZZ
Pre-selection	17209	4930	2123258	117427	1686000	178340	266300
30 < NPFO < 180	17196	4927	2103067	117105	1674708	172670	262188
$100\mathrm{GeV} < E < 250\mathrm{GeV}$	16667	4860	1501935	44023	468516	171306	151500
$p_T > 10 \mathrm{GeV}$	16272	4847	249395	43119	456289	148885	145116
Lepton-veto	15751	4611	245141	16366	187787	147061	141445
$100\mathrm{GeV} < m_{\mathrm{total}} < 150\mathrm{GeV}$	14291	4055	62897	6744	47649	21893	24613
$50\mathrm{GeV} < m_{\mathrm{recoil}} < 250\mathrm{GeV}$	14092	3765	40763	3674	26876	16802	14198
$y_{12} > 0.10$	12982	3030	33885	1707	12636	13114	9297
$-0.99 < \cos_{ij} < 0.25$	12742	2789	25714	1368	8154	10489	5658
b-tag	11499	2517	4650	13	78	1897	1023

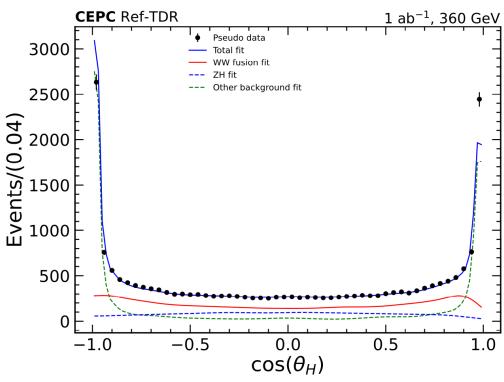

- b-tag:
 - We training a model which can make 95% efficiency + 1% background rejection in Hqq
 - Have not imported it in formal CEPCSW



Signal extract strategy

- There are two good variables to distinguish the WW fusion and ZH, H→bb(irreducible background)
 - √ Higgs recoil mass
 - The recoil mass is calculated by $m_{recoil} = \sqrt{(\sqrt{s} E_H)^2 P_H^2}$
 - E_H and P_H is reconstructed Higgs energy and momentum
 - √ Higgs polar angle
 - $\cos\theta_H$

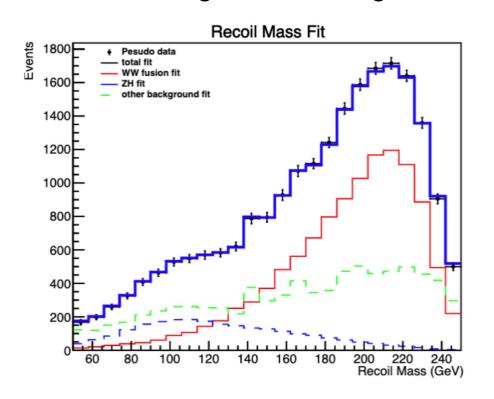


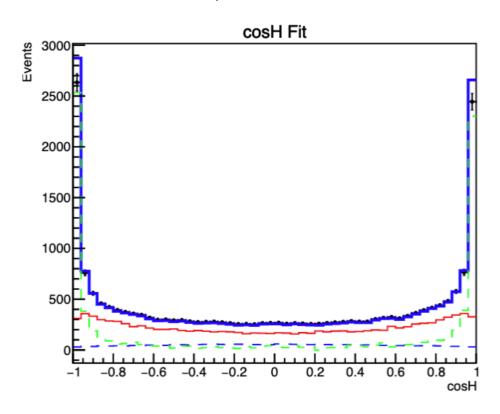

We will use fitting to extract the signal

Extract signal

> 1D fit to estimate the

- Pseudo data = inclusive sample + 2/4 fermion backgrounds
- Other background = interference + 2/4 fermion backgrounds
- WW fusion and ZH PDFs are get from MC and use Kernel Density Estimation method
- Other background pdf is polynomial function


- > The signal strength is determined by fitting
- > The precision of signal strength
 - Recoil mass: 2.9%
 - $\cos\theta_H$: 4.5%



2D fit

• We also fit signal and background in (recoil mass, $\cos \theta_H$) 2 dimension.

- > The precision of signal strength
 - (Recoil mass, $\cos \theta_H$): 1.1%

Summary

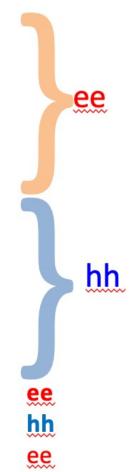
The precision of WW fusion strength relate to higgs width measured precision

$$\Gamma_H/\Gamma_H^{ ext{SM}} = rac{\mu_{ZH}^2 \mu_{WW ext{fusion},H o bb}}{\mu_{ZH,H o WW^*} \mu_{ZH,H o bb}}$$

- We study the WW fusion measurement at 360GeV
 - 360 GeV run offers an independent measurement
 - The combined precision of the two runs can reach a remarkable precision.
- Study the selections
- Do fit in Higgs recoil mass and polar angle spectrum to get precision of signal strength
 - Recoil mass: 2.9%
 - $\cos \theta_H$: 4.5%
 - 2D: 1.1%
- Working in progress
 - Use machine learning to optimize selection
 - Apply the b tagging in formal analysis
 - Study the systematics

Thank you for your attention

中国科学院為維物程研究所 Institute of High Energy Physics Chinese Academy of Sciences


Backup

FCC

Collider	HL-LHC	$FCC-ee_{240\rightarrow 365}$	FCC-INT
Lumi (ab ⁻¹)	3	5 + 0.2 + 1.5	30
Years	10	3 + 1 + 4	25
$g_{\rm HZZ}$ (%)	1.5	0.18 0.17	0.17/0.16
g_{HWW} (%)	1.7	0.44 0.41	0.20/0.19
g_{Hbb} (%)	5.1	0.69 0.64	0.48/0.48
g_{Hcc} (%)	$_{\rm SM}$	1.3 1.3	0.96/0.96
g_{Hgg} (%)	2.5	1.0 / 0.89	0.52/0.5
$g_{\mathrm{H}\tau\tau}$ (%)	1.9	0.74 0.66	0.49/0.46
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9 3.9	0.43/0.43
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9 1.2	0.32/0.32
$g_{\mathrm{HZ}\gamma}$ (%)	11.	- / 10.	0.71/0.7
g_{Htt} (%)	3.4	10. 3.1	1.0/0.95
κ_{λ}	+.2926	0.2-0.3	0.03
Γ _H (%)	SM	1.1	0.91
\		3	3
m _H (MeV)	30-50		18-70
BR_{inv} (%)	1.9	0.19	0.024
BR_{EXO} (%)	SM(0.0)	1.1	1

Higgs cross section

Table 17: The information of the Higgs signal samples

				20 2 1	
Process	Final states	σ [fb]	ILC result [fb]	Events expected	Events generated
ffh_X	$h,f,ar{f}$	211.01	208.77	1065619	1065111
qqh_X	h,q,\bar{q}	143.39	141.99	724097	723755
uuh_X	h, u, \bar{u}	24.52	-	123802	123733
ddh_X	h,d,\bar{d}	31.45	-	158830	158742
cch_X	h, c, \bar{c}	24.51	-	123766	123711
ssh_X	h, s, \bar{s}	31.46	-	158891	158803
bbh_X	h,b,\bar{b}	31.18	-	157479	157412
e1e1h_X	h, e^-, e^+	7.60	7.19	38357	99938
$e2e2h_X$	h,μ^-,μ^+	7.10	7.03	35849	99952
$e3e3h_X$	h, au^-, au^+	7.08	7.02	35770	99951
nnh_X	$h, u_{e,\mu, au}, ar{ u}_{e,\mu, au}$	48.96	48.43	247273	247167
$n1n1h_X$	$h, \nu_e, ar{ u}_e$	20.91	1 	105574	105533
$n2n2h_X$	$h, u_{\mu}, ar{ u}_{\mu}$	14.03	-	70862	99961
$n3n3h_X$	$h, \nu_{ au}, ar{ u}_{ au}$	14.01	_	70773	99944

Two fermions background cross section

Table 18: The information of the two fermions background samples

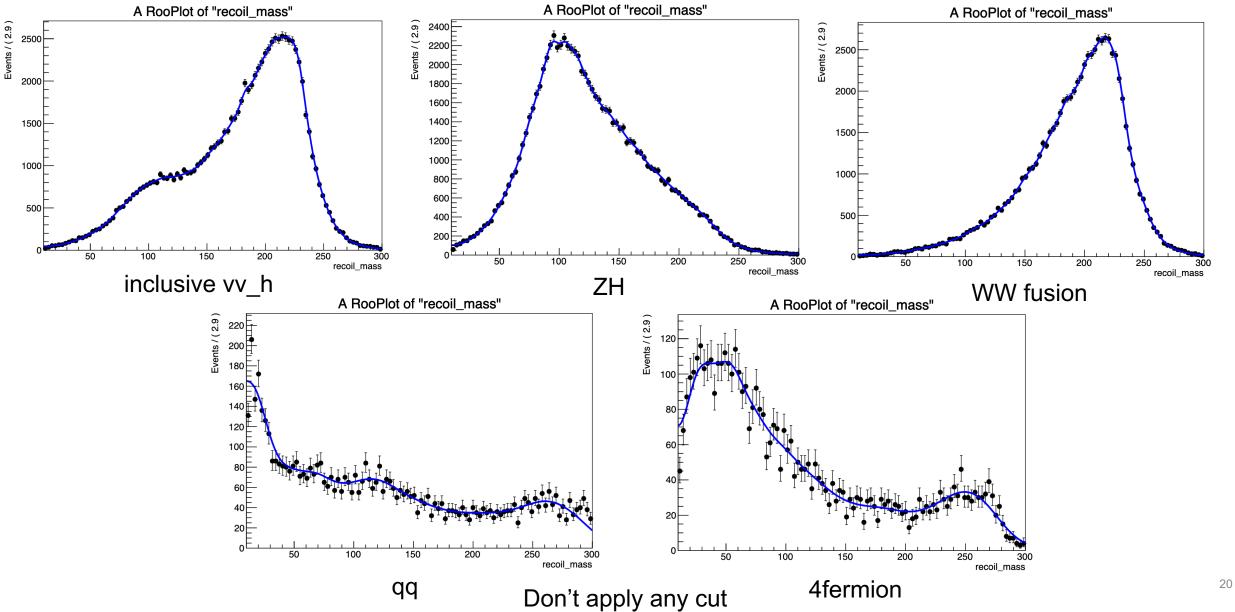
Process	Final states	σ [fb]	ILC result [fb]	Events expected	Events generated
uu	u, ū	9995.35	10110.43	50476527	50476526
dd	d,\bar{d}	9808.71	10010.07	49533965	49533961
cc	$c, ar{c}$	9974.20	10102.75	50369725	50369718
SS	S, \overline{S}	9805.39	9924.40	49517234	49517231
bb	b,\bar{b}	9803.04	9957.70	49505372	49504516
qq	$q,ar{q}$	49561.30	50105.35	250284565	250283714
e2e2	$\mu^-\mu^+$	4967.58	4991.91	25086253	25086255
e3e3	$ au^- au^+$	4374.94	4432.18	22093447	22093445
bhabha	e^-, e^+, γ	24992.21	24937.95	126210660	126210654

Four fermions cross section(1)

Table 19: The information of the four fermions background samples

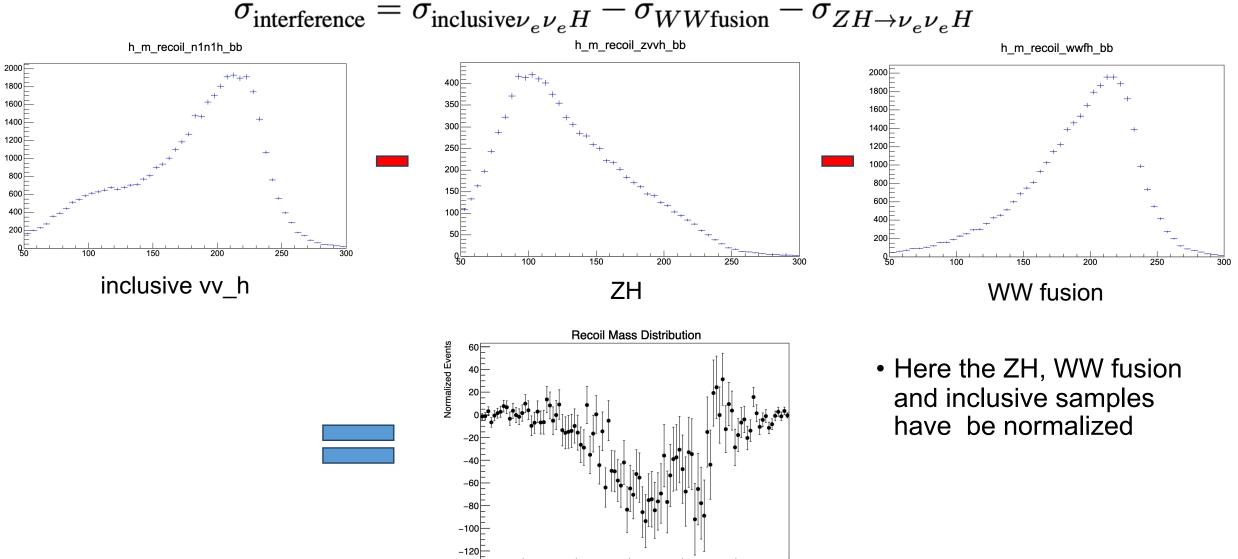
Process	Final states	σ [fb]	ILC result [fb]	Events expected	Events generated
zz_h0utut	up, up, up, up	83.09	83.05	419604	419584
zz_h0dtdt	down, down, down, down	226.20	226.42	1142310	1142270
zz_h0uu_notd	uq, uq, (sq, bq), (sq, bq)	95.65	96.00	483032	483045
zz_h0cc_nots	cq, cq, (dq, bq), (dq, bq)	96.04	96.28	485002	485016 ☑
zz_sl0nu_up	$nu_{\mu,\tau}, nu_{\mu,\tau}, up, up$	81.72	81.86	412686	412709
zz_sl0nu_down	$nu_{\mu,\tau}, nu_{\mu,\tau}, down, down$	134.86	135.48	681043	681041
zz_sl0mu_up	mu, mu, up, up	82.38	83.10	416019	416008
zz_sl0mu_down	mu, mu, down, down	127.96	128.84	646198	646181
zz_sl0tau_up	tau, tau, up, up	39.78	40.02	200889	200882
zz_sl0tau_down	tau, tau, down, down	64.30	64.64	324715	324709
zz_104tau	$ au^-, au^+, au^-, au^+$	4.38	4.41	22119	100000
zz_104mu	μ^-,μ^+,μ^-,μ^+	14.57	14.63	73578	100000
zz_10taumu	$\tau^-,\tau^+,\mu^-,\mu^+$	17.54	17.73	88577	100000
zz_10mumu	$\nu_\tau,\bar{\nu}_\tau,\mu^-,\mu^+$	18.17	18.34	91758	100000
zz_10tautau	$\nu_\mu,\bar{\nu}_\mu,\tau^-,\tau^+$	9.20	9.27	46460	100000
ww_h0cuxx	uq, cq, down, down	3395.48	3413.36	17147189	17147188
ww_h0uubd	uq, uq, dq, bq	0.05	0.05	252	100000
ww_h0uusd	uq, uq, sq, bq	165.94	167.21	837997	838010
ww_h0ccbs	cq, cq, sq, bq	5.74	5.75	28987	100000
ww_h0ccds	cq, cq, sq, dq	165.57	166.30	836128	836128
ww_sl0muq	mu, nu, up, down	2358.69	2369.79	11911394	11911396
ww_sl0tauq	tau, nu, up, down	2351.98	2368.64	11877519	11877519
ww_1011	$mu, tau, nu_{\mu}, nu_{ au}$	392.96	394.73	1984448	1984437

Four fermions cross section(2)



zzorww_h0udud	uq, uq, dq, dq	1570.40	1579.63	7930514	7930514
zzorww_h0cscs	cq, cq, sq, sq	1568.94	1572.41	7923141	7923140
zzorww_10mumu	$mu, mu, nu_{\mu}, nu_{\mu}$	214.81	216.12	1084790	1084777
zzorww_10tautau	$tau, tau, nu_{\tau}, nu_{\tau}$	205.84	206.38	1039492	1039510
sze_10tau	e^-,e^+, au^-, au^+	150.14	150.30	758207	758206
sze_10mu	e^-,e^+,μ^-,μ^+	852.18	850.70	4303527	4303528
sze_10nunu	$e^-, e^+, \nu_{\mu,\tau}, \bar{\nu}_{\mu,\tau}$	29.62	29.41	149581	149583
sze_s10uu	e, e, up, up	195.86	195.37	989093	989109
sze_s10dd	e, e, down, down	128.72	128.20	650036	649940
sznu_10mumu	$ u_e, \bar{\nu}_e, \mu^-, \mu^+ $	43.33	43.41	218816	218824
sznu_10tautau	$ u_e, ar{ u}_e, au^-, au^+$	14.57	14.61	73578	100000
sznu_s10nu_up	v_e, \bar{v}_e, up, up	56.09	55.95	283254	283254
sznu_s10nu_down	$v_e, \bar{v}_e, down, down$	91.28	90.95	460964	460961
sw_10mu	$e, nu_e, mu, nu_{\mu,\tau}$	429.20	430.64	2167446	2167447
sw_10tau	$e, nu_e, tau, nu_{\mu,\tau}$	429.42	430.27	2168556	2168556
sw_sl0qq	$e, nu_e, up, down$	2579.31	2581.03	13025535	13025535
szeorsw_101	$e^-, e^+, \nu_e, \bar{\nu}_e$	249.34	249.74	1259167	1259165

Sample Fit

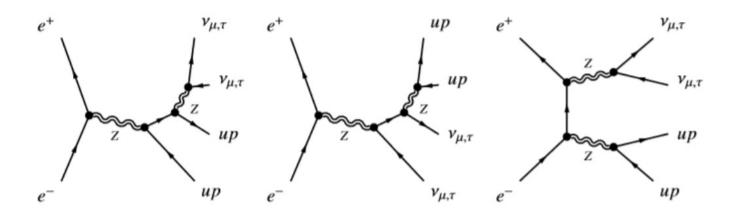


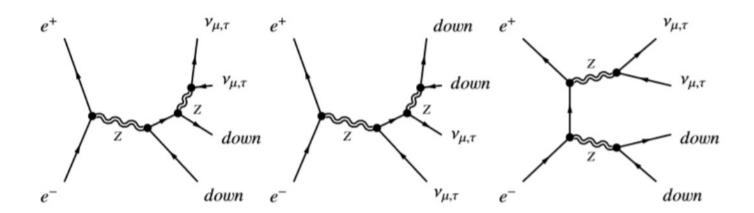
Interference

100

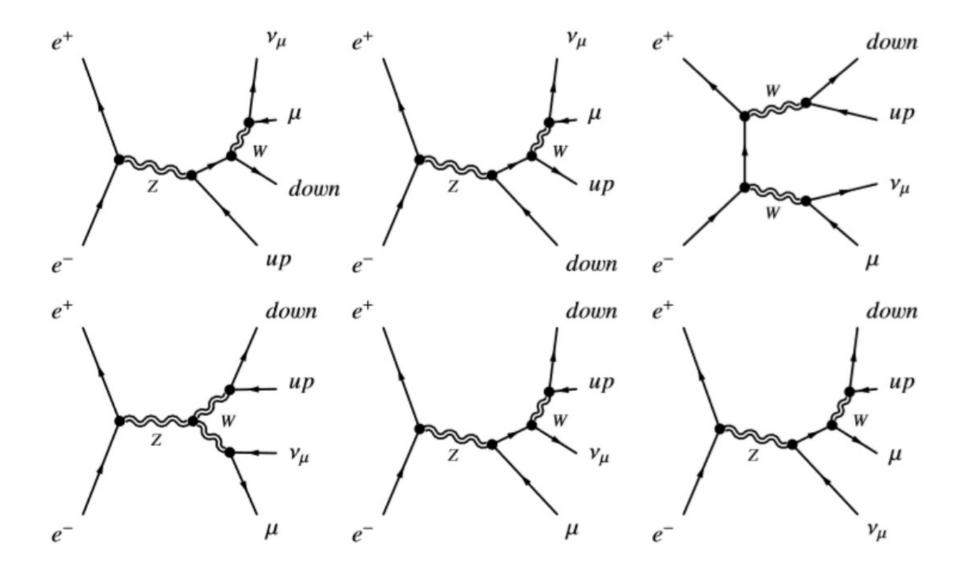
150

200

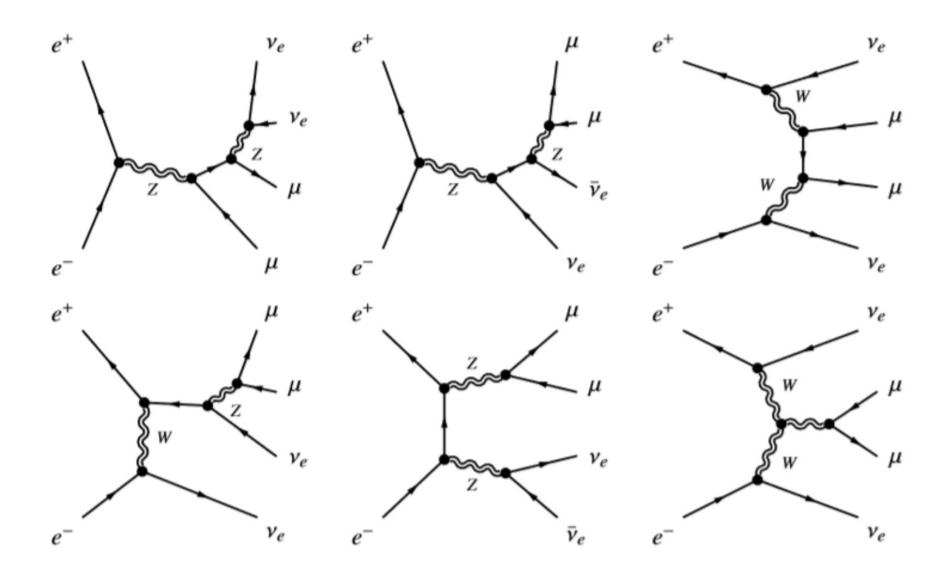

250 300 Recoil Mass [GeV]


ZZ background Feynman diagram

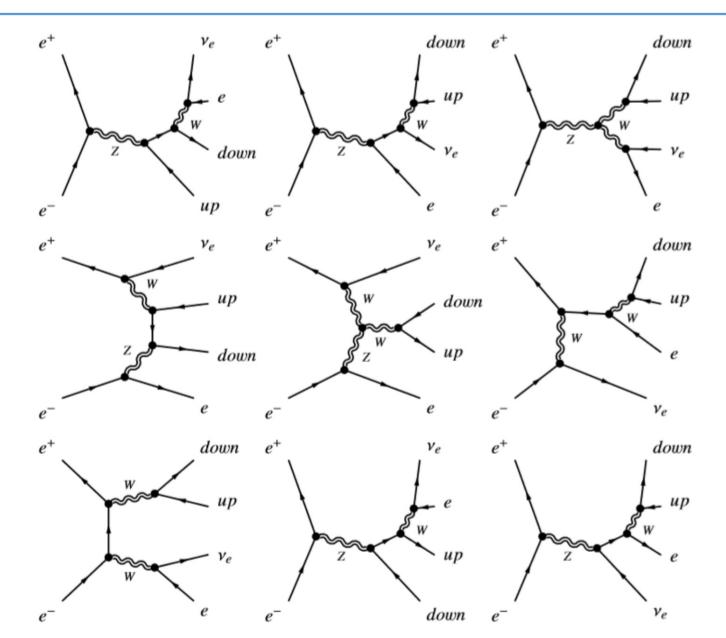
185 6.5 zz_sl0nu_up


186 6.6 zz_sl0nu_down

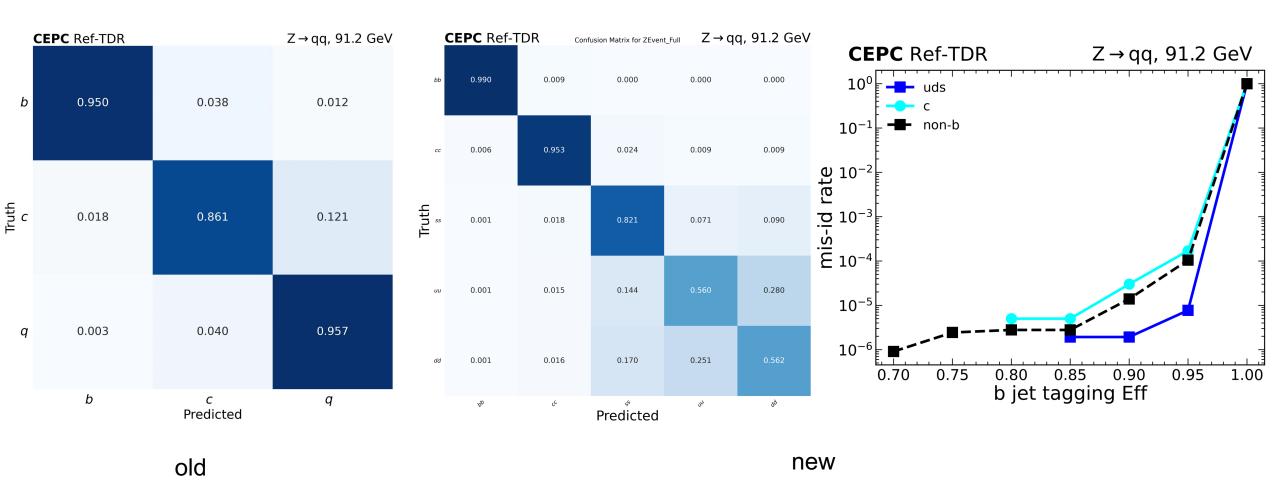
WW background Feynman diagram



SZ background Feynman diagram



SW background Feynman diagram



b tagging efficiency

The fit result

Recoil mass 2.93%

N_others_bkg	= 7801.47	+/- 468.19	(limited)
N_wwfh_bb	= 10628.3	+/- 311.763	(limited)
N_znnh_bb	= 2034.62	+/- 203.194	(limited)

• cosH 4.57%

```
N_others_bkg = 8207.53 +/- 130.431 (limited)
N_wwfusionh_bb = 9237.98 +/- 422.483 (limited)
N_zn1n1h_bb = 4000.89 +/- 366.28 (limited)
```

• 2D 1.1%

N_others_bkg	= 7943.55	+/- 117.897	(limited)
N_wwfusionh_bb	= 11149.7	+/- 139.574	(limited)
N_zn1n1h_bb	= 2349.41	+/- 80.503	(limited)