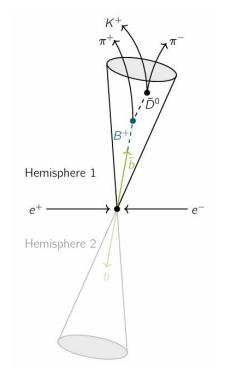

Rb measurement in CEPC

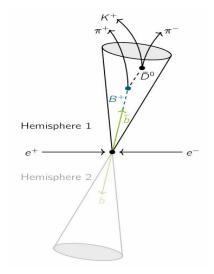

Current method

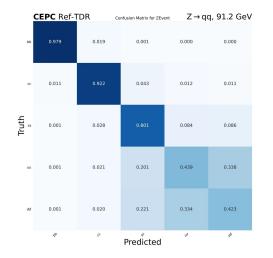
- Event topology: two back to back particle sprays
- Produce Z to qqbar events at Z pole
- Training the JOI model
- With total 1e12 events (1e11 for low Z), estimate the mean value of Rb and the error σ
- Flavor tagging
- Get Ri and σi (i = b, c, q) by solving the overdetermined simultaneous system of equations using LSM

Single tag: $N_1 = 2N_Z \cdot (R_b \varepsilon_b + R_c \varepsilon_c + R_{uds} \varepsilon_{uds})$

Double tag: $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_c + R_{uds} \varepsilon_{uds}^2 C_{uds})$

Hemisphere correlation


• Key parameter in double tag equation

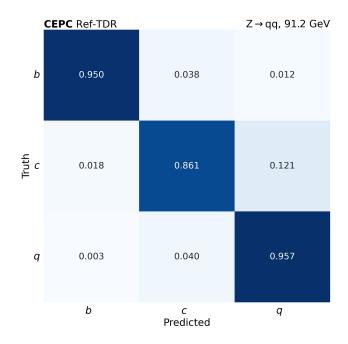

Single tag: $N_1 = 2N_Z \cdot (R_b \varepsilon_b + R_c \varepsilon_c + R_{uds} \varepsilon_{uds})$

Double tag: $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_c + R_{uds} \varepsilon_{uds}^2 C_{uds})$

- Need to be study with MC samples and a fixed tagging working point
- Since JOI can distinguish b and bbar, probably the correlation can be different.
- Using Z→bb/cc/qq tagger may get rid of this correlation

$$C_i = rac{arepsilon_{i_1}arepsilon_{i_2}}{arepsilon_{i_{1,2}}^2}$$

3


How to get efficiency

• Tag result is assigned by selecting highest score among p_{b} , p_{c} , $p_{a'}$,

b-tagged \leftarrow max(p_b, p_c, p_q)= p_b

- Imply a selection applied, not straight forward and stable, need to evaluate how large impact with systematic uncertainty to efficiency
- Another possibility to get efficiency (weight event with probability)

$$egin{bmatrix} \sum_{n_b} p(b|b)/n_b & \sum_{n_b} p(c|b)/n_b & \sum_{n_b} p(q|b)/n_b \ \sum_{n_c} p(b|c)/n_c & \sum_{n_c} p(c|c)/n_c & \sum_{n_c} p(q|c)/n_c \ \sum_{n_q} p(b|q)/n_q & \sum_{n_q} p(c|q)/n_q & \sum_{n_q} p(q|q)/n_q \end{bmatrix}$$

- We can also try to define fixed cut
- Tag b/c at the same time

Sytematic uncertainty

- Experiment uncertainty could be obtained by varying input variable values and propagate to JOI output
- Re-do the evaluation, model should keep the same as the nominal.
- Impact on efficiency will be counted
- Theoretical uncertainty need to tune generators.

Variable	Definition
p_x, p_y, p_z, E	particle 4-momentum, with energy E derived from PID.
$\Delta \eta$	difference in pseudorapidity between the particle and the jet axis
$\Delta \phi$	difference in azimuthal angle between the particle and the jet axis
$\log p_{\mathrm{T}}$	logarithm of the particle's $p_{\rm T}$
$\log E$	logarithm of the particle's energy
$\log \frac{p_{\rm T}}{p_{\rm T}({\rm jet})}$	logarithm of the particle's p_{T} relative to the jet p_{T}
$\log \frac{p_{\mathrm{T}}}{p_{\mathrm{T}}(\mathrm{jet})}$ $\log \frac{E}{E(\mathrm{jet})}$	logarithm of the particle's energy relative to the jet energy
ΔR	angular separation between the particle and the jet axis
d_0	transverse impact parameter of the track
d_0 err	uncertainty associated with the measurement of the d_0
z_0	longitudinal impact parameter of the track
z_0 err	uncertainty associated with the measurement of the z_0
charge	electric charge of the particle
PID	Reconstructed particle type of $e, \mu, \pi, k, p, \gamma$ and neutral hadron

Should not have extra variation on PID. Not sure 5

Statistical Treatment

• With systematic uncertainty, the binned likelihood could be performed

$$egin{aligned} \mathcal{L}(N^{ii}_{ ext{obs}}|R_b,R_c,ec{ heta}) &= \prod_{i=b,c,q} ext{Pois}(N^{ii}_{ ext{obs}}|
u^{ii}) imes \prod_{ heta} ext{Gaus}(0| heta) \
u^{bb} &= N_Z(oldsymbol{R}_b\epsilon^2_{b,b}(ec{ heta})C^{bb}_b(ec{ heta}) + oldsymbol{R}_c\epsilon^2_{b,c}(ec{ heta})C^{bb}_c(ec{ heta}) + R_q\epsilon^2_{b,q}(ec{ heta})C^{bb}_q(ec{ heta})) \end{aligned}$$

• If using Z+bb/cc/qq tagger, replace $\epsilon^2_{b,j}(\vec{ heta})C^{bb}_j(\vec{ heta}) \Rightarrow \epsilon_{bb,j}(\vec{ heta})$

• Study is ongoing, will report in coming days