从太空到地下: 粒子追踪之旅 贾怡, IHEP

July 1, 2025

Neutrino Summer School @ JUNO site

Education and Work Experience

2024 Christmas Party at CERN

2012-09 至 2016-06,	西安交通大 XJTU	、学 Physics,	B.S.
2016-08 至 2018-08,	MIT,	Physics,	Ph.D.
2018-09 至 2022-03,	MIT,	Postdoctoral Ass	ociate
2022-04 至2025-05,	MIT,	Research Sci	entist
2025-05 至今	IHEP	Associate Pi	rofesso

In 2017, I joined AMS (阿尔法磁谱仪) as a graduate student under the supervision of Professor Samuel Ting (丁肇中) at MIT. After almost ten years abroad, I decided to return to China and join JUNO as a faculty member at IHEP.

Undergraduate Research Training

I found my interest in particle physics at an early stage.

Worked with Prof. John LoSecco on the Long Baseline Neutrino Experiment (LBNE) in Notre Dame University for a summer

LBNE was renamed to Deep Underground Neutrino Experiment (DUNE) in 2015

2015大三学期交流项目 295 km TOKAI ΤΟΚΥΟ OSAK/

Worked with Prof. Clark McGrew on T2K in Stony Brook University.

Prof. LoSecco and Prof. McGrew helped me apply graduate schools in US.

Brief Introduction of Cosmic Rays and Particle Physics

Cosmic Ray and Particle Physics

The measurement of charged cosmic rays marked the beginning of modern particle physics research. The study of cosmic rays continues to play a central role in exploring fundamental questions in astrophysics and particle physics.

1932 Discovery of Positron Nobel Prize (1933) Carl Anderson

- 1936: Muon (μ)
- 1949: Kaon (K)
- 1949: Lambda (Λ)
- 1952: Xi (Ξ)
- 1953: Sigma (Σ)

1947 Discovery of Pion Nobel Prize (1950) Cecil Powell

1987 Discovery of Supernova Neutrino Nobel Prize (2002) Raymond Davis, Masatoshi Koshiba

Neutrinos, as neutral and weakly interacting particles, have emerged as a new cosmic messenger, enabling us to probe otherwise inaccessible regions of the Universe.

Charged Cosmic rays (89% protons, 10% helium, 1% heavier nuclei + electrons)

e.g.: Ground-based high-energy cosmic ray experiments:

Cosmic ray measurements in space

"悟空" DAMPE

阿尔法磁谱仪AMS

Neutral cosmic rays

Photons

500米口径球面射电望远镜 "天眼" (FAST),中国贵州

James Webb Space Telescope

Neutrinos

IceCube

Super-Kamiokande

Charged cosmic rays and high energy photons are major concerns for radiation damage

Neutrinos are harmless

Cosmic radiation from the Milky Way: 90 rem/year The lethal dose is about 300 rem

Earth

long-term base on the Moon or Mars

Earth Protections from Charged Cosmic Rays

geomagnetic deflection

No geomagnetic field/atmosphere -> no human being!

atmospheric shielding

Charged cosmic rays are absorbed by the Earth's 100-km-thick atmosphere (10 meters of water)

Air shov

00公里厘的力

Measurement of Charged Cosmic rays in Space

3000 km² Pierre Auger

Advantage: Avoid large systematic errors induced by air shower

Disadvantage: Much smaller acceptance

Atmospheric Neutrinos from Charged Cosmic Rays

Production of atmospheric neutrino:

$$egin{array}{ccc} \pi^+ & \longrightarrow \mu^+ +
u_\mu & \downarrow & \ e^+ +
u_e + \overline{
u}_\mu & \ \pi^- & \longrightarrow \mu^- + \overline{
u}_\mu & \end{array}$$

1998 Discovery of Neutrino oscillation in atmospheric neutrino Nobel Prize (2015) Takaaki Kajita (Super-K)

 $e^- + \overline{\nu}_e + \nu_\mu$

AMS is a space version of a precision detector used in accelerators

Upper TOF measure Z, E

Accelerator Type Experiment

Human-made collisions, test standard model or beyond

e.g., CMS at LHC

Non-accelerator Type Experiment

Natural sources, study rare natural processes (neutrinos, dark matter...)

PandaX 四川锦屏

Particle energy deposition in matter

When a relativistic charged particle passes through a medium, it interacts electro-magnetically with the atomic electrons and loses energy through the ionization of the atoms.

Particle energy deposition is the basis of nearly all high energy physics detector. Different types of detectors "read out" this deposited energy through various physical mechanisms:

p-n junction in a semiconductor detector

Scintillation detector

Common Detector Type Gaseous Detector:

Semiconductor Detector: e.g., AMS Silicon Tracker

e.g., AMS Transition Radiation Detector

Common Detector Type: Scintillation Detector

Examples of Plastic Scintillator:

AMS Time of Flight (TOF) Counts

JUNO Top Tracker

Examples of Liquid Scintillator:

	Target mass	Energy resolution at 1 MeV
Daya Bay	20 ton	8%
Borexino	300 ton	5%
KamLAND	1000 ton	6%
JUNO	20 000 ton	3%

Largest of its kind!

Common Detector Type: Cherenkov Detector If the velocity of the particle is greater than the speed of light in the medium, Cherenkov light is emitted.

AMS Ring Imaging Cerenkov (RICH) detector

Super-Kamiokande

IceCube

AMS is a space version of a precision detector used in accelerators

Upper TOF measure Z, E

PhD work Charge Calibration of AMS Tracker

Undergraduate Research Training at IHEP

大三暑期科研项目:

JUNO太阳中微子灵敏度研究 指导老师:李玉峰,曹俊

Measurement of solar hep Neutrino with JUNO

Yi Jia Advisor: Yufeng Li, Jun Cao Xi'an Jiaotong University, Shaanxi, China Institute of High Energy Physics, Beijing, China

July 30, 2015

Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment proposed in 2008. In this technical note, a probability for JUNO to measurement the *hep* neutrinos has been explored. By applying the predicted flux in the solar model BSB05(GS98), the expected spectra for both signal and background at JUNO can be obtained by integrating the flux at different neutrino energy. For background, ⁸B and atmosphere neutrinos are analyzed, while further backgrounds will be included in the future. Finally, we show a test of fit to reach the upper bound of *hep* flux.

大四毕业设计:

下一代无中微子双beta衰变探测器nEXO的设计 指导老师:温良剑

西安交通大学本科毕业设计(论文)2016

Title: Study of the performance of nEXO detectorname:Jia YiSupervisor: Wen Liangjian, Zhang Ying

ABSTRACT

nEXO experiment is an update of EXO-200 in the future. It aims to search for neutrinoless double beta decay $(0\nu\beta\beta)$, thus determining if neutrino is Majorana fermion as predicted in theory. The study of this paper focuses on the detection of ionized electrons in nEXO detector, and explore how the strength of electric field in detector impacts the process of data analysis. First, we can deduce the mathematical form of transform function according

Undergraduate research training is a great way to prepare for graduate school. You never know, your advisor might one day become your colleagues!

How to reach us: Talking face to face is most effective, but an email is good enough!

Graduation in Two Years

2017FA

2017SP

PHYSICS GRAD STUDENT PROGRESS REPORT

FULL NAME: Jia, Yi
MIT ID: 915897902
ENTRY DATE: 9/1/2016 YEARS AT MIT: 1.7
ADVISOR: Roland, Gunther
SUPERVISOR: Ting, Samuel
RES. AREA: NUPAX

STATUS: Current

PROGRESS SNAPSHOT

BREADTH COMPLETED Y SPECIALTY COMPLETED Y WRITTEN COMPLETED Y ORAL COMPLETED Y THESIS COMPLETED N Passed SM (统计力学) and EM (电磁学) before the courses

One year to take 6 courses:

CM (经典力学), QM(量子力学)

Two Breadth courses: QFT (量子场论)、 String Theory (弦论)

Two Specialty courses: Particle physics Nuclear physics

*Note: YS means that the requirement was satisfied by passing the relevant course with at least B+

А

Α

BREADTH COURSES

2017SP	8.323	Rel Quantum Field Theory I
2017SP	8.821	String Theory

PART I

<u>ORAL</u>	<u>GENERAL</u>	EXAM
2017/12	Pass	NUPAX

SPECIALTY COURSES

8.811

8.711

Α

Α

One year for research

AMS Silicon Tracker Calibration

The whole tracker system has 2264 sensors assembled in 192 ladders, totaling ~200k readout channels.

double-sided micro-strip sensor

Principle of charge measurement: $dE/dx \propto Z^2$ (relativistic particles) x (y)-side strip in each layer is used to measure particle charge.

Caution on Terminology

Charge in the context of AMS refers to the electric charge number of a cosmic-ray particle (atomic number 原子序数 for nuclei).

1 H Hydrogen 1.008	Periodic Table of the Elements 2 Hereit 4.00													² He Helium 4.003			
3 Li Lithium 6.941	Be Electrons of atoms are stripped away during												6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998	10 Ne 20.180
11 Na Sodium 22.990	acceleration in supernova or during their journey Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg										13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948	
19 K Potassium 39,098	20 Ca Calcium 40.078	21 Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	24 Cr Chromium 51,996	25 Mn Manganese 54,938	26 Fe	27 Cobalt 58,933	28 Ni Nickel 58,693	29 Cu Copper 63,546	30 Zn Zinc 65,39	31 Gallium 69.732	32 Germanium 72.61	33 As Arsenic 74.922	34 Se Selenium 78.09	35 Br Bromine 79.904	36 Kr Krypton 84,80
37 Rb Rubidium 84 468	38 Sr Strontium	39 Y Yttrium 88,906	40 Zr Zirconium 91 224	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn 118 71	51 Sb Antimony 121 760	52 Tellurium	53	54 Xe Xenon 131 29
55 Cs Cesium 132.905	56 Ba Barium 137.327	57-71	72 Hafnium 178.49	73 Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 168.207	76 Osmium 190.23	77 Ir Iridium 192.22	78 Platinum 195.08	79 Au Gold 196.967	80 Hg Mercury 200.59	81 Tl Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Po Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgenium [272]	112 Cn Copernicium [277]	113 Ununtrium unknown	114 Fl Flerovium [289]	115 Uup Ununpentium unknown	116 LV Livermorium [298]	117 Uus Ununseptium unknown	118 Uuo Ununoctium unknown

In the context of JUNO, charge refers to the number of photoelectrons collected by PMTs -> energy of neutrinos

Overcoming nonlinear effects with single-strip measurements A_i (*i*=1-5) are the strips with five largest signal responses.

Charge resolution is improved by measuring the signal by **individual** strip (A_1 , A_2 , A_3 ,...) instead of using the **sum** of signals from all strips.

Various corrections are needed to obtain the final charge which has <u>NO</u> <u>dependence</u> on the readout electronics, coordinate (position, inclination θ).

Readout Element Calibration

Example of the Results: Silicon (Z=14, selected by TOF scintillation counters) Yside seed strip ~2000 chips (64 channels each)

All 200,000 channels of the tracker system are equalized. This procedure makes the responses of detector homogeneous.

Improvement in the charge resolution

Improved by 200% and more

Charge Performance Comparison on AMS data

Past work: Solar Physics

Solar Modulation of Cosmic Rays

Cosmic rays (high energy)

Shockfron

Cosmic ray intensity at low energies is modulated by the Sun through the influence of magnetic field and solar wind.

Cosmic rays (low energy)

Heliosphere

Solar System

Long-term Scale Variation: Solar Cycle

30

Daily Flux Measurement

Extensive studies were made of the systematic errors for N_i^j , A_i^j , and ϵ_i^j .

Comparison of Proton Fluxes between Groups

AMS Daily Proton and Helium Fluxes

Most precise data available for the most abundant cosmic ray: Protons and Helium nuclei. Long time span (>one Solar Cycle) and wide energy range (1-100 GV)

AMS Daily Proton Flux

Long Scale Variations are related to the 11-year Solar Cycle.

AMS Daily Proton Flux

Short scale variations can be either **nonrecurrent** or **recurrent**.

AMS Daily Proton Flux

Short scale variations can be either **nonrecurrent** or **recurrent**.

Recurrent Flux Variation with Periods of 9, 13.5, and 27 days in 2016

27 days

Frequency Analysis of Daily Fluxes

Fourier Transform represents data as a function of sinusoidal waves:

Drawback: sinusoids extend to infinity: not localized in time.

Wavelet: exist for finite duration: localized both in time and frequency space:

This method was first introduced by me for the analysis of proton data, and it has been widely adopted by the collaboration for the analysis of other particles (e⁻,e⁺...).

C. Torrence and G. P. Compo, Bull. Am. Meteorol. Soc. 79, 61 (1998)

Periodicities of Daily Proton Fluxes in 2016

Unexpectedly, the strength of 9day and 13.5-day periodicities increases with increasing rigidity up to ~10 GV and ~20 GV, respectively. Then the strength decreases with increasing rigidity up to 100 GV.

Thus, the AMS results do not support the general conclusion that the strength of the periodicities always decreases with increasing rigidity

Phys. Rev. Lett. 127, 271102 (2021) Main author

Example of Relation between the AMS Daily Flux and Solar Environment Parameter: 13.5-day period is observed in both cosmic ray and solar wind speed.

Connection to the Activities on the Surface of the Sun Coronal Hole are sources of high speed solar wind affecting Earth. The rotation of the Sun causes multiple periods in the flux:

- 0 coronal hole:
- 1 coronal hole
- 2 coronal hole separated by 180°

3 coronal holes separated by 120°

 \rightarrow No apparent periods

- \rightarrow 27-day period (a Bartels rotation)
- \rightarrow 13.5-day period

9-day period

(May 10, 2016-Jun 06, 2016) Image taken by Solar Dynamics Observatory (SDO), NASA

More recent work before I left AMS: Li Isotopes

Origin of elements

Lithium-7 Problem: The abundance of ⁷Li predicted by the Big Bang nucleosynthesis is 4 times higher than what is observed in old, metal-poor stars. Is there any primary ⁷Li from big bang in cosmic ray?

AMS环形成像切仑科夫探测器(RICH)

Velocity resolution

Particle mass is deduced by simultaneous measurement of velocity and momentum (Tracker with magnetic).

New AMS Observation

Above 7 GV, ⁶Li and ⁷Li fluxes have an identical rigidity dependence. This excludes the existence of a sizable primary component in the ⁷Li flux.

AMS data is challenging current models (GALPROP, USINE)

Main author

JUNO is at its beginning of data-taking

AMS has been running on the International Space Station for 14 years

Study of Supernova in the Era of Multi-Messenger Astronomy

A **supernova** is the explosive death of a massive star, releasing enormous amounts of energy in various forms, detectable through multiple messengers.

•••

Supernova explosion Radiation **Cosmic Ray** Neutrino IceCube JUNO •••

•••

•••

JUNO detector

Proposed in 2008 as a reactor neutrino experiment for mass ordering

→ driving the design specifications:

location, 20 kton Liquid Scintillator, 3% energy resolution, 700 m underground

Approved in 2013. Construction in 2015-2025.

A multiple-purpose neutrino experiment with rich physics programs:

- Reactor neutrinos
- Atmospheric neutrinos
- Solar neutrinos
- Supernova burst neutrinos
- Supernova relic neutrinos
- Geoneutrinos
- Nucleon decay
- Dark Matter

Acrylic Sphere:

Inner Diameter: 35.4 m Thickness: 12 cm Stainless Steel Structure: Inner Diameter: 40.1 m Outer Diameter: 41.1 m 17612 20-inch PMTs, 25600 3-inch PMTs

Water Pool: Inner Diameter: 43.5 m Height: 44 m Depth: 43.5 m 2400 20-inch PMTs

Neutrino Spectrum at Earth

U. Katz and C. Spiering, Prog. Part. Nucl. Phys. 67, 651 (2012)

Neutrino Interactions in the \sim 10 MeV range

	Electrons	Protons	Nuclei		
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $ar{ u}_e + p ightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $		
Charged current		γ e ⁺ γ ν _e η γ	r_{v_e} r_{v		
Neutral current	ve vv Useful for pointing	Elastic scattering v v v v v v v v v v v v v v v v v v v	$\nu + A \rightarrow \nu + A^{*}$ $\nu + A \rightarrow \nu + A^{*}$ $\nu + A \rightarrow \nu + A$		

Kate Scholberg @ CIPANP 2022 50

Future Large Supernova-Burst-Sensitive Neutrino Detectors

JUNO 20 kton Liquid Scintillator Hyper-Kamiokande (Japan) 260 kton water

DUNE (USA) 40 kton liquid Argon

They are complementary in capabilities with different detector technologies.

Supernova Burst Neutrinos Multi-messenger Astronomy

K. Nakamura et al., Mon. Not. Roy. Astron. Soc. 461, 3296 (2016)

Global Network

Supernova Burst Neutrinos Multiple Detection Channels

For a core-collapse supernova at 10kpc

Diffuse Supernova Neutrino Background (DSNB)

The DSNB is neutrinos (and anti-neutrinos) cumulatively originating from all core-collapse supernovae events throughout the history of the universe.

Rate ~ 0.01/yr Rate ~ 1/yr

Rate $\sim 10^8/yr$

Have not been detected yet.

Upgrade of Super-K for DSNB

The Super-K-Gd, involving the addition of gadolinium (Gd) to its water, officially began in July 2020.

Liquid Scintillator neutron capture efficiency: almost 100%

Detection of DSNB with JUNO

Background Reduction Techniques: Muon Veto, Fiducial Volume Cut, Pulse Shape Discrimination, Triple Coincidence cuts, ...

The dominate background for DSNB detection comes from **atmospheric neutrinos interacting via neutral-current (NC) processes** with ¹²C nuclei in JUNO's liquid scintillator.

One of the Major Backgrounds for DSNB: Atmospheric Neutrinos

- Data from AMS serves as input to calculate the atmospheric neutrino background.
- Understanding the interactions induced by atmospheric neutrinos is crucial.

Diffuse Supernova Neutrino Background

With the reference model: 3σ (3 yrs) and $>5\sigma$ (10 yrs)

Summary

This is an exciting time to join neutrino research and contribute to discoveries at the frontiers of fundamental physics

Looking forward to your participation and wishing you enjoy your own scientific journeys in the future!

江 山中 微子 实 验

Back Up

My Charge Calibration is widely used in the Collaboration

Table 10. Numbers of neutrino events in JUNO for a SN at a typical distance of 10 kpc, where ν collectively stands for neutrinos and antineutrinos of all three flavors and their contributions are summed over. Three representative values of the average neutrino energy $\langle E_{\nu} \rangle = 12$, 14 and 16 MeV are taken for illustration, where in each case the same average energy is assumed for all flavors and neutrino flavor conversions are not considered. For the elastic neutrino–proton scattering, a threshold of 0.2 MeV for the proton recoil energy is chosen.

Channel	Type	Events for different $\langle E_{\nu} \rangle$ values		
		12 MeV	14 MeV	16 MeV
$\overline{ u}_{ m e} + p ightarrow e^+ + n$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}
u + p ightarrow u + p	NC	0.6×10^{3}	1.2×10^{3}	2.0×10^{3}
u + e ightarrow u + e	ES	3.6×10^{2}	3.6×10^{2}	3.6×10^{2}
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	1.7×10^2	3.2×10^{2}	5.2×10^{2}
$ u_{\mathrm{e}} + {}^{12}\mathrm{C} ightarrow e^- + {}^{12}\mathrm{N}$	CC	0.5×10^2	0.9×10^2	1.6×10^{2}
$\overline{\nu}_{\rm e} + {}^{12}{\rm C} \rightarrow e^+ + {}^{12}{\rm B}$	CC	0.6×10^{2}	1.1×10^{2}	1.6×10^{2}

Research Plan 2 a) : Measurement of Supernova Burst Neutrinos

The expected energy spectra

dN/dE_{vis} [MeV⁻¹] ق dN/dE_{vis} [MeV⁻¹] pre-SN@0.2 kpc SN@10 kpc IBD, IO — IBD, NO IBD, NO IBD, IO eES, NO eES, IO eES, IO — eES, NO pES, IO pES, NO 10² 10² 10¹ 10^{-1} 2 3 5 6 10^{0} 10 E_{vis} [MeV] E_{vis} [MeV]

pre-SN neutrinos

SN neutrinos

Multiple channels sensitive to all flavors

JUNO Collaboration, JCAP 01 (2024) 057

10²

Supernova Burst Neutrinos Directional Information

The direction between the IBD prompt positron and delayed neutron capture gives the SN direction.

Triangulation

The time delay between the signal at different detectors define a sky region

JUNO Collaboration, JCAP 01 (2024) 057

V. Brdar et al., JCAP 04(2018) 025 va at 10 kpc SN pointing:

Betelgeuse-like star pre-SN pointing: 56° (81°), NO (IO) for 15 $\rm M_{\odot}.$

Typical core-collapse supernova at 10 kpc SN pointing: 26° (23°), NO(IO) for 13 M_{\odot} .

Supernova Burst Neutrinos Neutrino Energy Spectra

Multiple channels sensitive to all flavors

H. L. Li *et al.*, Phys. Rev. D **99**, 123009 (2019).
AMS Collaboration

~600 scientists and engineers from 47 institutions and 15 countries.

Elementary Particles in the Heliosphere (Protons, positrons, electrons, and antiprotons)

|Rigidity| = 1.92-2.97 GV

Comprehensive data provide unique input to understand the charge-sign and mass dependence in cosmicray modulation inside the heliosphere.

Supernova Burst Neutrinos Improve Trigger and DAQ

Two major trigger systems in JUNO:

- Global trigger (threshold ~ 0.2 MeV);
- Multi-messenger trigger (threshold ~ 20 keV)

Online Monitor:

Implemented on DAQ.

Based on reconstructed events

Previous Measurement of Neutrinos from Supernova Burst

Previously, 25 neutrinos were detected from Supernova 1987A by Kamiokande-II, Irvine– Michigan–Brookhaven (IMB), and Baksan experiments, marking the beginning of neutrino astronomy.

Tarantula Nebula in the Large Magellanic Cloud

Credit: ESO Schmidt Telescope

Cosmic Ray Recurrent Variation in Short Scale

Coronal holes are regions where plasma density and temperature are lower, so they appear darker in images. **Coronal Hole are sources of high speed solar wind affecting Earth.**

Precision measurements of daily cosmic ray fluxes provide unique inputs for the understanding of cosmic rays in the heliosphere.