CEPC LLP Study in Two-lepton Chanel

Xiang Chen, Ziyang Sun, Liang Li

Shanghai Jiao Tong University

2025/06/23

1

LLP Searches

- Long-lived particles (LLPs) are important portals to new physics
- BSM particles may have a relatively long lifetime due to weak coupling to SM particles
 - New scalars, dark photons, ALP, SUSY....
- A distinct signature for detection:
 - Displaced vertex with some distance from the main vertex
- Long-live particle searches can benefit from good detector performance and acceptance of CEPC
- Focus on the lepton channel (X->II) for this talk
 - Lepton pair with a displaced vertex

Signal Production

- Full simulation samples generated using CEPCSW (v25.3.6) with an integrated luminosity of 20 ab⁻¹
- LLP signal sample is generated by Madgraph5 and showered by Pythia8
- Displaced vertex of LLPs: $0 \le r_{decay} \le 6[m]$
- Only one LLP decays to visible lepton pair
 - Good acceptance if the decay length is within the reach of the CEPC detector

Acceptance (%)			Lifetime [ns]		
${\rm Mass}~[{\rm GeV}]$	0.001	0.1	1	10	100
1	100.00 ± 0.00	99.86 ± 0.01	48.76 ± 0.18	6.49 ± 0.09	0.67 ± 0.03
10	100.00 ± 0.00	100.00 ± 0.00	99.78 ± 0.01	46.80 ± 0.16	6.22 ± 0.08
50	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	99.31 ± 0.03	40.37 ± 0.16

Two-electron Channel Analysis

Event Selection Summary

Total events

nPFO<20: Jet veto

Displaced vertex: 2 tracks with distance between vertex and IP lower than 1 mm (3.5mm for LLP 1 GeV)

Lepton pair: exactly two opposite sign lepton

 $\Delta \theta$: Two leptons back-to-back

Recoil mass(GeV): Z veto

Invariant mass(GeV): LLP signal mass selection

 $\Delta T > 0.1 \text{ ns}(0.05 \text{ ns})$: LLP decay signal has large time difference

- The most effective selections are the displaced vertex and invariant mass selection
- Timing information can also help in some cases

$$\Delta T = t_{hit,i} - r_{hit,i}/c$$

 $t_{hit,i}$: hit time of the ith component in the object cluster recorded by the detector; $r_{hit,i}$: ith Euclidean distance to the IP; c: light speed in vacuum.

Jet Veto

Universitý

The jet veto is done by the number of particle flow objects

6

Primiary Vertex Reconstruction

- Re-vertexing package (thanks to Chengguang)
 - Ability to find displaced vertex
- Most LLPs with lifetime over 0.1ns has significantly displaced vertex comparing to SM processes

Kinematics Distributions

UNIVERSITÝ

Cut-flow for Two-electron Channel

• The cut-flow for the electron channel, $m_{IIp} = 10 \text{ GeV}$

Cuts	0.001 ns (%)	0.01 ns (%)	1ns (%)	10ns (%)	100ns (%)	eeH (%)	barbar (%)	eeZ (%)	evW(%)
All Events	100.00	100.00	100.0	100.00	100.00	100.00	100.00	100.00	100.00
Jet veto	99.98	99.93	99.91	99.97	99.98	6.56	64.05	99.36	99.81
Z veto	99.98	99.93	99.91	99.97	99.98	5.21	63.50	79.58	93.33
2 tracks	83.99	88.3	47.78	14.53	11.39	0.13	24.51	56.80	75.73
Displaced vertex (>1 mm)	44.07	86.60	46.59	14.07	11.03	0.00	9.60	0.71	0.18
Recoil mass >140 GeV	29.79	55.68	27.84	8.71	1.34	0.00	0.20	0.30	0.07
2 electrons after PID	29.7	55.68	27.84	8.71	1.34	0.00	0.20	0.30	0.07
OS	29.74	55.64	27.82	8.71	1.34	0.00	0.14	0.01	0.01
1<∆⊕ < 60	28.68	53.85	26.87	8.41	1.28	0.00	0.0 (10 ⁻⁴)	0.0 (10 ⁻⁵)	0.00
Invariant mass cut m _{ll} -10 < 1 GeV	23.00	40.24	16.00	4.61	0.70	0.00	0.00	0.00	0.00

Two-electron Channel Signal Efficiency

• Best signal efficiency reaches 40% with background free condition

LLP signal efficiency for ee channel

LLP signal efficiency for ee channel

2 Muon	0.001ns	0.01 ns	1 ns	10 ns	100 ns
LLP 1 GeV	26.08	12.9	3.28	2.44	1.53
LLP 10 GeV	23.00	40.24	15.99	4.31	0.70
LLP 50 GeV	0.91	26.41	19.81	4	1.48

Two-muon Channel Analysis

Cut-flow for Two-muon Channel

• The cut-flow for the muon channel, $m_{IIp} = 1 \text{ GeV}$

Cuts	0.001ns (%)	0.01ns (%)	1ns (%)	10ns (%)	100ns (%)	vvHX (%)	mmHX (%)	barbar (%)	Signal Z (%)	ZZ (%)	WW(%)
All Events	100	100	100	100	100	100	100	100	100	100	100
Jet veto	100	100	100	100	100	8.04	7.7	97.94	99.67	99.42	99.94
Z veto	100	100	100	100	100	7.98	5.05	72.09	88.09	79.15	93.89
2 tracks	97.62	60.12	19.56	15.36	15.57	5.2	0.09	54.49	58.14	47.01	85.7
displaced vertex (>3.5 mm)	78.7	58.92	19.14	15.04	15.24	0.02	0	0.59	0.47	0.46	0.05
recoil mass >130 GeV	34.59	17.96	5.58	0.97	2.15	0.01	0	0.01	0.14	0.08	0
2 muons after PID	33.3	16.73	5.19	0.89	2.01	0	0	0.01	0.13	0.07	0
OS	33.3	16.73	5.19	0.89	2.01	0	0	0.01	0.13	0.07	0
1< Δθ < 60	24.24	12.55	3.93	0.69	1.37	0	0	0	0.002	0.002	0
Invariant mass cut m _{ll} -1 < 0.6 GeV	24.24	12.55	3.93	0.69	1.37	0	0	0	10 ⁻⁴	10 ⁻⁴	0
ΔT > 0.05 ns	9.23	3.31	0.95	0.2	0.4	0	0	0	0	0	0

Two-muon Channel Signal Efficiency

- Best signal efficiency reaches 40% with background free condition
 - Signal efficiency for 1 GeV is low due to additional ΔT selection

LLP Signal efficiency for $\mu\mu$ channel

2 Muon 10 0.001 0.01 1 100 LLP 1 GeV 9.23 3.31 0.95 0.2 0.4 LLP 10 GeV 28.89 41.65 15.03 3.89 0.7 LLP 50 GeV 1.06 26.44 17.26 3.24 1.07

LLP Signal efficiency for $\mu\mu$ channel

Expected Limit

- Assuming BR(LLPs->leptons) is 0.2
- Best BR(H->LLPs->leptons) upper limit reaches 4*10⁻⁵ at 240 GeV with 20 ab⁻¹
 - For comparison, previous study using ML-based methods sets best BR(H->LLPs->jets) upper limit at ~10⁻⁶

Summary & To-do

- Major improvements shown compared to previous round of analysis
 - Significant improvements from PID
 - Best WP with XGBoost option
 - Displaced vertex reconstruction further improves background rejection
 - ΔT selection is no longer needed for most LLP mass points
 - Best BR(H->LLPs->leptons) upper limit reaches 4*10⁻⁵ at 240 GeV with 20 ab⁻¹

Backup

Previous Results

Mass	ee	4f_szeors w_l	4f_sze_l0n unu	vvHX	ееНХ
LLP 1 GeV	0.02%	1.30%	1.10%	0.06%	0.06%
LLP 10 GeV	0.03%	2.57%	2.58%	0.09%	0.09%
LLP 50 GeV	0.03%	2.57%	2.58%	0.09%	0.09%

2 Muon	e2e2	4f_sznu	4f_szz	4f_szzor ww	vvHX	mmHX
LLP 1 GeV	0.13%	4.02%	1.62%	0.62%	0.04%	0.01%
LLP 10 GeV	0.13%	2.76%	1.09%	0.77%	0.05%	0.03%
LLP 50 GeV	0.13%	2.76%	1.09%	0.77%	0.05%	0.03%

Preliminary Result

The cutflow for 2-electron channel is shown in below

Mass	ee	4f_szeors w_l	4f_sze_l0n unu	vvHX	ееНХ
LLP 1 GeV	0.02%	1.30%	1.10%	0.06%	0.06%
LLP 10 GeV	0.03%	2.57%	2.58%	0.09%	0.09%
LLP 50 GeV	0.03%	2.57%	2.58%	0.09%	0.09%

No deltaT for 10 GeV and 50 GeV Background free

2 Muon	0.001	0.01	1	10	100
LLP 1 GeV	26.08	12.9	3.28	2.44	1.53
LLP 10 GeV	23.00	40.24	15.99	4.31	0.70
LLP 50 GeV	0.91	26.41	19.81	4	1.48

bkg	ee	4f_szeors w_l	4f_sze_l0n unu	vvHX	eeHX
1 GeV	0.0001%	0	0.001%	0	0
10 GeV	0.001%	0.0001%	0.0001%	0	0

Preliminary Result

The cutflow for 2-electron channel is shown in below

Mass	ee	4f_szeors w_l	4f_sze_l0n unu	vvHX	ееНХ
LLP 1 GeV	0.02%	1.30%	1.10%	0.06%	0.06%
LLP 10 GeV	0.03%	2.57%	2.58%	0.09%	0.09%
LLP 50 GeV	0.03%	2.57%	2.58%	0.09%	0.09%

No deltaT for 10 GeV and 50 GeV Background free

2 Muon	0.001	0.01	1	10	100
LLP 1 GeV	26.08	12.9	3.28	2.44	1.53
LLP 10 GeV	23.00	40.24	15.99	4.31	0.70
LLP 50 GeV	0.91	26.41	19.81	4	1.48

bkg	ee	4f_szeors w_l	4f_sze_l0n unu	vvHX	ееНХ
1 GeV	0.0001%	0	0.001%	0	0
10 GeV	0.001%	0.0001%	0.0001%	0	0