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Research Background: Probing Nuclear Structure via UPCs and Al-Guided Strategy
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UPC coherent production —sensitive to nuclear structure
Retrieving these parameters from final state — "Inverse Problem"
Deep Learning — decouple these parameters,

Design interpretable observables — bridge Al "Black Box" and physics 2



Simulation of UPC Photonuclear Processes: Double Slit Interference

density of nucleus ( WS)

Pl

nuclear electromagnetic 1+ exp[(r - Rws)/d]
form factor nuclear thickness function
+00
o e e 5 /\ B _ |
= [ Srpe T'(F) =I dzp(/T2+ e
—0

photon ﬂU:( ) ) scattering amplitude
dBN}/(w}n -;EJ_) _ 422(1 J dzkyj_ g Fy(ky) 7

= 2 Myl ek
dw,dx; W 2r) |k, |2

pa(r) =

. Jop—snn(0) OjryN
Loasna(r) = & GJ/WN X2 X [1 — exp(———
s

X T'(F))]

/4

N N w
Where &, =(k,;,—) ; @, = My,e*/2

Ye
\ the amplitudes for J/y

b b |eneED
AQy,r, E) = Daspya(r £ 5) X 2
probability distribution of J/y in momentum space 5
d2P 1 JdZ A ( - Z) A ( - + Z) inr
= r y.r,——)— vy, r, — e
dpdp, 2 : ) 2 2

Zha et al. Physical Review C, 2019, 99(6): 061901.



Workflow: Inferring Nuclear Structure from (p_, py) Distributions

Simulation: K simulations with
random initial orientations.
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parameter pr<0.17 GeV, coherent
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beta2 E '
:
|
beta3 :> l
Neutron
Skin
Averaged
Jy
momentum
distribution

ResNet
(Deep Residual Network) 4



Backbone Architecture: Deep Residual Network (ResNet)
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Why use it for UPCs?
state-of-the-art: Introduces "Skip Connections" to solve the degradation

problem in deep networks.
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ResNet model

Feature Extraction: Efficiently captures global structures and local details.

Application: Used here as a regressor for B2 ,83 and a classifier for Neutron Skin.

He K, et al. Deep residual learning for image recognition. 2016.
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Predicted Beta2

Model Performance: Prediction Accuracy of the ResNet Model

Beta2 Predictions vs True Values
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Beta3 Predictions vs True Values

MSE: 0.000266
R2: 0.934611
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Neutron Skin
classification.
Accuracy = 99%

The model successfully handles multi-task learning, achieving high accuracy in
simultaneously predicting deformation and neutron skin. °
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Interpretability Method: Prediction Difference Analysis (PDA)
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Zintgraf L M, et al. Visualizing deep neural network decisions: Prediction difference analysis. arXiv:1702.04595, 2017.



Interpretability Analysis: Neutron Skin Effect

Model Insight Physics Verification
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The Heatmap shows the network focuses on the edges The Ratio Plot
of the Bright Spot, "the Butterfly Wings". (Skin / No-Skin)
confirms that physical

differences occur exactly
at the Bright Spots
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Interpretability Analysis: Nuclear Deformation ($2,83)
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The Ratio Plot shows
that deformation
parameters primarily
alter the dark fringes.

PDA Heatmap
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PDA heatmap shows the network focuses on
the interference dark fringes.
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Physical Mechanism: Optical Analogy for Neutron Skin
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Physical Mechanism: Optical Analogy for Nuclear Deformation
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Small deformation: Sharp
fringes
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The location of the interference dark fringes shifts from p - l; = 2nmin the spherical

nucleusto j - b = 2nz — Ag.

Large deformation: Smeared
fringes
(Phase averaging effect)
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Proposed Observables Guided by Deep Learning

HWHM by Skin Type le—7 Interference Fringe Average Value vs. B2 for different B3
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HWHM (Half-Width at Half-Maximum): Average Intensity of Interference Fringes:

Definition: Area of intensity > Max/2.
Physical meaning: Reflects the size of the
bright spot
(influenced by neutron skin).

Definition: Average value of the lowest 5% intensity
pixels.
Physical meaning: Reflects the "depth" of dark fringe

(influenced by deformation).



Connection to Traditional Observables: mean pT and low pT ratio

input example

mean pT vs neutron skin type
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A larger HWHM (broader central spot) — momentum distribution extends to higher p;

Result: larger HWHM to higher mean p;

Fringe Intensity = Low p; Ratio & v,

Fringe Intensity measures the "depth" and the clarity of interference minima.

Result: lower Fringe Intensity — low pyield in the dark fringe region
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or — azimuthal anisotropy (v,, vz) caused by fringe smearing (detailed in the next slides).



Low pT Region Analysis: v2 v3

v, = (cos(2¢))
vy = (cos(3¢))

pt<0.05GeV

This region is characterized by smeared
dark fringes .

Low pT flow harmonics serve as sensitive
probes for deformation parameters.

v2 vs B2 for different B3
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High pT Region Analysis: v2 v3

0.14GeV<pt<0.16GeV

Butterfly shaped
region affected
by neutron skin

v2 Distribution by Neutron Skin
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Neutron skin affects the butterfly shaped region and thus the v2 v3

in this high pT region.
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Summary

« Methodology: Successfully applied Multi-Task Deep Learning to extract nuclear
structure (f2,B3, Skin) from UPC J/ distributions.

o Interpretability: A systematic analysis revealed that the model relies on the
Butterfly Wings (for Skin) and interference fringe (for Deformation).

« Observables: Defined (mean p1, low prratio, v,, vs) as practical experimental

observables, bridging the gap between deep learning "Black box" and physical
measurement.

o Outlook: Future work will include incoherent noise to test robustness and
application to real experimental data.
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