
Semi-inclusive Deep Inelastic Scattering  
and the Electron-ion Collider in China

The 3rd Workshop on Ultra-Peripheral Collision Physics 
Nov. 21—24, 2025 @ Guangzhou, China

Tianbo Liu (刘天博) 
Key Laboratory of Particle Physics and Particle Irradiation (MOE) 

Institute of Frontier and Interdisciplinary Science, Shandong University 
Southern Center for Nuclear-Science Theory, IMP, CAS

On behalf of EicC working groups and the TNT Collaboration

C CCCCCC C

CC



Tianbo Liu 2

How much do we understand our world?

Review article

2.4.2 Exotic hadrons at EicC 27
2.4.3 Cross section estimates and simulations 29

2.5 Other important exploratory studies 33
2.5.1 Proton mass 33
2.5.2 Structure of light pseudoscalar mesons 35
2.5.3 Intrinsic charm 36

2.6 QCD theory and phenomenology 38
2.6.1 Synergies 38
2.6.2 Lattice QCD 39

2.6.2.1 Nucleon spin structure 39
2.6.2.2 Proton mass decomposition 39
2.6.2.3 1-D and 3-D structure of nucleons 39
2.6.2.4 Partonic structure of the nucleus 40
2.6.2.5 Exotic hadrons 40

2.6.3 Continuum theory and phenomenology 41
2.6.3.1 Mass and matter 41
2.6.3.2 1-D hadron structure 42
2.6.3.3 Meson fragmentation functions 43

Chapter 3 Accelerator conceptual design 44
3.1 Partonic structure of nucleus 21
3.2 Accelerator facilities 47

3.2.1 Ion accelerator complex 47
3.2.2 Electron accelerator complex 48

3.3 Beam cooling 49
3.4 Beam polarization 52

3.4.1 Ion polarization 52
3.4.2 Electron polarization 54

3.5 Design of the interaction regions (IR) 55
3.6 Pre-research on key technologies 57

Chapter 4 Detector conceptual design 59
4.1 Detector performance requirements 59

4.1.1 Distributions of the final state particles 59
4.1.2 Luminosity and polarization

measurements 61
4.2 Detector conceptual design 62

Acknowledgements 65
References and notes 65

Chapter 1 Executive summary

1.1 Physics highlights

The study on the inner structure of matter and funda-
mental laws of interactions has always been one of the
research forefronts of natural science. It not only allows
mankind to understand the underlying laws of nature, but
also promotes various advances in technologies. Consid-
ering the mass–energy budget of the Universe, illustrated
in Fig. 1.1: dark energy constitutes 71%; dark matter is
another 24%; and the remaining 5% is visible material.
Little is known about the first two: science can currently
say almost nothing about 95% of the mass–energy in the
Universe. On the other hand, the remaining 5% has for-
ever been the source of everything tangible, which can be

beautifully described within the Standard Model.
One of the greatest achievements of physics in the 20th

century is the invention of the Standard Model [2–7]. It
is the theory describing the strong, electromagnetic, and
weak interactions among elementary particles that make
up the visible Universe. As shown in Fig. 1.2, we now
know that there are three generations of quarks and lep-
tons in nature. The forces in the Standard Model are car-
ried by the so-called force mediating gauge bosons, which
are γ, W± and Z0 for electro-weak interaction, and gluons
g for the strong interaction. The Higgs boson H was in-
troduced in the famous Higgs mechanism [8, 9] to explain
the mass origin of the W± and Z0 bosons, and it also
generates the masses of quarks and leptons. Yet, amongst
the visible matter, less-than 0.1% is tied directly to the
Higgs boson; hence, even concerning visible matter, too
much remains unknown.

In particular, it is still challenging to quantitatively ex-
plain the origins of nucleon mass and spin, which are two
fundamental properties of building blocks of the visible
matter. First, about 99% of the visible mass is contained
within nuclei [10]. Within Standard Model, the protons
and neutrons in nuclei are composite particles, built from
nearly massless quarks (∼ 1% of the nucleon mass) and
massless gluons. An immediate question then arises: How
does 99% of the nucleon mass emerge? Besides the mass
issue, despite of many years of theoretical and experimen-
tal efforts, the quantitative decomposition of nucleon spin
in terms of quark and gluon degrees of freedom is not yet
fully understood. To address these fundamental issues,
we have to understand the nature of the subatomic force
between quarks and gluons, and the internal landscape of
nucleons.

The underlying theory, which describes the strong inter-
actions between quarks and gluons, is known as Quantum
Chromodynamics (QCD) [11]. As a non-Abelian gauge
theory, QCD has the extraordinary properties of asymp-
totic freedom at short distance [12, 13] and color con-
finement at long distance. The strong force mediated by
gluons is weak in hard scatterings with large momentum
transfers. On the other hand, it has to be incredibly strong
to bind quarks together within the tiny space of a nucleon.

Fig. 1.1 The mass–energy budget of the Universe determin-
ed by Wilkinson Microwave Anisotropy Probe (WMAP) [1].
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Fig. 1.2 The Standard Model of elementary particles.

Confinement is crucial because it ensures stability of the
proton. Without confinement, protons in isolation could
decay; the hydrogen atom would be unstable; nucleosyn-
thesis would be accidental, with no lasting consequences;
and without nuclei, there would be no living Universe.
All in all, the existence of our visible Universe depends on
confinement.

In QCD, the proton mass is usually decomposed into
several elements in terms of quark and gluon degrees of
freedom. Specifically, it is believed that the nucleon mass
can be almost entirely derived from the kinetic energy of
quarks and gluons, interactions between them, as well as
other novel dynamical effects of QCD. Similarly, despite
being composite particles, nucleons have a constant spin
of 1/2 which is an intrinsic property like electric charge.
It is extremely fascinating to note that proton spin can
manifest itself from the many-body system of quarks and
gluons. In addition to the spin contributions of quark
and gluon, which has been measured in certain kinematic
regions, the orbital angular momentum contributions due
the orbital motions of quark and gluon have been shown
to be indispensable for the proton spin.

Hence, QCD should be the physical mechanism respon-
sible for the majority of visible matter in the Universe. To
gain a more comprehensive understanding of the internal
partonic structure of a nucleon, explore the nature of color
confinement and ultimately explain the emergence of the
nucleon mass and spin, we certainly need to expand the
scope of our current experiments and enrich our knowledge

on the dynamics of the strong interaction, especially the
non-perturbative aspects of QCD. In the following, a few
highlighted physics topics, highly relevant to above men-
tioned essential QCD physics, that EicC can significantly
contribute to will be discussed briefly. For the detailed
discussions regarding physics, accelerators, and detectors
for the EicC project, please refer to the following chapters
of this document1).

1.1.1 Partonic structure and three-dimensional
landscape of nucleon

In the naiive constituent quark model [14, 15], nucleons
are considered as the bound states of u- and d-quarks. The
proton (neutron) corresponds to a uud-state (udd state).
These quarks are known as valence quarks. However, due
to the quantum property of QCD, quarks can radiate glu-
ons, and these gluons, in turn, can fluctuate into quark-
antiquark pairs. Therefore, a nucleon is a composite ob-
ject containing quarks, antiquarks, and gluons. Besides
valence quarks (and possible intrinsic quarks), there are
also sea quarks coming out of quantum fluctuations. Es-
pecially, when the probing scale becomes smaller as the
energy scale goes higher, one sees more sea quarks compar-
ing to valence quarks, as illustrated in Fig. 1.3. Moreover,
compared to the simple picture of the constituent quark

1)By default, the natural unit system is used in all the physics dis-
cussions and plots.
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Fig. 1.3 Illustration of the quark and the partonic structure
of the proton.

model, the underlying dynamics among quarks/gluons is
a lot more interesting and intricate, and offers much more
important information regarding the internal structure of
nucleons as a composite many-body system.

In high-energy scatterings, the proton can be viewed
as a cluster of high energy quarks and gluons, which are
collectively referred to as partons. The probability distri-
butions of partons within the proton are called the parton
distribution functions (PDFs). In general, PDFs give the
probabilities of finding partons (quarks and gluons) in a
hadron as a function of the momentum fraction x w.r.t.
the parent hadron carried by the partons. Due to the QCD
evolution, quarks and gluons can mix with each other, and
their PDFs depend on the resolution scale. When the res-
olution scale increases, the numbers of partons and their
momentum distributions will change according to the evo-
lution equations. These evolution equations can be de-
rived from the perturbation QCD, although PDFs them-
selves are essentially non-perturbative objects. Thanks to
QCD factorization theorems, PDFs can be extracted from
measurments of cross-sections and spin-dependent asym-
metries.

The partonic structure of the nucleon was firstly stud-
ied in experiments of electron–nucleon Deeply Inelastic
Scattering (DIS). Since electrons are point-like particles
and they do not participate in the strong interaction,
they are the perfect probe for studying the internal struc-
ture of hadrons in high energy scatterings. Therefore, the
DIS experiment is also known as the “Modern Ruther-
ford Scattering Experiment”, which opens up a new win-
dow to probe the subatomic world. In 1969, the pioneer
DIS experiments at SLAC discovered the so-called Bjorken
scaling [16], which showed that the proton is composed
of point-like partons with spin 1/2 (which are known as
quarks afterward). Starting from DIS with unpolarized
fixed targets, DIS experiments are later extended to unpo-
larized collider experiments and fixed-target experiments
with polarized beam and targets. These DIS experiments
have revolutionized our understanding of the subatomic
structure of nucleons and nuclei. Later on, high energy
DIS experiments observed the violation of Bjorken scal-
ing [17], which indicates the existence of gluon and QCD
evolution mentioned above. All these results across a wide
range of energy scales have verified that QCD is the cor-
rect theory for the strong interaction between quarks and
gluons within hadrons. In addition, within the current ex-

perimental accuracy, lepton and quark are still point-like
particles at the scale of 10−3 fm, which is one-thousandth
of the size of the proton.

With better experimental precisions, our understanding
of nucleon structure continues to improve even in unpo-
larized PDFs. Furthermore, many interesting phenomena,
such as the isospin asymmetry of ū and d̄ quark distribu-
tions and the asymmetry between strange and anti-strange
quark distributions in the proton, were discovered. These
phenomena are still compelling issues in medium and high
energy physics research.

In the wake of the development of polarized source in
the 1970s, the study of the nucleon spin structure became
possible by exploring the helicity distributions of quarks
and gluons, also defined as the longitudinally polarized
PDFs analog to their unpolarized counterparts discussed
above, from high-energy scattering processes involving po-
larized leptons and/or polarized nucleons. A lot more
interesting phenomena have been unraveled by polarized
DIS experiments. One of them is the so-called “proton
spin crisis”. Experimental data showed that the sum of the
spin from quarks and anti-quarks is only a small fraction
of the total spin of a proton. It triggered a series of exper-
imental and theoretical investigations on the origin of the
proton spin. From the QCD perspective, we now know
that the proton spin is built up from the spin and orbital
angular momenta of quarks and gluons. Currently, except
the quark spin contribution, other decomposed contribu-
tions in the spin sum rule, especially the ones from or-
bital angular momenta, are largely unexplored. Through
semi-inclusive DIS and other interesting processes, recent
experimental and theoretical developments have enabled
us to extend our research on nucleon structure from one-
dimensional PDFs to three-dimensional imaging. These
have been providing us new insights into the proton spin
puzzle.

Currently, there are two immediate and important is-
sues in the research frontier of nucleon structure: i) The
precision measurement of the one-dimensional spin struc-
ture of the polarized nucleon; ii) The study on the three-
dimensional imaging of the partonic structure of the nu-
cleon.

An interesting question when studying the one-
dimensional spin structure of the nucleons is how to
clearly decompose the individual contributions from dif-
ferent quark flavors. Despite the large uncertainty, the
recent measurement at Relativistic Heavy Ion Collider
(RHIC) implies that the sea quark helicity distributions
also have flavor asymmetries. Furthermore, the polarized
quark distribution of different flavors, especially for sea
quarks, still have large uncertainties. This directly im-
poses a challenge to our efforts to understand the proton
spin structure. Therefore, the precise determination of
various quark helicity distributions is a fundamental issue
which is needed to be addressed.

In the meantime, three-dimensional imaging of the par-
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Proton Spin Structure in Naïve Quark Model

u
u d

Quark model:
M. Gell-Mann, Phys. Lett. 8, 214 (1964); 
G. Zweig, CERN Report No. TH-401 (1964).

Spin-flavor wave function of the proton:

p↑⟩ =
1

18 [2 u↑d↓u↑⟩ + 2 u↑u↑d↓⟩ + 2 d↓u↑u↑⟩ − u↑u↓d↑⟩

− u↑d↑u↓⟩ − u↓d↑u↑⟩ − d↑u↓u↑⟩ − d↑u↑u↓⟩ − u↓u↑d↑⟩] .

ordinary baryons: , mesons: |qqq⟩ |qq̄⟩

Δu = u↑ − u↓ =
4
3

Δd = d↑ − d↓ = −
1
3

The sum of quark spins gives the proton spin.
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Inclusive DIS at a large momentum transfer: Q ≫ ΛQCD
• dominated by the scattering of the lepton 

off an active quark/parton 

• not sensitive to the dynamics at a hadronic 
scale ~ 1/fm 

• collinear factorization:  
 

• overall corrections suppressed by 

σ ∝ H(Q) ⊗ fi/P(x, μ2)

1/Qn

• indirectly “see” quarks, gluons and their 
dynamics 

• predictive power relies on  
— precision of the probe 
— universality of  fi/P(x, μ2)

Lepton-Hadron Deep Inelastic Scattering

Modern “Rutherford” experiment.
1 Introduction

Two regimes of ep scattering are distinguished by the virtuality of the exchanged photon
between the electron and proton, which is defined using the square of the four-momentum
difference between the incoming and scattered electron as: Q2 ⌘ �q2 = �(k� k0)2. Neutral
current deep inelastic scattering (NC DIS) occurs at large virtualities (Q2 � 1GeV2) of
the exchanged photon which, at leading order, strikes a single quark within the proton.
Photoproduction (�p) processes occur for quasi-real exchanged photons (Q2 . 1GeV2), and
are further sub-divided into two categories at leading order: direct and resolved. In direct
processes, the photon couples directly to a quark as in DIS. Resolved processes occur when
the photon fluctuates non-perturbatively into partons, which then scatter with one or more
partons in the proton. The DIS and resolved photoproduction regimes are illustrated in
Fig. 1.

(a) Neutral current deep inelastic scattering. (b) Resolved photoproduction.

Figure 1: Schematic illustration of initial scattering in (a) deep inelastic scattering and (b)
an example of resolved photoproduction. The electron beam is represented by the lines with
arrows. The partonic contents of the proton and photon are represented as large and small
pale circles, respectively. The exchanged photon is shown as a wavy line. Quarks are shown
as spheres while gluons are shown in gold.

A wide variety of measurements in heavy-ion collisions [1–6] indicates the formation of a
new state of quantum chromodynamics (QCD) matter in local thermal equilibrium, the so-
called quark-gluon plasma (QGP). One of the key observables of the QGP is the collective
behaviour of final-state particles. Recent measurements from colliding systems such as p+p,
p+ A, and photo-nuclear A+ A suggest that a QGP may even form in systems previously
thought too small to attain thermal equilibrium [7–14]. The deep inelastic scattering of

1

[Figure from DESY-21-099]
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PDFs at small values of x, the W-boson asymmetry data at
large rapidities generally provide stronger constraints on
PDFs at large x values.

IV. RESULTS

In this section, we present the results of our global QCD
analysis. The quality of the fit to the data is illustrated in
Fig. 1, where the inclusive proton F2 structure functions
from BCDMS [81], SLAC [82], NMC [83] and HERMES
[86] are compared with the CJ15 NLO fit as a function of
Q2 at approximately constant values of x. In Fig. 2, the
Jefferson Lab Fp

2 data from the E00-116 experiment in
Hall C [87] are compared with the CJ15 results at fixed

scattering angles, with x increasing with Q2. The more
recent data from the BONuS experiment at Jefferson Lab
[21] on the ratio of neutron to deuteron structure functions,
Fn
2=F

d
2 , are shown in Fig. 3. Overall the agreement between

the theory and data, over several decades of Q2 and x, is
excellent.
The uncertainties on the observables in Figs. 1–3 (and on

the PDFs throughout this paper, unless otherwise noted) are
computed using Hessian error propagation, as outlined in
Ref. [14], with Δχ2 ¼ 2.71, which corresponds to a
90% confidence level (C.L.) in the ideal Gaussian statistics.
The corresponding χ2 values for each of the data sets in
Figs. 1–3, and all other data used in the fits, are listed in
Table I. As well as the main NLO fit, we also include the χ2

FIG. 1. Comparison of proton Fp
2 structure function data from BCDMS [81], SLAC [82], NMC [83] and HERMES [86] with the CJ15

fit, as a function of Q2 for approximately constant x. The data have been scaled by a factor 2i, from i ¼ 0 for x ¼ 0.85 to i ¼ 20 for
x ¼ 0.005, and the PDF uncertainties correspond to a 90% C.L.
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values for several alternate fits, with different combinations
of theory and data (see below), and an LO fit. For the
central NLO fit, the total χ2 is ≈4700 for 4542 points, or
χ2=datum ¼ 1.04, which is similar to our previous CJ12
analysis [14], even though that fit was to some 500 fewer
points. While the various NLO fits give qualitatively similar
χ2 values, the χ2=datum for the LO fit (∼1.3) is markedly
worse.

A. CJ15 PDFs

The CJ15 PDFs themselves are displayed in Fig. 4 at a
scale of Q2 ¼ 10 GeV2 for the u, d, d̄þ ū, d̄ − ū and s
distributions, and the gluon distribution scaled by a factor
1=10. The central CJ15 PDFs are determined using the
AV18 deuteron wave function and the nucleon off-shell
parametrization in Eq. (15). The parameter values and their
1σ errors for the leading-twist distributions at the input
scale Q2

0 are given in Table II, with the parameters that are
listed without errors fixed by sum rules or other constraints.
(To avoid rounding errors when using these values in
numerical calculations, we give each of the parameter
values and their uncertainties to five significant figures.)
The strange quark PDF is assumed in this analysis to be

proportional to the light antiquark sea in the ratio κ ¼ 0.4
[see Eq. (4)]. To test the sensitivity of our fit to the specific
value of κ, we repeated the analysis varying the strange to
nonstrange quark ratio between 0.3 and 0.5. Within this
range the total χ2 spans between 4704 (κ ¼ 0.3) and 4711
(κ ¼ 0.5), indicating a very weak dependence on κ. This is
not surprising given that our analysis does not include any
data sets that are particularly sensitive to the strange-
quark PDF.

FIG. 2. Comparison of the proton Fp
2 structure function data

from the E00-116 experiment in Jefferson Lab (JLab) Hall C [87]
with the CJ15 fit, as a function of Q2 for fixed scattering angle θ,
with the corresponding x ranges indicated. The data have been
scaled by a factor 2i, from i ¼ 0 for θ ¼ 38° to i ¼ 5 for θ ¼ 70°,
and the PDF uncertainties correspond to a 90% C.L.

FIG. 3. Comparison of the Fn
2=F

d
2 structure function ratio from

the BONuS experiment in Jefferson Lab (JLab) Hall B [21] with
the CJ15 fit, as a function of the invariant mass W2 for fixed Q2,
with the corresponding x ranges indicated (note x decreases with
increasing W2). The data have been scaled by a factor 2i, from
i ¼ 0 for Q2 ¼ 4.0 GeV2 to i ¼ 5 for Q2 ¼ 1.7 GeV2, and the
PDF uncertainties correspond to a 90% C.L.

FIG. 4. Comparison of CJ15 PDFs xfðx;Q2Þ for different
flavors (f ¼ u, d, d̄þ ū, d̄ − ū, s and g=10) at a scale
Q2 ¼ 10 GeV2, with 90% C.L. uncertainty bands. Note the
combined logarithimic/linear scale along the x-axis.
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PDFs at small values of x, the W-boson asymmetry data at
large rapidities generally provide stronger constraints on
PDFs at large x values.

IV. RESULTS

In this section, we present the results of our global QCD
analysis. The quality of the fit to the data is illustrated in
Fig. 1, where the inclusive proton F2 structure functions
from BCDMS [81], SLAC [82], NMC [83] and HERMES
[86] are compared with the CJ15 NLO fit as a function of
Q2 at approximately constant values of x. In Fig. 2, the
Jefferson Lab Fp

2 data from the E00-116 experiment in
Hall C [87] are compared with the CJ15 results at fixed

scattering angles, with x increasing with Q2. The more
recent data from the BONuS experiment at Jefferson Lab
[21] on the ratio of neutron to deuteron structure functions,
Fn
2=F

d
2 , are shown in Fig. 3. Overall the agreement between

the theory and data, over several decades of Q2 and x, is
excellent.
The uncertainties on the observables in Figs. 1–3 (and on

the PDFs throughout this paper, unless otherwise noted) are
computed using Hessian error propagation, as outlined in
Ref. [14], with Δχ2 ¼ 2.71, which corresponds to a
90% confidence level (C.L.) in the ideal Gaussian statistics.
The corresponding χ2 values for each of the data sets in
Figs. 1–3, and all other data used in the fits, are listed in
Table I. As well as the main NLO fit, we also include the χ2

FIG. 1. Comparison of proton Fp
2 structure function data from BCDMS [81], SLAC [82], NMC [83] and HERMES [86] with the CJ15

fit, as a function of Q2 for approximately constant x. The data have been scaled by a factor 2i, from i ¼ 0 for x ¼ 0.85 to i ¼ 20 for
x ¼ 0.005, and the PDF uncertainties correspond to a 90% C.L.
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values for several alternate fits, with different combinations
of theory and data (see below), and an LO fit. For the
central NLO fit, the total χ2 is ≈4700 for 4542 points, or
χ2=datum ¼ 1.04, which is similar to our previous CJ12
analysis [14], even though that fit was to some 500 fewer
points. While the various NLO fits give qualitatively similar
χ2 values, the χ2=datum for the LO fit (∼1.3) is markedly
worse.

A. CJ15 PDFs

The CJ15 PDFs themselves are displayed in Fig. 4 at a
scale of Q2 ¼ 10 GeV2 for the u, d, d̄þ ū, d̄ − ū and s
distributions, and the gluon distribution scaled by a factor
1=10. The central CJ15 PDFs are determined using the
AV18 deuteron wave function and the nucleon off-shell
parametrization in Eq. (15). The parameter values and their
1σ errors for the leading-twist distributions at the input
scale Q2

0 are given in Table II, with the parameters that are
listed without errors fixed by sum rules or other constraints.
(To avoid rounding errors when using these values in
numerical calculations, we give each of the parameter
values and their uncertainties to five significant figures.)
The strange quark PDF is assumed in this analysis to be

proportional to the light antiquark sea in the ratio κ ¼ 0.4
[see Eq. (4)]. To test the sensitivity of our fit to the specific
value of κ, we repeated the analysis varying the strange to
nonstrange quark ratio between 0.3 and 0.5. Within this
range the total χ2 spans between 4704 (κ ¼ 0.3) and 4711
(κ ¼ 0.5), indicating a very weak dependence on κ. This is
not surprising given that our analysis does not include any
data sets that are particularly sensitive to the strange-
quark PDF.

FIG. 2. Comparison of the proton Fp
2 structure function data

from the E00-116 experiment in Jefferson Lab (JLab) Hall C [87]
with the CJ15 fit, as a function of Q2 for fixed scattering angle θ,
with the corresponding x ranges indicated. The data have been
scaled by a factor 2i, from i ¼ 0 for θ ¼ 38° to i ¼ 5 for θ ¼ 70°,
and the PDF uncertainties correspond to a 90% C.L.

FIG. 3. Comparison of the Fn
2=F

d
2 structure function ratio from

the BONuS experiment in Jefferson Lab (JLab) Hall B [21] with
the CJ15 fit, as a function of the invariant mass W2 for fixed Q2,
with the corresponding x ranges indicated (note x decreases with
increasing W2). The data have been scaled by a factor 2i, from
i ¼ 0 for Q2 ¼ 4.0 GeV2 to i ¼ 5 for Q2 ¼ 1.7 GeV2, and the
PDF uncertainties correspond to a 90% C.L.

FIG. 4. Comparison of CJ15 PDFs xfðx;Q2Þ for different
flavors (f ¼ u, d, d̄þ ū, d̄ − ū, s and g=10) at a scale
Q2 ¼ 10 GeV2, with 90% C.L. uncertainty bands. Note the
combined logarithimic/linear scale along the x-axis.
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consider: CMS 13 TeV data on W + c production [29], which tests predictions particularly

dependent on the strange quark; the ratios of Z and tt̄ cross sections at 8 TeV and 13 TeV

at ATLAS [30]; the CMS measurements of single-top production [31, 32]; the potential impact

of LHCb exclusive J/ production data [33, 34], as accounted for in the analysis of [35], and

LHCb data on D meson production [33, 36, 37], as accounted for in the analysis of [38]. In

Section 11 we compare our MSHT PDFs with those of the other most recent global analyses of

PDFs – NNPDF3.1 [2] and CT18 [3], and also with older sets of PDFs of other collaborations.

In Section 12 we summarise the availability of the MSHT20 PDF sets and their delivery. In

Section 13 we present our conclusions.

2 Changes in the theoretical procedures

As in the case of MMHT14, we present PDF sets at LO, NLO and NNLO in ↵S. In the latter

case we use the splitting functions calculated in [39, 40] and for structure function data, the

massless coe�cient functions calculated in [41–46]. There are however, a significant number

of changes in our theoretical description of the data, compared to that used in the MMHT14

analysis. We present these in this section, and when appropriate we also mention some of the

main e↵ects on the PDFs resulting from these improvements.

2.1 Input distributions

In MMHT14 we began to use parameterisations for the input distributions based on Chebyshev

polynomials. Following the detailed study in [47], we take for most PDFs a parameterisation
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A successful story of QCD, factorization and evolution!
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Proton spin puzzle
Quark spin only contributes a small 
fraction to the nucleon spin.
J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Spin decomposition

JAM Collaboration, PR D 93, 074005 (2016).

Lattice QCD 
(kinetic decomposition)

χQCD Collaboration,  
PR D 91, 014505 (2015).

7

~ 0.3

=

JAM15

JAM17: ΔΣ = 0.36 ± 0.09

JAM Collaboration, PRL 119, 132001 (2017).

Gluon spin from LQCD: Sg = 0.251(47)(16) 

50% of total proton spin
Y.-B. Yang et al. (χQCD Collaboration), PRL 118, 102001 (2017).

Nucleon Spin Structure
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Lepton Scattering: An Ideal Tool

1 Introduction

Two regimes of ep scattering are distinguished by the virtuality of the exchanged photon
between the electron and proton, which is defined using the square of the four-momentum
difference between the incoming and scattered electron as: Q2 ⌘ �q2 = �(k� k0)2. Neutral
current deep inelastic scattering (NC DIS) occurs at large virtualities (Q2 � 1GeV2) of
the exchanged photon which, at leading order, strikes a single quark within the proton.
Photoproduction (�p) processes occur for quasi-real exchanged photons (Q2 . 1GeV2), and
are further sub-divided into two categories at leading order: direct and resolved. In direct
processes, the photon couples directly to a quark as in DIS. Resolved processes occur when
the photon fluctuates non-perturbatively into partons, which then scatter with one or more
partons in the proton. The DIS and resolved photoproduction regimes are illustrated in
Fig. 1.

(a) Neutral current deep inelastic scattering. (b) Resolved photoproduction.

Figure 1: Schematic illustration of initial scattering in (a) deep inelastic scattering and (b)
an example of resolved photoproduction. The electron beam is represented by the lines with
arrows. The partonic contents of the proton and photon are represented as large and small
pale circles, respectively. The exchanged photon is shown as a wavy line. Quarks are shown
as spheres while gluons are shown in gold.

A wide variety of measurements in heavy-ion collisions [1–6] indicates the formation of a
new state of quantum chromodynamics (QCD) matter in local thermal equilibrium, the so-
called quark-gluon plasma (QGP). One of the key observables of the QGP is the collective
behaviour of final-state particles. Recent measurements from colliding systems such as p+p,
p+ A, and photo-nuclear A+ A suggest that a QGP may even form in systems previously
thought too small to attain thermal equilibrium [7–14]. The deep inelastic scattering of

1

[Figure from DESY-21-099]

[Figure from X.Y. Zhao]

Need polarized electron-ion collider
• High luminosity: 102 ~ 103 × HERA lumi. 
• High polarization: both electron and ion beams 
• Large acceptance: nearly full detector coverage

Modern “Rutherford Scattering” Experiment
• Start from unpolarized fixed targets 
• Extended unpolarized collider experiments 
• and polarized fixed-target experiments



Tianbo Liu 9

HIAF in Huizhou (惠州)
HIAF in Huizhou city, Guangdong Province

High Intensity heavy-ion Accelerator Facility

• a national facility on nuclear physics, atomic 
physics, heavy-ion applications … 

• open to scientists all over the world 
• provide intense beams of primary and 

radioactive ions 
• beam commissioning in 2025

Huizhou
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Electron-ion Collider in China

Electron Ion Collider in China

HIAF + HIAF-U

EicC • Based on HIAF

• energy in c.m.: 15 ~ 20 GeV 
• luminosity: ≳ 2 × 1033 cm-2 . s-1 
• electron beam: 3.5 GeV, polarization ~ 80% 
• proton beam: 20 GeV, polarization ~ 70% 
• other available polarized ion beams: d, 3He++ 
• available unpolarized ion beams: 7Li3+, 12C6+, 40Ca20+, 197Au79+, 208Pb82+, 238U92+

[Figure by EicC Accelerator WG]
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Physics Highlights
Partonic structure and three-dimensional landscape of the nucleon

Review article

Fig. 1.3 Illustration of the quark and the partonic structure
of the proton.

model, the underlying dynamics among quarks/gluons is
a lot more interesting and intricate, and offers much more
important information regarding the internal structure of
nucleons as a composite many-body system.

In high-energy scatterings, the proton can be viewed
as a cluster of high energy quarks and gluons, which are
collectively referred to as partons. The probability distri-
butions of partons within the proton are called the parton
distribution functions (PDFs). In general, PDFs give the
probabilities of finding partons (quarks and gluons) in a
hadron as a function of the momentum fraction x w.r.t.
the parent hadron carried by the partons. Due to the QCD
evolution, quarks and gluons can mix with each other, and
their PDFs depend on the resolution scale. When the res-
olution scale increases, the numbers of partons and their
momentum distributions will change according to the evo-
lution equations. These evolution equations can be de-
rived from the perturbation QCD, although PDFs them-
selves are essentially non-perturbative objects. Thanks to
QCD factorization theorems, PDFs can be extracted from
measurments of cross-sections and spin-dependent asym-
metries.

The partonic structure of the nucleon was firstly stud-
ied in experiments of electron–nucleon Deeply Inelastic
Scattering (DIS). Since electrons are point-like particles
and they do not participate in the strong interaction,
they are the perfect probe for studying the internal struc-
ture of hadrons in high energy scatterings. Therefore, the
DIS experiment is also known as the “Modern Ruther-
ford Scattering Experiment”, which opens up a new win-
dow to probe the subatomic world. In 1969, the pioneer
DIS experiments at SLAC discovered the so-called Bjorken
scaling [16], which showed that the proton is composed
of point-like partons with spin 1/2 (which are known as
quarks afterward). Starting from DIS with unpolarized
fixed targets, DIS experiments are later extended to unpo-
larized collider experiments and fixed-target experiments
with polarized beam and targets. These DIS experiments
have revolutionized our understanding of the subatomic
structure of nucleons and nuclei. Later on, high energy
DIS experiments observed the violation of Bjorken scal-
ing [17], which indicates the existence of gluon and QCD
evolution mentioned above. All these results across a wide
range of energy scales have verified that QCD is the cor-
rect theory for the strong interaction between quarks and
gluons within hadrons. In addition, within the current ex-

perimental accuracy, lepton and quark are still point-like
particles at the scale of 10−3 fm, which is one-thousandth
of the size of the proton.

With better experimental precisions, our understanding
of nucleon structure continues to improve even in unpo-
larized PDFs. Furthermore, many interesting phenomena,
such as the isospin asymmetry of ū and d̄ quark distribu-
tions and the asymmetry between strange and anti-strange
quark distributions in the proton, were discovered. These
phenomena are still compelling issues in medium and high
energy physics research.

In the wake of the development of polarized source in
the 1970s, the study of the nucleon spin structure became
possible by exploring the helicity distributions of quarks
and gluons, also defined as the longitudinally polarized
PDFs analog to their unpolarized counterparts discussed
above, from high-energy scattering processes involving po-
larized leptons and/or polarized nucleons. A lot more
interesting phenomena have been unraveled by polarized
DIS experiments. One of them is the so-called “proton
spin crisis”. Experimental data showed that the sum of the
spin from quarks and anti-quarks is only a small fraction
of the total spin of a proton. It triggered a series of exper-
imental and theoretical investigations on the origin of the
proton spin. From the QCD perspective, we now know
that the proton spin is built up from the spin and orbital
angular momenta of quarks and gluons. Currently, except
the quark spin contribution, other decomposed contribu-
tions in the spin sum rule, especially the ones from or-
bital angular momenta, are largely unexplored. Through
semi-inclusive DIS and other interesting processes, recent
experimental and theoretical developments have enabled
us to extend our research on nucleon structure from one-
dimensional PDFs to three-dimensional imaging. These
have been providing us new insights into the proton spin
puzzle.

Currently, there are two immediate and important is-
sues in the research frontier of nucleon structure: i) The
precision measurement of the one-dimensional spin struc-
ture of the polarized nucleon; ii) The study on the three-
dimensional imaging of the partonic structure of the nu-
cleon.

An interesting question when studying the one-
dimensional spin structure of the nucleons is how to
clearly decompose the individual contributions from dif-
ferent quark flavors. Despite the large uncertainty, the
recent measurement at Relativistic Heavy Ion Collider
(RHIC) implies that the sea quark helicity distributions
also have flavor asymmetries. Furthermore, the polarized
quark distribution of different flavors, especially for sea
quarks, still have large uncertainties. This directly im-
poses a challenge to our efforts to understand the proton
spin structure. Therefore, the precise determination of
various quark helicity distributions is a fundamental issue
which is needed to be addressed.

In the meantime, three-dimensional imaging of the par-
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quark gets struck out of the proton and becomes a final
state jet, which consists of many hadrons clustered inside
a narrow cone. This final state hadronization process can
be described by fragmentation functions. The final-state
hadron contents in the jet carry the flavor information
of the initial state quark, therefore this process offers a
way to tag the flavor of the produced quark. If one mea-
sures a pion or a kaon in the SIDIS process in addition to
the recoiled electron, one can separate spin contributions
from quarks of different flavors. In this case, the polarized
structure function in the parton model can be written as

g1(x,Q
2, z) =

1

2

∑

q

e2q
[
∆q(x,Q2)Dq→h(Q2, z)

+∆q(x,Q2)Dq→h(Q2, z)
]
, (2.2)

where Dq→h(Q2, z) describes the fragmentation process
from a quark q to a hadron h. z represents the momen-
tum fraction of the final state hadron with respect to the
momentum of the produced quark, experimentally, it is
defined as z = Phadron·p

q·p .
Through measurements in e+e− and e–p scatterings, we

have been studying and extracting various hadron frag-
mentation functions. Using these hadron fragmentation

functions as inputs, we can further separate and extract
the polarized quark distributions of certain flavor accu-
rately from polarized SIDIS data measured at EicC. Fig-
ure 2.3 shows the EicC projection of the polarized sea
quark and gluon distributions, respectively, for various fla-
vors of quarks obtain from longitudinally polarized double
spin asymmetry measurements via DIS and SIDIS pro-
cesses. In these figures, the light blue band represents the
original uncertainty of the DSSV14 global data fit [51].
The red (green) dashed band is the uncertainty from a
next-to-leading order fit using ePump [52, 53] by adding
DSSV14 fit with EicC DIS (SIDIS) pseudodata with in-
tegrated luminosity of 50 fb−1 for both electron–proton
(3.5 GeV + 20 GeV) and electron–3He collisions (3.5 GeV
+ 40 GeV). One can tell that the SIDIS data, taking ad-
vantage of π± and K± final states from both proton and
effective neutron targets, is more powerful comparing to
DIS data in the flavor separations. The plots clearly show
that EicC can significantly improve the precision of helic-
ity distributions of sea quarks and gluons in the x > 0.005
region. This can have an impact on the understanding of
the proton spin puzzle, since the current sea quark con-
tribution to the proton spin

∫
∆q(x)dx (q = ū, d̄, s) has

an uncertainty of 100%–200%. The measurement at EicC

Fig. 2.3 Results on the uncertainty band of polarized sea quark and gluon distributions after a next-to-leading order fit by
including EicC pseudodata. The light blue band represents the original DSSV14 global fit. The red (green) band shows the
results by adding DSSV14 fit with EicC DIS (SIDIS) pseudodata with integrated luminosity of 50 fb−1 (10 months of running
at 2 × 1033 cm−2 · s−1 instantaneous luminosity) for both electron–proton (3.5 GeV+ 20 GeV) and electron–3He collisions
(3.5 GeV+ 40 GeV). During the pseudodata analysis, the following cuts were applied: Q2 > 2 GeV2, W 2 > 12 GeV2,
0.05 < y < 0.8, 0.05 < z < 0.8.
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Fig. 2.13 The statistics error of the projected Acos φ
LL asymmetry for π0 production in DVMP process at EicC. The CLAS

data is taken from Ref. [119].

essential for ultimately yielding the complete 3D images
of proton from the large x down to the saturation regime,
and for much more profound understanding of the proton
spin puzzle as well.

2.3 Partonic structure of nucleus

The electron–ion collision has been recognized as an ideal
process to explore the distributions of quarks and gluons
inside the nucleus, as well as to study the QCD dynam-
ics of multiple parton interactions in the nuclear medium.
In this process, the electron scattering part, which can
be well controlled both experimentally and theoretically,
provides a high precision probe to reveal the detailed par-
tonic structure of the nucleus which is impossible to be
calculated theoretically. Besides, the nucleus can also
serve as a QCD laboratory at the fermi scale to investigate
the strong interactions between the energetic parton and
the nuclear medium by carefully studying the so-called
hadronization process which largely depends on the type
of the nucleus. The detailed analysis of these nontrivial
nuclear medium effects can help us to probe the funda-
mental differences of partonic properties in free nucleons
and the nuclear medium, as well as to understand the
mystery of hadronization mechanisms and the QCD con-
finement of quarks and gluons.

2.3.1 The nuclear quark and gluon distributions

A full understanding of the difference between the proper-
ties of quarks and gluons inside a free nucleon and that in-
side a nucleon bounded within the nucleus will help us un-
derstand how the nucleus is formed at the partonic level.
The longitudinal momentum distributions of quarks and
gluons in a free nucleon are characterized by the usual
leading twist parton distribution functions (PDFs) which

have been precisely measured in the high-energy electron–
proton collisions. A natural question is: how these PDFs
are modified by the nuclear medium when the nucleon
is bounded? To answer such a fundamental question re-
mains one of the biggest challenges in the nuclear physics
community. Due to the lack of experimental data and
the limited kinematic coverage, the precision for nPDFs
global extraction is far less than that for PDFs in free nu-
cleons [120–126]. In particular, the extraction of nPDFs of
sea-quarks and gluons is suffering from even much larger
uncertainties. It is strongly desired to perform more high-
precision measurements of conventional experimental ob-
servables as well as to explore new observables that are
sensitive to the sea-quark and gluons.

In the past three decades, various experiments have
confirmed that the PDFs measured in free nucleons and
bounded nucleons are significantly different. Data shown
in Fig. 2.14 reveal the cross-section ratios for inclusive DIS
between eA and eD collisions in terms of Bjorken x distri-
butions. The solid circles, the open squares, and stars cor-
respond to the data from SLAC E139 [20], BCDMS [19],

Fig. 2.14 The cross section ratio between electron–ion and
electron–deuteron deep inelastic scattering [128].
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Fig. 2.17 Left: The cross section ratios for π+,K+ and p between electron–ion and electron–proton collisions at EicC energy
region, i.e., 3.5 GeV electron beam and 20 GeV per charge for heavy ion beam, as a function of virtual photon energy ν. Right:
The transverse momentum broadening for π and J/ψ at future EicC.

tions. By looking at the dependence of Rh
M as a function

of the virtual photon energy ν, the capability of particle
identification as well as the kinematic coverage in EicC
will allow us to disentangle the hadronization mechanism
from the parton energy loss effect as indicated by the dif-
ference between solid and dashed curves. Though the two
models give very similar nuclear modification effect for π+

production, enormous differences for p and K+ are pre-
dicted. These differences can be identified in EicC consid-
ering its high luminosity 50 fb−1, which leads to invisible
statistical uncertainty as shown in Fig. 2.17.

The transverse momentum broadening effect is very
sensitive to the QCD dynamics of multiple parton interac-
tions in the nuclear environment and the nuclear medium
transport property. It has been extensively studied in
heavy-ion collisions, see for example [134, 146, 147]. Sim-
ilarly, we can also use this observable to probe the funda-
mental properties of the nuclear medium in eA collisions.
Comparing to pA collisions, eA collisions is much cleaner
due to the absence of the strong interaction between the
beam electron and the target nucleus. Based on the as-
sumption that the partons hadronize outside the nuclear
medium, we show in Fig. 2.17 the transverse momentum
broadening for light hadron (red curve) and J/ψ (blue
curve), which can be used to probe the jet transport pa-
rameters for quark jet and gluon jet, respectively. Notice
that the available measurements on the gluon jet trans-
port parameter are very limited, and EicC can make a
significant contribution to this subject.

2.4 Exotic hadronic states

Hadron spectroscopy started a new era in 2003 when the
D∗

s0(2317), Ds1(2460) and X(3872)1) were discovered at
the B factories. Since then many new hadron resonances
or resonant structures were discovered at various experi-

1)It is denoted as χc1(3872) according to its quantum numbers in the
latest version of Review of Particle Physics (RPP) by the Particle
Data Group [148].

ments all over the world. In particular, most of them con-
tain at least one heavy (charm or bottom) quark, and have
properties at odd with expectations from quark model.
The meson states discovered in the heavy-quarkonium
mass region are called XYZ states, see Table 2.2 for a
list. Notable examples include the X(3872), Zc(3900),
Zc(4020) and others. In 2015 and 2019, the LHCb Col-
laboration discovered pentaquark candidates with hidden
charm, Pc(4312), Pc(4440) and Pc(4457). The charged
heavy-quarkonium like Zc and Zb states as well as these
Pc states are clearly beyond the scope of the conventional
quark model for mesons and baryons, and thus excellent
candidates of exotic multiquark states. Understanding
the nature of these structures has been the main concern
for hadron spectroscopy, and is a challenge that needs to
be solved toward revealing the mystery of how massive
hadrons emerge from the interaction between quarks and
gluons.

Various models were proposed to explain (some of)
these observations, including multiquark states, hadronic
molecules, hybrid states, mixing of different components
and non-resonant effects such as kinematical singularities
and interference. These investigations were witnessed by
a large number of review articles in the past few years, see
Refs. [29, 148–169] emphasizing on various aspects of these
new resonant structures. Many of the observed structures
need to be confirmed by other experiments, and most of
the theoretical models also predicted light-flavor and/or
heavy-quark partner states of the observed ones. Thus, in
order to understand the pattern behind the messy spec-
trum of these new hadrons and to be able to classify them
into a clear picture, which can in turn give important hints
towards understanding the confinement mechanism, more
experimental measurements are urgently needed.

2.4.1 Status of hidden-charm and hidden-bottom hadron
spectrum

In Fig. 2.18, we show the spectrum of the charmonium(-
like) and bottomonium(-like) states listed in RPP [148].
The hidden-charm structures that were reported in var-
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Fig. 1.4 Illustration of conventional and exotic hadrons.

1.1.3 Exotic hadronic states

Quark model was invented before QCD to classify var-
ious hadrons composed of light (up, down and strange)
quarks [14, 15]. After incorporating the QCD dynamics,
it was able to provide an excellent description of the mass
spectrum of hadrons up to a few exceptions (see, e.g.,
Refs. [26, 27]). In the traditional quark model, a meson
is formed by a quark and an antiquark, and a baryon is
formed by three quarks. Most of the hadrons discovered
in the last century can be classified into flavor multiplets
in the quark model. But quarks and gluons can consti-
tute other types of hadronic objects: the so-called com-
pact tetraquark and pentaquark states contain more than
three (anti-)quarks as a single colorless cluster; hadronic
molecules are bound states of hadrons formed by the me-
diation of the strong force, just like that the deuteron is a
proton-neutron bound state; there can be colorless states
with both quark and gluonic excitations, i.e., the hybrid
states; glueballs composed of gluons. These different types
of hadrons are shown in Fig. 1.4. Such hadrons beyond
the traditional quark model are collectively called exotic
hadron states. Although such a classification is a quark
model notation, the hadron spectrum as observed presents
a grand challenge to understand from QCD, and the ex-
perimental search of exotic hadrons is one of the most
important handles towards understanding how the mas-
sive hadrons emerge from the underlying nonperturbative
strong interactions among quarks and gluons.

Since the beginning of the 21st century, experimental
study on hadron states has made significant progresses.
Experiments such as BESIII (Beijing Spectrometer III) at
Beijing Electron-Positron Collider (BEPC) in China, Belle
at KEK in Japan, BABAR at the SLAC National Accelera-
tor Laboratory in US, LHCb at the Large Hadron Collider
(LHC) in Europe and many others have reported fasci-
nating discoveries of candidates of exotic hadron states.
These discoveries have opened up a new exciting window

in the nonperturbative regime of QCD at the low-energy
frontier of the Standard Model. However, until now there
is no unified picture for understanding the new experimen-
tal discoveries, and the internal structure of these states
is still a mystery to be resolved.

EicC can contribute significantly in studying exotic
hadron states, especially the charmonium-like states and
hidden-charm pentaquarks, which can be produced abun-
dantly. EicC has a unique place for studying their pho-
toproduction, beyond the JLab 12 GeV programme. In
particular, given the existing measurements, the interpre-
tation of some of the prominent candidates of hidden-
charm tetraquarks and pentaquarks (either compact or
of hadronic molecular type) is not unambiguous due to
the the so-called triangle singularity contribution. Such
singularities are due to the simultaneous on-shellness and
collinearality of all intermediate particles in a triangle dia-
gram and are able to produce resonance-like signals when
the special kinematics required by the Coleman–Norton
theorem [28] is fulfilled [29]. However, for the photopro-
duction processes at EicC, the production mechanism is
free of such kinematic singularities. Therefore, one can
investigate the properties of pentaquark states and other
hidden-charm hadrons in a more clear way. The energy
coverage of EicC also allows for the seek of hidden-bottom
exotic hadrons. A clearer picture of the hadron spectrum
is foreseen with the inputs from EicC.

1.2 Polarized electron ion collider
in China (EicC)

The polarized electron ion collider in China (EicC) aims
at achieving the highlighted physics goals presented above.
It will be based on the existing High Intensity heavy-ion
Accelerator Facility (HIAF). HIAF is the major national
facility focusing on nuclear physics, atomic physics, heavy
ion applications and interdisciplinary researches in China.
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Fig. 2.23 The distributions of invariant masses, transverse momenta, pseudo-rapidities and rapidities of the Zc(3900)
+ in

different Q2 ranges.

then merge to form the exotic hadrons which couple to
them strongly, and the long-distance piece can be com-
puted at the hadronic level. The mechanism is shown in
Fig. 2.24. This mechanism, when applied to hadron collid-
ers, can produce cross sections for the prompt production
of the χc1(3872) if the momentum integration range for
the hadron-hadron Green’s function extends up to a few
hundreds of MeV [272, 274, 275].

As an example, in Fig. 2.25 we show the differential

Fig. 2.24 The mechanism considered in Ref. [270] for the
semi-inclusive production of exotic hadrons (denoted as X)
which couple strongly to a pair of hadrons (H and H ′) in
lepton-proton collisions.

cross sections generated using Pythia [276] for the semi-
inclusive productions of the D∗0D̄∗0 and Σ∗+

c D̄0 pairs in
electron–proton collisions with the electron and proton
beam energies set to 3.5 and 20 GeV, respectively. The
distribution can be well fitted by a k2 dependence with
k the c.m. momentum of the open-charm hadrons. The
XHH ′ coupling in Fig. 2.24 can be extracted from mea-
surements or evaluated in phenomenological models. In
particular, for the hadronic molecular model, the coupling
is connected to the binding energy (see [159]). The loop
in Fig. 2.24 is ultraviolet divergent, and the divergence
in principal needs to be absorbed into the multiplicative
renormalization of the short-distance part. For an order-
of-magnitude estimate, the loop integral is evaluated us-
ing a Gaussian regulator with a cutoff Λ of 0.5 and 1 GeV.
We list rough estimates for the production cross sections
of the χc1(3872), Zc(3900)+,0, X(4020)0 and the Pc states
observed by LHCb in Table 2.4. The estimates for four
more Pc states predicted in the hadronic molecular model
using heavy quark spin symmetry [192, 197, 277] are also
presented with masses and couplings taken from Ref. [192].
Considering an integrated luminosity of 50 fb−1, this leads
to O(105) events for each of the Pc states, and O(106) for
the χc1(3872) and O(107) events for Zc states. Notice
that neither branching fractions of further decays nor the
detection efficiency is taken into account here. For more
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Fig. 2.19 The dependence of the photoproduction cross sec-
tions on the γp c.m. energy for the exclusive γp → J/ψp and
semi-inclusive γp → cc̄X processes [173, 180–190]. The EicC
energy coverage is denoted by the shaded area. Here, X de-
notes the all particles that are not detected and should not be
confused with the X charmonium-like states.

ted using parametrization origined from the vector-meson
dominance model of Ref. [191]. The cross section for the
electroproduction process is about two orders of magni-
tude smaller due to an additional factor of electromag-
netic coupling α. Considering an integrated luminosity
of 50 fb−1, one may estimate that the J/ψ events pro-
duced from the exclusive process is about O(5×106). Be-
cause almost all excited charmed mesons (baryons) will
decay into D (Λc) and their antiparticles, one can expect
that there must be many more D and Λc events. There-
fore, in addition to the hidden-charm channels, the XYZ
charmonium-like states, including the highly excited ones
beyond the capability of BESIII and JLab or those that
cannot be produced through the B meson decays, can be
studied through open-channel final states. As a bench-
mark, the production of the χc1(3872) and Zc(3900) are
simulated and will be discussed in Section 2.4.3.

• Hidden-charm pentaquarks
So far, the only observations of hidden-charm pen-

taquarks came from LHCb: Pc(4312), Pc(4380), Pc(4440)
and Pc(4457) [175, 176].1) In fact, the existence of narrow
hidden-charm baryon resonances, as hadronic molecules
of a pair of charm meson and charm baryon, have been
predicted to exist in the mass region above 4 GeV [193–
199]. As mentioned above, similar to the existence of
many hidden-charm XYZ states, there should also be lots
of hidden-charm baryonic excited states. Searching for
them and verifying the LHCb observations will provide
valuable inputs to understanding the spectroscopy of ex-
cited hadrons. The nonobservation of the Pc states at
the GlueX experiment [173] indicates that the branching

1)The Pc(4380) here is a broad structure introduced to improve
the fitting quality in the 2015 LHCb analysis [175], and it is not
needed to fit the updated J/ψp invariant mass distribution [176].
However, there is a hint for the existence of a narrow Pc(4380) [192]
in the new LHCb data.

fractions of the Pc states into J/ψp to be small (for a com-
bined analysis of the GlueX and LHCb measurements, see
Ref. [200]). Then the dominant decay modes of the Pc

should be the open-charm channels, including the D̄(∗)Λc

and D̄(∗)Σc [192, 201–203]. Therefore, at EicC, the Pc

need to be searched for in exclusive processes with the final
states being not only the J/ψN , but also the open-charm
D̄(∗)Λc and D̄(∗)Σc channels [204, 205]. Semi-inclusive
processes of these processes will also be a crucial part as
they have much larger cross sections. Pentaquarks with
both hidden charm and hidden (or open) strangeness can
also be searched for in analogous processes. For an esti-
mate of the semi-inclusive production rates in the hadronic
molecular model of the Pc states, see the next subsection.

From the above discussions, one sees that an efficient
detection of the D/D̄ and Λc particles is essential for the
study of the hidden-charm mesons and baryons. From
RPP [148], one finds that the most important decay chan-
nels of the D+ are K−2π+ [(9.38± 0.16)%] and K0

Sπ
+π0

[(7.36 ± 0.21)%], those for the D0 are K−π+π0 [(14.4 ±
0.5)%] and K−π+ [(3.950 ± 0.031)%], and those for the
Λ+
c are Λπ+π0 [(7.1±0.4)%] and pK−π+ [(6.28±0.32)%].

Thus, both the charged and neutral pions and kaons need
to be efficiently detected. Once one of the open-charm
final state particles is reconstructed, the events for the
other one can be selected from the missing mass spec-
trum in the relevant energy region. In this way, searching
for hidden-charm states in the open-charm final states is
promising.

• Bottom hadrons
In Fig. 2.20, we show the cross sections for the exclu-

sive photoproduction of the Υ and for the semi-inclusive
bb̄. The shaded area in corresponding to the EicC energy
region covers the hidden-bottom hadron masses. The ex-
clusive data are taken from Refs. [206, 207] (ZEUS), [185]
(H1), and [208] (CMS); the semi-inclusive data are taken
from Refs. [209] (EMC) and [210] (H1). The models used

Fig. 2.20 The dependence of the photoproduction cross sec-
tions on the γp c.m. energy for the exclusive γp → Υp and
semi-inclusive γp → bb̄X processes. The EicC energy coverage
is denoted by the shaded area.
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Complementarity of EicC and EIC-US

R.G. Milner and R. Ent, Visualizing the proton 2022 

gluon dominates gluon + sea quarks valence dominates

Nucleon spin:  
EicC is optimized to systematically explore the gluon 
and sea quarks in moderate x regime 
At a crucial place between JLab and EIC-US
Proton mass / quarkonium production:  
Systematic investigation of ϒ near threshold production 
Complementary kinematic coverage to EIC-US 
Combine with J/ψ production at JLab
Exotic hadron states: 
Independent confirmation of hidden-charm pentaquarks 
and search for hidden-bottom analogues 
Exotic hadron production: final particles in mid-rapidity

Partonic structure in 
nuclear environment: 
Parton distribution in nuclei at 
moderate x 
Fast parton/hadron interaction 
with cold nuclear matter

[Figure from EicC White paper]
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Semi-inclusive DIS: a final state hadron (Ph) is identified

• enable us to explore the emergence of color 
neutral hadrons from colored quarks/gluons 

• flavor dependence by selecting different types of 
observed hadrons: pions, kaons, … 

• a large momentum transfer Q provides a short-
distance probe 

• an additional and adjustable momentum scale  

• multidimensional imaging of the nucleon
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Semi-inclusive Deep Inelastic Scattering
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Figure 8: Sketch, not to-scale, of kinematical regions of SIDIS in terms of the produced
hadron’s Breit frame rapidity and transverse momentum. In each region, the type of sup-
pression factors that give factorization are shown. (The exact size and shape of each region
may be very different from what is shown and depends on quantities like Q and the hadron
masses.) In the Breit frame, according to Eq. (9.7), partons in the handbag configura-
tion are centered on y ⇡ 0 if �k

2

i
⇡ k

2

f
= O

�
m

2
�
. The shaded regions in the sketch are

shifted somewhat toward the target rapidity yP,b (the vertical dashed line) to account for
the behavior of Eq. (9.1) when zN and xN are small.

R1 ⇡ 0.8 for kaons. If R1 ⇡ 0.8 is taken to be large, then confidence that one is in the
current region deteriorates. The flavor of the final state hadron has little effect on the
transverse momentum hardness, R2, from Eq. (8.16). From Fig. 11 (a) and Fig. 11 (c) flavor
dependence is only noticeable at low Q and even then the effect is small. To summarize,
the produced hadron mass affects collinearity R1 significantly, but does not appear to be a
primary factor in determining transverse hardness R2.

Within a specific example, collinearity R1 and transverse hardness R2 have helped us
to map out the current kinematic region (small R1) and to separate the "small" from the
"large" transverse momentum regions (small R2 vs large R2). The former will reasonably
correspond to a region where we expect TMD factorization to apply, while for the latter
a collinear factorization will be appropriate. At this stage, one might wonder whether
a LO calculation could be enough or whether higher order perturbative corrections are
necessary. This is where R3 comes into the game: large R3 coupled with large R2 signal a
large qT region where presumably higher order pQCD corrections are relevant, while small

– 27 –

Sketch of kinematic regions of the produced hadron

[Figure from JHEP10(2019)122]

 is defined in the photon-hadron framePhT

SIDIS Kinematic Regions

= PhT /z

PhT ∼ Q

PhT ≪ Q

σ ∼ H(Q, PhT) ⊗ fi/P(x) ⊗ Dj→h(z)

σ ∼ H(Q) ⊗ fi/P(x, kT) ⊗ Dj→h(z, pT)



Tianbo Liu 15

Structure Functions of SIDIS

SIDIS differential cross section
in terms of 18 structure functions 

A: lepton polarization 
B: nucleon polarization 
C: virtual photon polarization

dσ
dxB dy dz dP2

hT dϕh dϕS

=
α2

xByQ2

y2

2(1 − ϵ) (1 +
γ2

2xB )
× {FUU,T+ϵFUU,L+ 2ϵ(1 + ϵ)Fcos ϕh

UU cos ϕh + ϵFcos 2ϕh
UU cos 2ϕh+λe 2ϵ(1 − ϵ)Fsin ϕh

LU sin ϕh

+SL [ 2ϵ(1 + ϵ)Fsin ϕh
UL sin ϕh + ϵFsin 2ϕh

UL sin 2ϕh]+λeSL [ 1 − ϵ2FLL+ 2ϵ(1 − ϵ)Fcos ϕh
LL cos ϕh]

+ST [(Fsin(ϕh − ϕS)
UT,T +ϵFsin(ϕh − ϕS)

UT,L ) sin (ϕh − ϕS) + ϵFsin(ϕh + ϕS)
UT sin (ϕh + ϕS)

+ϵFsin(3ϕh − ϕS)
UT sin (3ϕh − ϕS) + 2ϵ(1 + ϵ)Fsin ϕS

UT sin ϕS + 2ϵ(1 + ϵ)Fsin(2ϕh − ϕS)
UT sin (2ϕh − ϕS)]

+λeST [ 1 − ϵ2Fcos(ϕh − ϕS)
LT cos (ϕh − ϕS)

+ 2ϵ(1 − ϵ)Fcos ϕS
LT cos ϕS + 2ϵ(1 − ϵ)Fcos(2ϕh − ϕS)

LT cos (2ϕh − ϕS)]}

FAB,C(xB, z, P2
hT, Q2)

xB =
Q2

2P ⋅ q

y =
P ⋅ q
P ⋅ l

z =
P ⋅ Ph

P ⋅ q

γ =
2xBM

Q
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Leading Twist TMDs
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Quark Polarization
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EicC Impact: Helicity distribution

D.P. Anderle, T.J. Hou, H. Xing, M. Yan, C.-P. Yuan and Y. Zhao,  JHEP 08 (2021) 034. 
Also included in the EicC White paper.

[Figure from EIC Yellow Report]
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TMD Helicity Distributions
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Longitudinal DSA in SIDIS

ALL ≡
σ++ − σ+− + σ−− − σ−+

σ++ + σ+− + σ−− + σ−+
=

1 − ε2FLL (x, z, P2
hT, Q2)

FUU (x, z, P2
hT, Q2)

In TMD region: 

FUU (x, z, P2
hT, Q2) ∼ f1(x, k2

T) ⊗ D1(z, p2
T)

FLL (x, z, P2
hT, Q2) ∼ g1L(x, k2

T) ⊗ D1(z, p2
T)

 dependent DSA measurementsPhT

g1L Several global analyses of collinear helicity 
but no extraction of TMD helicity before!

(both collinear and TMD)

HERMES: proton ( ) and deuteron ( ) targetsH2 D2

HERMES Collaboration, Phys. Rev. D 99 (2019) 112001.

JLab CLAS: proton ( ) targetNH3
CLAS Collaboration, Phys. Lett. B 782 (2018) 662.
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First Extraction of TMD Helicity
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Nonzero signals for u and d quarks, while sea quarks and gluons are loosely constrained. 

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

NLO+NNLL analysis results
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Transverse Momentum Dependent Polarization
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 gives the absolute number 
density difference between spin-parallel 
and spin-antiparallel quarks. 

The ratio  measures 
the polarization rate of quarks.

g1L(x, k2
T)

g1L(x, k2
T)/f1(x, k2

T)

• At large x, where valence components 
dominate, the polarization decreases with 
increasing  
Qualitatively consistent with kinetic Wigner 
rotation effects 

• At low x, where the valence component is 
no longer adequate, distributions are highly 
driven by complex QCD dynamics 
The polarization is found increasing with 

kT

kT

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma,  
Phys. Rev. Lett. 134 (2025) 121902.
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EicC Impact: TMD Helicity

Fit world data
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Transversity distribution

(Collinear & TMD)

A transverse counter part to the longitudinal spin 
structure: helicity g1L, but NOT the same.

Chiral-odd: 
No mixing with gluons 
Valence dominant 
Couple to another chiral-odd function. 

Transversity Distribution

TMD Handbook 169
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Figure 5.15: Left panel: Comparison of extracted transversity from Refs. [387, 213] (solid lines and
vertical-line hashed region) at &2 = 2.4 GeV2 with Torino-Cagliari-JLab 2013 extraction [388] (dashed
lines and shaded region). Right panel: The extracted functions ⌘1(G), 5 ?(1)1) (G), and �

?(1)
1 (I) at &2 = 4

GeV2 from JAM20 global analysis [18] (red solid curves with 1-� CL error bands). The functions from
other groups [388, 339, 213, 389, 376, 390, 391, 392] are also shown. Plot from Ref. [18]

that isospin and charge conjugation symmetries suggest that

�
?
1�+/D = �

?
1�+/3̄ = �

?
1��/D̄ = �

?
1��/3 ⌘ �

?
1 5 0E

�
?
1�+/D̄ = �

?
1�+/3 = �

?
1��/D = �

?
1��/3̄ ⌘ �

?
1 D= 5

(5.30)

3D binned data are presented by HERMES in Ref. [369]. The favored Collins functions describe
valence quarks fragmenting to the pion while unfavored correspond to nonvalence quarks.

HERMES [368, 369] and JLab Hall A [372] include the kinematic factor ?1 from Eq. (2.187)
in the measured asymmetry,

�
sin()⌘+)()
*)

|�⇢'"⇢( ⌘ hsin()⌘ + )()i = ?1�
sin()⌘+)()
*)

. (5.31)

The COMPASS Collaboration uses muon beam of energy 160 GeV and have measured
Collins asymmetries on both NH3 (proton) [371], see Fig. 5.14, and LiD (deuterium) [370]
targets. The data are presented as function of G⌫, I⌘ , and %⌘?. Results on the proton target are
compatible with HERMES findings and asymmetries are found to be compatible with zero on
the deuterium target. The beam energy of COMPASS is higher than the energy of HERMES
and thus COMPASS reaches lower values of G ⇠ 10�3. For each point in G the scale &

2 is
higher at COMPASS as one has &

2 ' BGH. Both experiments consider &
2 > 1 GeV2 in order

to be in DIS region and center-of-mass energy of the ✏⇤
? system, ,2 > 10 GeV2 for HERMES

and ,
2 > 25 GeV2 for COMPASS in order to be outside of the resonance region.

The COMPASS Collaboration considers I⌘ > 0.2 region and the HERMES Collaboration
uses 0.2 < I⌘ < 0.7 in order to minimize both target fragmentation effects and exclusive
reaction contributions. All other experimental cuts are described in Refs. [368, 370, 371]. The
definition of azimuthal angle )( of COMPASS experiment is such that

�
Collins
*)

|⇠$"%�(( = ��sin()⌘+)()
*)

. (5.32)

We mention that f⊥ð1Þ
1T ðxÞ and H⊥ð1Þ

1 ðzÞ are essentially
identical between the two fits (JAM3D-22 and JAM3D-22
no LQCD). This demonstrates that, although the Sivers
function can be influenced by transversity due the fact that
both enter Aπ

N, the main constraint on f⊥ð1Þ
1T ðxÞ is from the

Sivers effects in SIDIS and DY. Likewise, even though
h1ðxÞ couples toH

⊥ð1Þ
1 ðzÞ in the Collins effect in SIDIS and

Aπ
N fragmentation term, the Collins effect in SIA has the

most significant impact on the Collins function’s size
and shape.

FIG. 1. The extracted functions h1ðxÞ, f
⊥ð1Þ
1T ðxÞ,H⊥ð1Þ

1 ðzÞ, and H̃ðzÞ atQ2 ¼ 4 GeV2 from our JAM3D-22 global analysis (blue solid
curves with 1-σ CL error bands) compared to JAM3D-20+ global analysis (red dashed curves with 1-σ CL error bands). The generated
Soffer bound (SB) data are also displayed (cyan points).

FIG. 2. The extracted functions h1ðxÞ and H̃ðzÞ at Q2 ¼ 4 GeV2 from our JAM3D-22 global analysis (blue solid curves with 1-σ CL
error bands) compared to a fit without lattice QCD data (green dashed curves with 1-σ CL error bands). The generated Soffer bound data
are also displayed (cyan points). The functions f⊥ð1Þ

1T ðxÞ and H⊥ð1Þ
1 ðzÞ are essentially identical between the two fits, so we do not show

them here.

LEONARD GAMBERG et al. PHYS. REV. D 106, 034014 (2022)

034014-10
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JAM Collaboration, PRD 104, 034014 (2022).Z.-B. Kang, A. Prokudin, P. Sun, F. Yuan, PRD 93, 014009 (2016).

Phenomenological extractions

Effect in SIDIS:  
transverse single spin asymmetry 
(Collins asymmetry)

h1

Asin(ϕh+ϕS)
UT ∼ h1(x, k2

T) ⊗ H⊥
1 (z, p2

T)

Assuming vanishing transverse polarization of sea quarks!
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Semi-inclusive  annihilation:e+e−

Complementary Process

e+e− → h1h2X

d5σ
dz1dz2d2Ph⊥d cos θ

=
3πα2

2Q2
z2
1 z2

2[(1 + cos2 θ) Fh1h2
UU + sin2 θ cos (2ϕ0) Fh1h2

Collins]

In TMD region:  and  are near back-to-back, h1 h2 PhT ≪ Q Fh1h2
Collins ∼ H⊥h1

1 ⊗ H⊥h2
1

Experimental measurements:
Belle:     
BaBar:   
BESIII: 

s = 10.58 GeV
s = 10.6 GeV
s = 3.68 GeV

Phys. Rev. D 78 (2008) 032011; 86 (2012) 039905(E).
Phys. Rev. D 90 (2014) 052003;  Phys. Rev. D 92 (2015) 111101.
Phys. Rev. Lett. 116 (2016) 042001.
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Transversity Distributions

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, Phys. Rev. D 109 (2024) 056002, arXiv:2412.18324

Without assuming zero sea quark transversity distributions 
Existing world data favor negative  transversity distributionū
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EicC Impact on Transversity
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EicC Impact on Tensor Charge
Tensor charge

• A fundamental QCD quantity:  matrix element of local operators. 
• Moment of the transversity distribution: valence quark dominant. 
• Calculable in lattice QCD.

Dq/h
1 (x, p?) = Dq/h

1 (x)
1
⇡ h

q
exp
0
BBBB@�

p2
?

h
q

1
CCCCA (20)

Nq(x) = Nxa(1 � x)b(1 + cx + dx2) (21)

x f?(1)
1T (22)

xa(1 � x)b/B(a + 1, b + 1) (23)

hP, S | ̄qi�µ⌫�5 
q
|P, S i = gq

T ū(P, S )i�µ⌫�5u(P, S ) (24)

gq
T =

Z 1

0
[hq

1(x) � hq̄
1(x)] dx (25)

dn = gd
T du + gu

T dd + gs
T ds (26)

dp = gu
T du + gd

T dd + gs
T ds (27)

l±(`) + N(P)! l±(`0) + h(Ph) + X(PX) (28)
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T ū(P, S )i�µ⌫�5u(P, S ) (24)

gq
T =

Z 1

0
[hq

1(x) � hq̄
1(x)] dx (25)

dn = gd
T du + gu

T dd + gs
T ds (26)

dp = gu
T du + gd

T dd + gs
T ds (27)

l±(`) + N(P)! l±(`0) + h(Ph) + X(PX) (28)
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The Sivers Function

4 A. BACCHETTA

Fig. 2. – The up and down quark density distortion in transverse-momentum space, obtained
by studies of the Sivers function [17].

distortion exactly opposite to Fig. 5. This striking prediction, due to John Collins [22],
should be confirmed (of falsified!) in the next few years by planned experiments (e.g.,
COMPASS at CERN, AnDY at Brookhaven National Lab).

In order to study all these interesting issues, we need first of all to get acquinted with
the underlying formalism.

2. – Notation

These notes are written using the so-called “Amsterdam notation,” as done in Piet
Mulders’s lectures. In the recent paper [23] a slightly di↵erent notation was adopted.
Notation di↵erences are a common source of headaches, but it would be too di�cult in
these lecture notes to abandon the Amsterdam notation. Here, however, a correspon-
dence table is provided:

Amsterdam [23] Description

p k momentum of parton in distribution function
pT k? parton transverse momentum in distribution function
k p momentum of fragmenting parton
kT p? trans. momentum of fragmenting parton w.r.t. final hadron
KT P? trans. momentum of final hadron w.r.t. fragmenting parton
Ph? PhT transverse momentum of final hadron w.r.t. virtual photon

3. – Inclusive DIS

Inclusive DIS has been discussed in depth in the lectures of Piet Mulders. I will not
repeat here all the discussion and summarize only some of the relevant results, adding
some details here and there.

We consider the process

(1) `(l) + N(P )! `(l0) + X,
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Sivers TMD distribution function

[Figure from A. Bacchetta]

Transverse momentum distribution  
distorted by nucleon transverse spin

Sign change prediction:

Effect in SIDIS:  
transverse single spin asymmetry 
(Sivers asymmetry)

sizable Sivers asymmetry observed 
by HERMES, COMPASS, JLab

A naive T-odd distribution function

COMPASS Collaboration, PRL 119, 112002 (2017).

ϵijki
TSj

T

M
f⊥
1T(x, k2

T)
Asin(ϕh − ϕS)

UT ∼ f⊥
1T ⊗ D1

f⊥
1T(x, k2

T) |SIDIS = − f⊥
1T(x, k2

T) |DY
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Sivers Functions
Global analysis of SIDIS, Drell-Yan,  production dataW±/Z0

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, arXiv:2412.18324
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Sivers Functions
Global analysis of SIDIS, Drell-Yan,  production dataW±/Z0

C. Zeng, H. Dong, TL, P. Sun, Y. Zhao, arXiv:2412.18324
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EicC Impact on Sivers Functions
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Trans-helicity worm-gear distribution

Double Spin Asymmetry and Worm-gear

• Longitudinally polarized quark density in a 
transversely polarized nucleon 

• Overlap between wave functions differing by 
one unit of orbital angular momentum

Effect in SIDIS: 
A longitudinal-transverse 
double spin asymmetry

Phenomenological extraction

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. D 110 (2024) 034036.

kT ⋅ ST

M
g⊥

1T(x, k2
T)

Acos(ϕh−ϕS)
LT ∼ g⊥

1T ⊗ D1
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EicC Impact on Trans-helicity Distributions



Tianbo Liu

Summary
• Spin always surprises since its discovery nearly 100 years ago 
• Nucleon spin structure is still not well understood 
• Rich information is contained in TMDs 

- quark transverse momentum distorted by nucleon spin; 
- correlation between quark longitudinal/transverse spin and nucleon spin; 
- … 

• SIDIS with polarized beam and target is a main process to study polarized TMDs 
• Also an important approach to test/develop the theories/models 
• EicC can significantly improve the precision of the determination of TMDs, especially for 

sea quarks, complementary to JLab12 and EIC-US. 
• Electron-positron annihilation is an important complementary reaction to constrain TMDs 

and to understand the role of spin in hadronization process 
• There are still challenges on the theoretical side (not covered in this talk) 

- power corrections, higher twist effects, target fragmentation 
- radiative corrections, nuclear effects 
- …

33

Thank you!
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EicC Impact Studies

Baseline:  
An independent global analysis of world SIDIS and e+e- data 
within the TMD factorization and evolution 
Uncertainty estimation using MC replicas

EicC pseudo data: 
50 fb-1: 3.5 GeV e × 20 GeV p 
50 fb-1: 3.5 GeV e × 40 GeV 3He 
p and 3He pol.: 70% 
electron pol: 80%

Observables (examples):  
Longitudinal double spin asymmetry   
Transverse single spin asymmetry   
Transverse single spin asymmetry   
Longitudinal-transverse double spin asymmetry  

ALL ⇒ g1L
Asin(ϕh−ϕS)

UT ⇒ f⊥
1T

Asin(ϕh+ϕS)
UT ⇒ h1

Acos(ϕh−ϕS)
LT ⇒ g⊥

1T
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Wigner Rotation Effect
Melosh-Wigner rotation

quark spin in a rest proton  quark spin in a moving proton≠

χ↑
T = w [(k+ + m) χ↑

F − (k1 + ik2) χ↓
F]

χ↓
T = w [(k+ + m) χ↓

F + (k1 − ik2) χ↑
F]

If applying a kinetic boost, one may relate the spin states in proton rest frame 
to the spin states in infinite momentum frame

k+ = k0 + k3

w = [2k+ (k0 + m)]
−1/2

E.P. Wigner, Ann. Math 40 (1939) 149; H.J. Melosh, Phys. Rev. D  9 (1974) 1095.

The effect on quark polarization

Δq = ∫ d3kℳ [q↑(k) − q↓(k)] ℳ =
(k+ + m)2 − k2

T

2k+(k0 + m)

It predicts decreasing polarization with , which should be tested by data. 
This interpretation is based on a kinetic boost, but a complete boost including QCD 
dynamics is challenging.

kT

B.-Q. Ma, J. Phys. G 17 (1991) L53-L58; B.-Q. Ma, Q.-R. Zhang, Z. Phys. C 58 (1993) 479.
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The Sivers Function: Early Story
Transverse single spin asymmetry observed in experiments

DENNIS SIVERS 

FIG. 1 .  (a) Data from Ref. 19 on ppr+.rrOX at p,,,=24 
GeV/c, x F E  (0,O. 1 ) .  (b) Data from Ref. 20 on a-p  - 7 i . O ~  at 
p,,,=40 GeV/c, xF=O.O The curve is from Eq. (2.19) with 
¤=O.  1 .  

Even when such ratios are not unity the form of (2.13) 
suggests that they should depend only weakly on angles. 

For the full range of kinematics, we should have the 
isospin invariant 

It is interesting to confront the simplest version of 
these ideas with existing data. An experiment from 
CERN on pp + TOX at 24 GeV/c (Ref. 19) and an exper- 

FIG. 2. The estimate (2.19) with ~ = 0 . 1  is applied to 
pp r -faox at plabr200 GeV/c. 

iment from Serpukhov on a-p-rOx at 40 GeV/c (Ref. 
20) are shown in Figs. l(a) and l(b). Although these data 
are not in a region where the QCD cross section (2.1) can 
be considered to give a good fit to the spin-averaged dis- 
tribution we have gone ahead and used (2.19) in its most 
naive form to estimate the size of ( E )  needed to charac- 
terize the experimental results. Curves are shown for 
E=O. 1. Although we do not necessarily have a good fit 
to the data, this simple exercise provides a starting point 
for predicting asymmetries at higher transverse momen- 
tum. For comparison, this same value of E is used in 
(2.19) to estimate the asymmetry for ppr -T'X at small 
x, for 6 =20 GeV and pT=2-6  GeV/c. The curve is 
shown in Fig. 2. This experiment should be done in the 
near future. 

There is room for theoretical work to explore the con- 
nection between (2.13) and the generalization of (2.4) ad- 
vocated in Refs. 17 and 18. 
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APPENDIX: 2 + 2 KINEMATICS 
WITH A TRANSVERSE SHIFT 

We will use a simplified approach to the kinematics of 
the hard-scattering QCD model to demonstrate how the 
information from the A ~ G  ( ~ , k ~ ; ~ ~ )  is transmitted to the 
observable asymmetry at large transverse momentum. 
We will consider the process ab-+cd with all "partons" 
massless and on mass shell. The four-momenta will be 
parametrized: 
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We will use a simplified approach to the kinematics of 
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Data: J. Antille et al., Phys. Lett B94 (1980) 523. Data: 7th Symposium on High Energy Spin Physics (1986).

D. Sivers proposed to explain such SSA a new distribution function
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mechanisms have not heretofore been explicitly de- 
scribed. 

The important theoretical question which appears 
when confronting transverse spins in QCD is one of or- 
ganizing the calculation in such a way that the appropri- 
ate dynamics are displayed. The proposal we wish to 
consider here involves the complete neglect of the mecha- 
nism of Ref. 10, at least for jets or hadrons involving only 
light quarks or gluons. Instead we start from the formu- 
lation of the hard-scattering model which includes the 
transverse momentum of the constituents: 

This formulation of the QCD-hard-scattering model has 
been discussed elsewhere.12 It has been used, for exam- 
ple, to discuss the longitudinal structure function of the 
proton.'3 The relevance of the transverse momentum for 
the asymmetry ( 1 . 1 )  can be seen from the venerable 
Chou-YangI4 model of the constituent structure of a 
transversely polarized proton. If we assume a correlation 
between the spin of the proton and the orbital motion of 
its constituents, Chou and Yang showed the existence of 
a nontrivial A N  in elastic scattering. The coherent dy- 
namics which correlates the spin of the proton with the 
orbital angular momentum of the quarks and gluons can 
also produce a constituent-level asymmetry in transverse 
momentum: 

It is important to realize that the incoherent scattering of 
these asymmetrically distributed constituents can lead to 

the observable asymmetries of ( 1 . 1 )  because of the 
kinematical dependence of the underlying hard processes 
on kT. In this approach the "trigger-bias" of the QCD 
hard-scattering model translates the orbital motion of the 
quarks and gluons into observable asymmetries at large 
pT.  We give a simple illustration of the kinematics in the 
Appendix which demonstrates how they produce an 
asymptotic behavior 

indicative of a higher-twist effect. 
We attempt no proof that this mechanism provides the 

only "higher-twist" dynamics associated with single-spin 
asymmetries in QCD. Instead the assumption that other 
types of coherent effects might vanish here forms the sim- 
plifying hypothesis of a prospective model. The model 
predicts several types of regularities which can be looked 
for in future experiments. If these regularities are ob- 
served, then we have constrained other, more exotic, 
types of spin-dependent effects. We will discuss these 
predictions in Sec. 111. 

Although the asymmetries calculated in this way fall as 
1 /pT  they need not be considered proportional to a quark 
mass nor are they suppressed by powers of a, once the 
spin-dependent effects are absorbed into the distribution 
(1.3). Simple estimates suggest, therefore, that the magni- 
tude of the asymmetry can be compatible with effects ob- 
served in existing experimental data. 

11. THE HARD-SCATTERING MODEL 
AND TRANSVERSE SPIN 

The idea that there exists a regime where quantum 
chromodynamic processes can be calculated perturbative- 
ly has led to the formulation of a QCD-based parton 
model for the production of hadrons at large transverse 
momentum. For the process pp -+d, the familiar ex- 
pression for the invariant cross section at large transverse 
momentum isI5 

d 3 u  1 dxc 
E ,  7 ( p p - + ~ ~ ) =  - 2 J d x a  J d x b  J ~ G ~ ~ , ( X ~ ; ~ ~ ~ G ~ ~ , ( X ~ ; P ~ ) D ~ / ~ ( X ~ ; ~ ~ )  

Cf PT IT ab-cd X c 

1+0 - , I 1 - 1 1  
where constituent masses are neglected and we have made the kinematic approximation 

- x ,  X b  S=xaxbS ,  t  =-t ,  i i = - u  . 
x  " x  c 

For the single-spin transverse asymmetry 

d u ( p p T  - - + ~ X ) - d u ( p p ~  
d o ( p p r  -+~XiXI+do(pp~  -+ITXI ' 

it has been ~ u ~ ~ e s t e d ' ~ ~ ' ~  that the expression (2.1) can be generalized to give 

Sivers function D. Sivers, Phys. Rev. D 41 (1990) 83.

However it was soon shown this function was T-odd and prohibited by QCD
J. Collins, Nucl. Phys. B 396 (1993) 161.

For the next decade, the “Sivers effect” was thought to vanish.
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The Sivers Function: Early Story

36 A. BACCHETTA

the Wilson line appears to have no influence on physical observables [54-57]. In SIDIS and
Drell–Yan, the di↵erence between the Wilson line consists in a simple direction reversal
and leads to calculable e↵ects, namely a simple sign reversal of all T-odd TMDs [22].

In more complex processes, such as proton-proton collisions into hadrons, it was
initially proposed to introduce more intricate gauge links [58-60], but it seems now that
it becomes even impossible to disentangle them [61].

Gauge link for TMDs
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Fig. 11. – Path of the gauge link for semi-inclusive DIS.

Similarly to standard collinear PDFs, it is essential to define TMDs in a formally clear
way, through the proof of factorization theorems. TMDs appear when factorizing semi-
inclusive processes. For instance, while totally inclusive DIS can be described introducing
collinear PDFs, TMDs appear in semi-inclusive DIS if the transverse momentum of one
outgoing hadron, Ph?, is measured.

Dealing with semi-inclusive processes pushes the di�culty of proving factorization
theorems to a higher level of complications. TMD factorization is in fact a challenging
arena where many of the simplifications used in collinear factorization cannot be applied.
Nevertheless, factorization for semi-inclusive DIS has been worked out explicitly at lead-
ing twist (twist 2) and one-loop order [6, 12, 62,63]. For instance, the structure function
FUU,T in the region P

2
h? ⌧ Q

2 can be expressed as

FUU,T =
��H

�
x⇣

1/2
, z
�1

⇣
1/2
h , µF

���2
X

a

x e
2
a

Z
d2pT d2kT

⇥ �
(2)

�
pT � kT � Ph?/z

�
f

a
1 (x, p

2
T ; ⇣, µF ) D

a
1(z, k

2
T ; ⇣h, µF ).(151)

The formula contains the (calculable) hard scattering factor H and the transverse-
momentum-dependent PDFs and fragmentation functions. Following Refs. [6, 63], there
is no “soft factor” in the above formula. The soft factor can be introduced to absorb
infrared soft divergences. In this alternative definition, these divergences are absorbed
already in the TMDs.

According to TMD factorization, TMDs depend also on a cuto↵ ⇣. This cuto↵ is used
to regulate light-cone or rapidity divergences. As we mentioned in the DIS discussion,
these divergences cancel in inclusive DIS thanks to the summation of virtual and real
diagrams and the integration over transverse momentum, similarly to soft divergences.
In semi-inclusive DIS, they do not cancel. Various ways to deal with these divergences
have been proposed [5, 12,62,64].

TMD evolution is di↵erent from that of standard PDFs and takes into account
how TMD shape is influenced by the radiation of infinitely many gluons (transverse-
momentum resummation) [65]. What needs to be obtained from data is the nonpertur-
bative part of the functions (i.e., what cannot be computed with perturbative QCD).
Fig. 12 (from [63]) shows the e↵ect of TMD evolution on the distribution of up quarks

Until an explicit model calculation showing …

nonzero Sivers effects exist at leading twist 
due to final-state interactions

S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530 (2002) 99.
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By comparing the result with Eq. (71) and after fixing all small mistakes in the above,
you should be able to identify the structure functions corresponding to Eqs. (126), (135),
and (141).

10. – Beyond the parton model

A first important di↵erence between TMDs and PDFs when we also start taking glu-
ons into account is in the shape of the gauge link. The proper gauge invariant definition
of the quark-quark correlator is

(144) �ij(x, pT ) =
Z

d⇠� d2
⇠T

(2⇡)3
e
ip·⇠ hP | ̄j(0)Un�

(0,+1) U
n�
(+1,⇠)  i(⇠)|P i

����
⇠+=0

where the gauge links (Wilson lines) are defined as

Un�
(0,+1) = Un�(0�,1�;0T ) UT (0T ,1T ;1�),(145)

Un�
(+1,⇠) = UT (1T , ⇠T ;1�) Un�(1�, ⇠

�
, ⇠T ).(146)

Here Un�(a�, b
�; cT ) indicates a Wilson line running along the minus direction from

[a�, 0, cT ] to [b�, 0, cT ], while UT (aT , bT ; c�) indicates a Wilson line running in the
transverse direction from [c�, 0,aT ] to [c�, 0, bT ], i.e.

Un�(a�, b
�; cT ) = P exp


�ig

Z b�

a�
d⌘�A

+(⌘�, 0, cT )
�
,(147)

UT (aT , bT ; c�) = P exp

�ig

Z bT

aT

d⌘T ·AT (c�, 0,⌘T )
�
.(148)

In particular
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⇡ 1� ig
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1T

d⌘T ·AT (1�, 0,⌘T )(150)

The correlator in Eq. (144) is the one appearing in semi-inclusive DIS. Its path is
pictorially shown in Fig. 11.

A remarkable property of TMDs is that the detailed shape of the Wilson line is
process-dependent. This immediately leads to the conclusion that TMDs are not univer-
sal. However, for transverse-momentum-dependent fragmentation functions, the shape of

[Figure from A. Bacchetta]

Sivers function can exist due to nontrivial gauge link

J.C. Collins, Phys. Lett. B 536 (2002) 43.

This gauge link effect cannot be removed by choosing light-cone gauge A+ = 0
X. Ji and F. Yuan, Phys. Lett. B 543 (2002) 66.

Collinear expansion

Z.T. Liang and X.N. Wang, 
Phys. Rev. D 75 (2007) 094002.

incoming and outgoing leptons, p and S are the four
momentum and the spin of the incoming proton, q is the
four momentum transfer. We neglect the masses and use
the light-cone coordinates. The unit vectors are taken as,
!n ! "1; 0; 0; 0#, n ! "0; 1; 0; 0#, n?1 ! "0; 0; 1; 0#, n?2 !
"0; 0; 0; 1#. We work in the center of mass frame of the
!$p-system, and chose the coordinate system in the way so
that, p ! p% !n, q ! &xBp% nQ2="2xBp%#, and l? !
j~l?jn?1, where xB ! Q2=2p ' q is the Bjorken-x and y !
p ' q=p ' l. The leptonic tensor L"# is defined as usual and
is given by

 L"#"l; l0# ! 4(l"l0# % l#l0" & "l ' l0#g"#): (2)

The hadronic tensor W"# is defined as

 W"#"q; p; S# !
1

2$

X
X
hp; SjJ""0#jXihXjJ#"0#jp; Si

*"2$#4%4"p% q& pX#: (3)

We consider final-state interaction in pQCD so that we
have the contributions from the type of diagrams shown in
Fig. 1. The hadronic tensorW"# should be written as a sum
of the contributions from all the diagrams, i.e., W"# !P
jW
"j#
"#, where j denotes the number of soft gluons. At

the lowest order in pQCD, we have

 W"0#"#"q; p; S# !
1

2$

Z d4k
"2$#4 Tr(Ĥ"0#"#"k; q#&̂"0#"k; p; S#);

(4)

 Ĥ "0#"#"k; q# ! !""k6 % q6 #!#"2$#%%""k% q#2#; (5)

where %% means that only the positive solution is taken.
Similarly, corresponding to Figs. 1(b) and 1(c), we have
 

W"1#"#"q; p; S# !
1

2$

Z d4k1

"2$#4
d4k2

"2$#4

* Tr(Ĥ"1#'"# "k1; k2; q#&̂"1#' "k1; k2; p; S#); (6)

 

W"2#"#"q;p;S# !
1

2$

Z d4k1

"2$#4
d4k2

"2$#4
d4k
"2$#4

*Tr(Ĥ"2#'("# "k1; k2; k;q#&̂"2#'("k1; k2; k;p;S#);
(7)

where Ĥ"1#'"# "k1; k2; q# !
P
c!L;RĤ

"1;c#'
"# "k1; k2; q#,

Ĥ"2#'"# "k1; k2; k; q# !
P
c!L;M;RĤ

"2;c#'
"# "k1; k2; k; q#, and c de-

notes the different cuts in the diagrams. These hard parts
can all be read from the diagram and are given by

 

Ĥ"1;L#'"# "k1; k2; q# ! !""k6 1 % q6 #!'
k6 2 % q6

"k2 % q#2 & i)
* !#"2$#%%""k1 % q#2#; (8)

 

Ĥ"2;L#'("# "k1; k2; k; q# ! !""k6 1 % q6 #!'
k6 % q6

"k% q#2 & i)

* !( k6 2 % q6
"k2 % q#2 & i)

* !#"2$#%%""k1 % q#2#; (9)

and so on. The structure of proton is contained only in the
matrix elements &̂’s that are defined as

 &̂ "0#"k; p; S# +
Z
d4zeikzhp; Sj ! "0# "z#jp; Si; (10)

 

&̂"1#' "k1; k2; p; S# +
Z
d4yd4zeik1y%ik2"z&y#

* hp; Sj ! "0#gA'"y# "z#jp; Si; (11)

 

&̂"2#'("k1; k2; k;p;S# +
Z
d4yd4y0d4zeik1y%ik"y0&y#%ik2"z&y0#

* hp;Sj ! "0#gA'"y#gA("y0# "z#jp;Si:
(12)

We note that neither of the &̂’s defined in this way is
gauge invariant. To organize the above results in terms of
gauge invariant parton correlations, we need to invoke the
collinear expansion procedure. This procedure has been
developed in Refs. [24,25], and is carried out in the follow-
ing steps.

(1) we make a Taylor expansion of the hard parts around
k ! xp, e.g.,

 

N(p) N(p)

q(k) q(k)

q(k′) q(k′)
γ*(q)

(a) (b) (c)

γ*(q)

N(p) N(p)

q(k1) q(k2)g

γ*(q) γ*(q)

N(p) N(p)

q(k1) q(k2)k3 k4

γ*(q) γ*(q)

FIG. 1. Feynman diagrams for the cases with exchange of (a) j ! 0, (b) j ! 1 and (c) j ! 2 gluon(s). The gluon momentum in (b) is
k ! k1 & k2, those in (c) are k3 ! k& k1 and k4 ! k& k2.

ZUO-TANG LIANG AND XIN-NIAN WANG PHYSICAL REVIEW D 75, 094002 (2007)

094002-2
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TMD Evolution
Evolution equations

-prescriptionζ

J
H
E
P
0
6
(
2
0
2
0
)
1
3
7

Figure 2. In the (ζ, µ) plane we show the force-lines of the TMD evolution field E at different values
of b (in grey, with arrows). The thick continuous gray lines are null-evolution (equipotential) lines.
Red lines are the equipotential lines that define the saddle point. The red line which crosses each
panel from left to right is the special evolution curve where the TMD are defined. The blue dashed
lines in each plot correspond to the final scale choice (µf , ζf ) for typical experimental measurements.
The black points indicate the initial evolution scales for Q = 5, 91 and 150 GeV cases. Black dashed
lines with arrows are paths of evolution implemented in eq. (2.73).

to any point of ζi = ζQ(b). In figure 2 this path is visualized by black-dashed lines. The

resulting expression for the evolved TMD distributions is exceptionally simple

F (x, b;Q,Q2) =

(
Q2

ζQ(b)

)−D(b,Q)

F (x, b). (2.73)

We recall that this expression is same for all (quark) TMDPDFs and TMDFF. Substitut-

ing (2.73) into the definition of structure functions W we obtain,

W f
f1f1

(Q, qT ;x1, x2) = |CV (−Q2, Q2)|2 (2.74)

×
∫ ∞

0
db bJ0(bqT )f1,f←h(x1, b)f1,f̄←h(x2, b)

(
Q2

ζQ(b)

)−2D(b,Q)

,

W f
f1D1

(Q, qT ;xS , zS) = |CV (Q
2, Q2)|2 (2.75)

×
∫ ∞

0
db bJ0(bqT )f1,f←h(xS , b)D1,f→h(zS , b)

(
Q2

ζQ(b)

)−2D(b,Q)

.

These are the final expressions used to extract the NP functions.

The simplicity of expressions (2.74), (2.75) is also accompanied by a good convergence

of the cross section. In figure 3 we show the comparison of curves for DY and SIDIS

cross-section at typical energies. In the plot the TMD distributions and the NP part of

the evolution are held fixed while the perturbative orders are changed. The perturbative

series converges very well, and the difference between NNLO and N3LO factorization is of

order of percents. This is an additional positive aspect of the ζ-prescription, which is due

to fact that all perturbative series are evaluated at µ = Q.
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μ2 dF(x, b; μ2, ζ)
dμ2

=
γF(μ, ζ)

2
F(x, b; μ2, ζ)

ζ
dF(x, b; μ2, ζ)

dζ
= − 𝒟(μ, b)F(x, b; μ2, ζ)

−ζ
dγF(μ, ζ)

dζ
= μ

d𝒟(μ, b)
dμ

= Γcusp(μ)

γF(μ, ζ) = Γcusp(μ) ln
μ2

ζ
− γV(μ)

F (x, b; μf , ζf) = exp [∫P (γF(μ, ζ)
dμ
μ

− 𝒟(μ, b)
dζ
ζ )] F (x, b; μi, ζi)

F (x, b; Q, Q2) = ( Q2

ζQ(b) )
−𝒟(Q,b)

F(x, b), μ2
f = ζf = Q2

equipotential lines:
d ln ζμ(μ, b)

d ln μ2
=

γF (μ, ζμ(μ, b))
2𝒟(μ, b)

𝒟 (μ0, b) = 0, γF (μ0, ζμ (μ0, b)) = 0

I. Scimemi, A. Vladmirov, JHEP 06 (2020) 137.
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Analyze Λ Polarization
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Decay channel:
branch ratio: 64.1 ± 0.5%

decay parameter:  = 0.748 ± 0.007αΛ
[Current PDG value]

Allow to measure the spin (polarization) of the produced Λ 

parity violating weak decay

s
u d

valence component: |uds⟩
spin dominated by  quarks

Sensitive to nucleon strange sea 
and its polarization via SIDIS


